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N\ MARINE ENVIRONMENT

Intelligent airborne monitoring
of man-made marine objects
using Machine Learning

techniques - Part ||

The objective of this study is to create a new platform for the automated detection
of irreqularly shaped man-made marine objects (ISMMMOs) in large datasets derived
from marine aerial survey imagery. Readers may recall that we published the first
We present here the concluding part

part of the paper in October issue.
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3. Experimental design

Offshore digital wildlife surveys for the
offshore renewables sector are performed
by APEM, capturing high quality images
year round in all light conditions and up
to four different sea states. The data is
recorded using a wide range of advanced,
high-resolution photogrammetry sensor
technologies, including 35 mm and
medium format sensors from a variety

of manufacturers, in either multiple
camera or a single camera configurations,
subject to the scope of the project. These
high-tech cameras, enabling a very high
resolution ranging from 35MP to SOMP,
are mounted in a tiny twin engine aircraft
(e.g., Fig. 17) on a route where all areas
of interest are monitored with geospatial

data (i.e., latitude, longitude, and altitude).

It is noteworthy to emphasise that we
have followed the standardised way of
constructing applications for real-world
uses with the development phases of

1) build the model using a dataset and
move to the second phase if the test
results are satisfactory ii) test/evaluate the
model using another dataset completely
different from the first dataset to observe
if the test results are satisfactory without
overfitting, and finally iii) let field experts
evaluate the model with a completely
new dataset independent from the first

and second datasets. The model can be
deployed if it passes these three phases
successfully. These phases are outlined in
Fig. 3. The obtained results as well as their
evaluation are provided in the following
section. The experimental design of

data utilisation and data processing
phases with their targeted objectives

are outlined in Table 3 regarding the
APEM ‘s database. The viability of the
methodology was ensured in 4 phases.

Phase 1. Model construction (Fig.

3 I): The proposed methodology was
established using 145 images with
ISMMMOs and 5000 images with no
ISMMMOs acquired from the 22 surveys
between 2014 and 2017, with around
250 samples from each survey. The sub
samples of these surveys have around

3 million large-scale images that have
been obtained from the various areas of
the world in all seasons and numerous
time zones. This large number of surveys
enabled us to identify the broad features
and parameters of aerial surveys and
apply these parameters to make our
methodology robust. All the steps of the
model construction phase are explored in
the sections above in detail. Phase II was
conducted after the successful execution
of Phase I by realising the targeted
objectives, which is elaborated as follows.



Phase II. Test of the model (Fig. 3 II): In addition to the dataset
used for the establishment of the methodology, a test dataset was
prepared. This set was composed of 55 images with ISMMMOs
and 5000 images with no ISMMMOs, The test results are
displayed in Table 10 A. We moved to the next phase to evaluate
the system using independent datasets after the satisfactory results
(Se, Sp, PPV, NPV, and ACC > 0.95) obtained in this phase.

Phase I11. Evaluation using recent surveys (Fig. 3 I1):

A dataset was prepared to evaluate the eligibility of the
methodology. This set consists of 57 images with ISMMMOs

and 5000 images with no ISMMMOs. This set is not included

in the dataset used for the establishment of the methodology

to observe if the methodology works as desired for other
independent datasets. The test results are displayed in Table 10

B. We moved to the next phase to verify the system with field
experts using other independent datasets after the satisfactory
results (Se, Sp, PPV, NPJ; and ACC > 0.95) obtained in this phase.

Phase IV. Validation by field experts using the most recent
surveys (Fig. 3 IV): Furthermore, in an independent verification
dataset, 9 more images with ISMMMOs and 50 images with

no ISMMMOs in different surveys from the surveys on which
the methodology was established were provided by APEM

for affirming the viability of the system to observe if the
methodology can work as desired for any aerial datasets. Two
field experts from APEM Ltd. confirmed that the established
system can meet their needs to detect ISMMMOs while
performing surveys. The test results are displayed in Table 10 C.
The results (Se, Sp, PPV, NPV, and ACC > 0.95) obtained in this
phase were found to be highly satisfactory by the field experts.

4, Results

The effectiveness of the proposed methodology in detecting
images with ISMMMOs is demonstrated by several experiments
performed on many aerial survey images as elaborated in
Section 3. The results of these experiments are outlined in

Table 10 and they are summarised in Table 11. The numerous
tangible outcomes of these successful results are demonstrated
in the supplementary technical reports of the paper and in Figs.
11f, 12f, 13f, 14f, 15f. With this approach, ISMMMOs can be
captured with Se, Sp, PPV, NPV, and ACC values over 0.95. More
specifically, 140 images out of 145, 55 images out of 57 and 9
images out of 9 in the test, evaluation and validation phases (Fig.
3) are tagged as the images with ISMMMOs successfully with

a high Se over the targeted value (> 0.95) in the research, which
indicates that the methodology is strong in separating positive
images from negative ones in situations where it is preferable to
not miss positive images. The particular results of these phases
are averaged at the bottom column in Table 11. All the averages
are higher than 0.95, which indicates that the required phases
were completed successfully and the application is ready for
real world deployment (Fig. 3). It is noteworthy to emphasise

that Precision (Pr), i. e., Positive Predictive Value — PPV = Pr
=TP/(TP+ FP) —is 0.9813 for the average. This high value
demonstrates that the model is highly successful in assigning
“Positive” images to the “Positive™ class while the ‘Negative”
images are assigned to the “Negative” class effectively with
a NPV of 0.9995. Most importantly, we calculated Matthews
Correlation Coefficient (MCC) due to an unbalanced number
in the classes where the number of negative values were high,
which may yield misleading ACC values. The MCC, ranging
from — 1 to 1, was found to be 0.971, which indicates that

the model is very close to a perfect prediction (i.e., 1).

During the implementation of the methodology, testing, and
evaluation, it was observed that the ISMMMOs with completely
white features (i.e., R =255, G =255, B = 255) had difficulties
being detected by our methodology since they have the same
characteristics as waves with respect to HSV conversion, where
zero is assigned to the S component during the conversion from
RGB to HSV mode (Table 1, Table 2). In this respect, it is worth
noting that the images with ISMMMOs that could not be detected
during the design and development phases (Fig. 3) are these types
of images. Examples of these images are presented in Appendix
B (Fig. 18). We refer the readers to Fig. 13 to observe how the
white parts of the wind turbine cannot be detected adequately.

() Original image

() HSV comversion td) Thresholding, nsking and filling

" Stmaxsm

LAl

Htsned Smumpns

i

(¢) Original image () Histogram of H. S. V channels:first row original:second row converted

(&) HSV conversion

th) Thresholding, masking and filling

Fig. 16. Examples for blank images with no man-made objects.

(BOORTIDANGS November 2024 | 23



5. Discussion

Gibert et al. (Gibert et al., 2018) defined
Data Science as a multi disciplinary field
that is a combination of data analysis,
data processing techniques, and domain
knowledge that transforms data into
comprehensible and actionable insights
relevant to making informed decisions.
Within this context, the objective of this
study is to create a new environmental
platform for the monitoring of the
maritime environment by combining
domain knowledge and data scientists in
a productive collaboration and perform
the detection of mobile and stationary
ISMMMOs in an automated manner
with their geospatial coordinate system.
Changes in the marine ecosystem, such
as habitat loss or population decreases
in marine organisms, may not be readily
foreseeable and it requires long term
studies to reveal the environmental
changes and impacts on the ecosystem
and consequently to determine the
required policies accordingly. Studies

in marine environments, especially far
offshore, are comparatively costly and

require the employment of new automatic

techniques and merge of different studies
for field researchers. In this sense, this
study intends to help authorities and

Fig. 17. APEM aircraft during an aerial survey.

researchers with the automatic detection
of offshore ISMMMOs using an advanced
platform to fill some of this gap.

The robustness of the platform was
validated on a wide range of aerial
maritime domains, providing a high
level of empirical proof of concept with
successful results (Table 11). Strictly
speaking, the experimental results show
that the proposed approach is efficient
and effective for the detection and the
segmentation of ISMMMOs in large
scale aerial images. More specifically,
the dynamic thresholding approach
employed in the methodology increases
Se from 0.85 to 0.97 and Sp from 0.82

to 0.99 when compared to the static
optimum threshold value as displayed

in Table 4. This increase is statistically
significant (p<0.01) by rejecting the null
hypothesis (i.e., there is no significant
difference between two results) using a
paired-samples t-test. The ISMMMOs
not detected by the methodology are all
complete white objects. This issue is
specified in Section 7 as a limitation of
the study. Furthermore, the evaluation and
validation results using the new data-sets
(Table 10) that were not in the surveys
used during the establishment of the
methodology (Fig. 3) demonstrate that the
methodology can work effectively on any
aerial survey with high accuracy rates. In
other words, during the evaluation phase,

55 out of 57 images with ISMMMOs were

put into the positive folder and 4998 out
of 5000 images with no ISMMMOs were
placed into the negative folder. During
the validation by field experts, 9 out of 9
images with ISMMMOs were put into the
positive folder with all objects detected

Table 10: Detailed confusion matrix of the classifiers outlined in Table 11.

successfully and 50 out of 50 images
with no ISMMMOs were placed into the
negative folder successfully. It must be
noted that the developed methodology
neither classifies the detected ISMMMOs
into groups nor determines the recognition
of them, such as “ship”, “wind turbine”
etc. Particular classification tools need

to be developed to group the ISMMMOs
that are placed in the positive directory
by the proposed technique in this study,
which is proposed as a future work in
Section 6. Bespoke semi-supervised ML
approaches (e.g., SelfMatch in (Xing et
al., 2022a)) can be a good candidate for
addressing this type of research question
by extracting features from labelled data
and comparing them with the features that
are obtained from detected ISMMMOs
based on the semantic information (e.g.,
(Xiao et al., 2022) and a feature/distance
based matching scheme (e.g., (Xing et
al., 2022b)) considering various pose
compositions (e.g., (Calis kan, 2023)).
The methodology not only distinguishes
ISMMMOs from the blank background
(sea canvas with waves in many different
shapes), but also from other objects

(e.g., different types of flying birds,
sitting birds, big mammals (e.g., whales,
dolphins), sharks, turtles, rays) in images
with various shapes and characteristics
successfully for which several examples
can be reached in the technical report
(e.g., Fig. 3 in MarineObjects_Man-made_
Supplement_1.pdf) in the supplements.
The results suggest that the saturation of
maritime natural objects is significantly
different from ISMMMO:s. The processing
time for each image varies from 7 s to

16 s, depending on the image size and

the number of objects in the image and

A. Test Results (UCLAN)

B. Evaluation (UCLAN)

C. Validation (APEM)

Actual Class Actual Class Actual Class
Positive Negative % Positive Negative % Positive Negative %
Pred Positive 140 (TP) 3 (FP) 0.9790 (PPV) 55 (TP) 2 (FP) 0.9649 (PPV) 9 (TP) 0 (FP) 1 (PPV)
Negative 5 (FN) 4997 (TN) 0.9990 (NPV) 2 (FN) 4998 (TN) 0.9996 (NPV) 0 (FN) 50 (TN) 1 (NPV)
% 0.9655 (Se) 0.9994 (Sp) 0.9984 (ACC) 0.9649 (Se) 0.9996 (Sp) 0.9992 (ACC) 1 (Se) 1 (Sp) 1 (ACC)
Table 11: Test, evaluation and validation results in summary detailed in Table 10.
Phase Positive Negative TP FN N FP Se SP PPV NPV ACC Location Check
Test 145 5000 140 5 4997 3 0.966 0.997 0.9790 0.9990 0.9984 UCLAN v
Evaluation 57 5000 55 2 4998 2 0.965 0.999 0.9649 0.9996 0.9992 UCLAN v
Validation 9 50 9 0 50 0 1 1 1 1 1 APEM L4
Verification 211 10,050 204 7 10,045 5 0.977 0.9987 0.9813 0.9995 0.9992 Average 244
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their sizes, which is a very fast processing
time for high-pixels-per-image (HPP)
images up to 50 MB based on the camera
system that is explained in Section 3.

The overall computational complexity

of the developed algorithms is O(n log

n). It is important to point out that the

supervised DL and ML approaches,
designed by us in our previous work in
(Kuru et al., 2023), that runs on similar
images in the same surveys, can detect
specific marine small natural objects
(e.g., birds) in a few seconds (i.e.,
between 2 and 4 s). In this sense, we can

Appendix B. Examples for objects not detected by the proposed approach

conclude that DL and ML techniques

slightly outperform the proposed non-
supervised technique developed in this
study considering the processing time.

The current rate of global environmental
alteration necessitates the quantification of

Algorithm 3: Function titled startSplittingManMadeObjects:Main methodology: Phases of the operations
to detect man-made objects in images.

Data: The target directory of a survey with images (imageDir)
Result: Two directories, one of which is for images with man-made objects, and the other is for other images.

— >Variables;

N o=

strcat(imageDir,’j; steps = numel(files);

Rmin = 12.5; Rmax = 1000; curCount = 0; counter = 0; posImageCount = 0; hAdjust = 180; sAdjustPer = 0.25; files=dir(strcat(imageDir,’ s *.jpg’)); path =

3 foreach k=1:numel(files) do

4 file_name=files(k).name; image_name=strcat(path,file_name);

5 — > Get positive image name and change it by adding - at the end to move changed and not changed ones into same directory:
6 [pathstr,name,ext] = fileparts(file_-name); name = strcat(name,’.’); new_file_name = strcat(name,ext);

7 Irgb=imread(image_name);

8 figure; imshow(Irgb);

9 index = k: index_image = k;

10 newlmage = HSVadjustManMade(Irgb, hAdjust,sAdjustPer);

11 imshow(newlmage);

12 ImgR = newlmage(:, :, 1); ImgG = newlmage(:, :, 2); ImgB = newlmage(:, :, 3); [M N] = size(ImgR);

13 — >Get location of pure red pixels;

14 Rmask = logical(zeros(M, N)): Rmask = ((ImgR < 0.25 & ImgG < 0.80 & ImgB > 0.35) & (ImgR < (ImgB) & ImgG < (ImgB))):
15 — >Replace the pixels with some other colour;

16 ImgR(Rmask) = 255; ImgG(Rmask) = 255; ImgB(Rmask) = 255; ImgR(Rmask==0) = 0; ImgG(Rmask==0) = 0; ImgB(Rmask==0) = 0;
17 — >Combine into a new image;

18 Imgnew(:, :, 1) = ImgR; Img_new(;, :, 2) = ImgG; Img_new(:, :, 3) = ImgB;

19 figure; imshow(Img_new);

20 — >create indexed image from binary;

21 BW = im2bw(Img_new,0.05);

22 — >loop over ICE_threshold;

23 ICE_threshold = 0.1; ICE_sigma = 2; img_edge = edge(BW, "canny’, ICE_threshold, ICE_sigma);

24 — >create 3x3 array of 1s for dilate mask;

25 SE = ones(3);

26 — >dilate image to create closed boundary for birds with incomplete boundaries defined;

27 img_dilate = imdilate(img_edge, SE); img_dilate2 = imdilate(img_dilate, SE);

28 — >fill objects with closed boundaries;

29 img_fill2 = imfill(img_dilate2, holes’);
30 L = bwlabeln(img_fill2);

31 — >get the centroid of each object to use as seeds for local neighbourhood definitions;

32 stats = regionprops (‘table’, L, *Area’, "BoundingBox’, *Centroid’, "MajorAxisLength’,”MinorAxisLength’); stats1 = regionprops (L, ’Area’,

’BoundingBox’, *Centroid’, "MajorAxisLength’,”MinorAxisLength’); statsDetected = stats1;
33 — >Get centers and radii of the circles;
34 centers = stats.Centroid; centers diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2); radii = diameters/2; radiiDedected =
diameters/2; centersDetected = centers;

35 — >count the number of objects in the image;

36 no-objects = size(stats, 1);
37 if no_objects < 11 then

38 L Rmin=75;
39 else if no_objects > 10 && no-objects < 101 then

40 |_ Rmin = 12.5;
a1 else

a2 L Rmin=20.5;
43 imshow(Irgb);
44 for object = 1:no-objects do

45 if (diameters(object) > Rmin*2) && (diameters(object) < Rmax*2) && (statsl(object).MajorAxisLength < Rmax*2) &&

(stats1(object).MinorAxisLength > Rmin*2) then
46 — > Save image x and y coordinates into variable "seed’;
47 posImageCount = posImageCount + 1; seed(object,1) = round(stats1(object).Centroid(1)); seed(object,2) =
round(stats 1 (object).Centroid(2));

a8 — > Signify the object;

49 hold on; plot(stats1(object).Centroid(1), stats1(object).Centroid(2), *g+’); hold off;

50 if (posimageCount > 0) then

51 curCount = str2double(get(handles.edtPosCount,’ String’))+1; set(handles.edtPosCount, *String’, num2str(curCount));
52 — > Save the updated image with the signified objects;

53 saveHighResolution(posSubFolder,new_file_name); — > remove the original image from processing folder;

54 L movefile(image-name,posSubFolder); delete(image_name)

55 close All; clear All;

56 — > Set the variable to O for next image;

57 posImageCount = 0;

58 — > Update the progress:

59 waitbar(k / steps,h,”Man-made object detection is procesing...”);

60 result = ’Man-made objects are tagged on the image’;
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impacts in species abundance in order to
evaluate the effects on the ecosystem. To
assess the extent of the decline, effective
long-term surveillance of populations
and trends is required, which is rarely the
case for most species (Rosenberg et al.,
2019). Environmental models work better
when they are based on the findings of
more up-to- date data analysis on specific
domains. It is essential to continuously
monitor species and ISMMMOs in

an automated manner cost-efficiently,
which necessitates the utilisation of

sophisticated equipment with effective
intelligent surveillance methods. In

this regard, WILDetect, which is a new
non-parametric platform by utilising

a combination of supervised ML and
Reinforcement Learning (RL) methods,
was built in our previous work in (Kuru et
al., 2023) to carry out automated wildlife
censuses in highly dynamic marine
environments. With similar automated
platforms, one of which is proposed in
this research for detecting ISMMMOs,
existing labour-intensive and costly

The large number of surveys, that were conducted in

the various geographical regions and in the various

time zones and seasons, on which our methodology was

built, represent the key features of aerial surveys, which

made our approach powerful and resilient in detecting

ISMMMOs with very high accuracy rates

26 | GOOGIDAIGS November 2024

Fig. 18. Examples for objects not detected:

censuses performed over long periods of
time can be replaced by cost-efficient and
highly automated computerised systems
and they can be repeated automatically
in regular, shorter periods. In this way,
the environmental models, equipped with
near-real-time outcomes for both marine
wildlife and man- made presence, can
foretell future trends with more realistic
projections based on human footprint,
which, in turn, help mitigate the potential
damaging effects of human footprint.

6. Conclusions and future work

A novel methodology, the so called
ISMMMOD, that detects and splits
ISMMMOs automatically in large-

scale images in typical large marine
surveys is built. The ISMMMOD is
developed using the HSV colour space
and statistical analysis of histograms of
the channels in this space based on the
ROC curve analysis. The techniques in the
methodology differ man-made structures
from natural maritime habitats (i.c., waves,
sea animals, birds, seawater) in various
aspects, in particular, composition, features
of the surface and saturation of light.

The large number of surveys, that were
conducted in the various geographical
regions and in the various time zones

and seasons, on which our methodology
was built, represent the key features of
aerial surveys, which made our approach
powerful and resilient in detecting
ISMMMOs with very high accuracy

rates. The successful results obtained in
this research (Table 11) is an indication
that using an automated computer- based
system could be an effective alternative to
labour-intensive approaches. The approach
built in this study can be employed for
several reasons, in particular, will provide
researchers and policymakers with the
ability to monitor maritime industries and
ensure their proper deployment through
the implementation of a suitable legal

and regulatory framework that takes

into account the changing dynamics of
marine ecosystems. Additionally, this
study will direct the researchers who
would like to establish similar systems
using unsupervised approaches.



The proposed method was tested on large-
scale aerial images acquired by aeroplanes
and we would like to observe the results of
our method on satellite images wherever
datasets are available, which may

reduce the cost significantly regarding

the detection of ISMMMOs and may
provide a real-time and quick evaluation
of ISMMMOs in marine ecosystems.

This study may direct other studies about
the automatic classification of marine
ISMMMOs. We will be developing other
novel nonparametric approaches to detect
maritime life (e.g., different types of flying
birds, sitting birds, big mammals (e.g.,
whales, dolphins), sharks, turtles, rays)
automatically in large number of images
in surveys using supervised approaches
(e.g., (Kuru et al., 2023)) to help evaluate
the maritime industry and natural
ecosystem together within well- prepared
models. We aim to incorporate the built
methodology with camera systems used in
aeroplanes and unmanned aerial vehicles
(UAVs) and to employ it in real-time
rescue missions on high seas and open
oceans as a future work, in particular,
after aeroplane crashes and maritime
accidents to find wreckages and survivals.

7. Limitations of the study

Complete white ISMMMOs as displayed
in Appendix B (Fig. 18) have the same
characteristics as waves (R =255, G =255,
B = 255) with respect to HSV conversion,
in particular, saturation. As it can be readily
noticed in Table 1, zero is assigned to the
hue and saturation during the conversion
from RGB to HSV colour space when

the values for the RGB colour space is
255, 255, 255 for the three channels. Our
techniques perform successfully where the
hue and saturation values are distinctive
(i.e., H> 0 and S > 0) and therefore,

these types of objects can not be detected
using the approach built in this study.
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org/10.1016/j.ecoinf 2023 .102285.

End notes
! https://apem-inc.com
* https:/fwww.apemltd.co uk

3 APEM Ltd. 1s an environmental
company and proposes novel
solutions for environmental problems
(https:/fwww.apemltd.co.uk).

* The reports from 1 fo 7 titled as
MarineObjects_Man-made_Supplement
are for ISMMMOs and the reports from 1
to 5 titled as MarineObjects Man-made
Supplement_Blank are for blank images.
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