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Abstract 22 

A growth monitoring study (0-7 day of age) was conducted involving 87, one-day old Ross 308 23 

male broilers to evaluate organ weights, bone parameters and ileal transcriptomic profile of broiler 24 

chicks as influenced by day 7 bodyweight (BW) grouping. The chicks were raised in a deep-litter 25 

house under common controlled environmental conditions and commercial starter diet. Chicks 26 

were grouped on day 7 into two distinct BW, super performer (SP) and under performer (UP) with 27 

bodyweights >260g, and <200g respectively. Results revealed that the SP chicks had significantly 28 

higher bone ash, sodium (Na), phosphorus (P) and rubidium (Rb) concentrations compared to the 29 

UP chicks on D7. In contrast, the UP chicks had significantly higher tibial cadmium (Cd), caesium 30 

(Cs) and lead (Pb) compared to the SP group; the UP chicks also had proportionally heavier relative 31 

gizzard weight than the SP chicks.  The ileal transcriptomic data revealed differentially expressed 32 

genes between the two groups of chicks, with 150 upregulated and 83 down-regulated genes with 33 

a fold change of ≥1.25 or ≤ 1.25 in the SP chicks relative to the UP chicks. Furthermore, functional 34 

annotation and pathway analysis revealed that some of these differentially expressed genes were 35 

involved in various pathways including calcium signaling, Wnt signaling, cytokine-cytokine 36 

receptor interaction and mucin type O-glycan biosynthesis. This study revealed that chicks of the 37 

same breed and of uniform environmental and diet management exhibited differences in digestive 38 

organ weights, tibial bone characteristics and ileal gene expression that may be related to BW. 39 

Keywords: Transcriptomics, ileum, bodyweight, variation, bone mineral concentration 40 

 41 

 42 

 43 
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Introduction 44 

Chicken is one of the most preferred animal protein sources globally due to its comparatively lower 45 

cost, nutritional content and perceived health values. Despite improved genetic modification and 46 

stringent management practices in broiler production, there have been reports of considerable 47 

bodyweight variation which results in varying slaughter weight (Piórkowska, et al., 2020; 48 

Lundberg, et al., 2021). There are many reasons underpinning variation in broiler growth such as 49 

broiler breeder age, incubation factors, genetics, disease, nutrient malabsorption, and poor feed 50 

intake (Tegeda, et al., 2021).  51 

The first week of life is a critical period for the broiler, as the chicks are exposed to more 52 

varied conditions on the farm following a relatively common and controlled environment during 53 

the incubation period (Yerpes, et al., 2020). Bodyweight increases two to threefold during the first 54 

week of life and considerable changes occur in the gastrointestinal development and in muscle 55 

accretion (Jin et al., 1998; Iji, et al., 2001; Willemsen et al., 2008). These developmental changes 56 

can be categorized into morphological, functional and immunological development (Schokker, et 57 

al., 2009). The development of the chicken intestine as a digestive and absorptive system is closely 58 

related to the development of the gut-associated lymphoid tissue (Shira, et al., 2005). It has been 59 

reported that the immune organ development of the chicken occurs within the first two weeks of 60 

life (Dibner., 1998). The immune development in young chicks has also been reported to be 61 

associated with early nutrition which makes essential nutrients available for cell proliferation and 62 

differentiation. In this aspect, early feed intake stimulates many antigens involved in the 63 

development of immunoglobulin in the chicken bursa (Jeurissen, et al., 1989; Dibner et al., 1998).  64 

Research has reported that the expression of proinflammatory cytokine and chemokine (IL-1β, IL-65 

8, K203) during the first week of life in broiler are initiated by the exposure of the hatchlings to 66 
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exogenous feed and the environment (Bar-Shira et al., 2006). This unique development of the 67 

chicken intestine with a coinciding succession of microbiota and changes in microbial community 68 

during the early life can influence the host physiological and metabolic functions (Tang, et al., 69 

2020). The small intestine plays a vital role in the regulatory, endocrine, and immune function, 70 

which can thus affect birds’ health, feeding behavior and energy homeostasis (Scanes and 71 

Pierzchala‐Koziec, 2014; Sugiharto, 2016 and Honda, et al., 2017). Svihus (2014) reported that 72 

the functionality of the digestive tract is pivotal to optimal performance of broiler chicks. 73 

Therefore, development and growth performance in the first week is critical and indeed day 7 BW 74 

has been reported to have a stronger correlation with important parameters such as slaughter weight 75 

and carcass composition when compared to hatch weight (Ribeiro, et al., 2004 and Tona et al., 76 

2004b). 77 

Mineral metabolism is an important aspect in broiler nutrition and growth as minerals play 78 

useful roles as a catalyst in most enzyme and hormone activities (Suttle, 2010). Bone mineral 79 

concentrations, especially calcium (Ca) and phosphorus (P), affect skeletal integrity (Underwood 80 

and Suttle, 1999) and determine the extent of mineralization. They are also actively involved in 81 

many physiological and metabolic roles in the body such as cell signaling and nerve impulse 82 

transmission (Underwood and Suttle, 1999). Previous studies have reported bone mineral 83 

concentration as a vital tool in assessing mineral bioavailability, utilization and storage in broiler 84 

chicks (Yair and Uni, et al., 2011), for example Ca concentration in the tibia serves as a reservoir 85 

for maintaining serum calcium levels (Weaver, et al., 2016). Therefore, evaluating bone mineral 86 

concentration in broiler chicks in early life could be a valuable biomarker to determine the mineral 87 

status of chicks post hatch. Generally, mineral absorption in broilers is uniquely governed by the 88 

activation of important pathways, for example Wnt signaling, that comprises several ligands 89 
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activated by Wnt proteins, which when secreted bind to the frizzled transmembrane receptors to 90 

initiate intracellular signaling cascade that modulates gene expression (Mohammed, et al., 2016), 91 

resulting in specific mineral absorption such as Ca and P (Wang, et al., 2022).  92 

It was hypothesized that the mineral status, organ measurements and transcriptomics may 93 

be different between chicks ranked based on Day 7 bodyweight. Identifying some of those 94 

differences may be useful in developing intervention strategies for improved broiler performance. 95 

The present study therefore evaluated differences in digestive organ weight, ileal transcriptomic 96 

profile, and bone mineral concentrations of 7-day old broiler chicks.  97 

Materials and Methods 98 

Experimental Design and Animal Management 99 

A total number of 87-day old male Ross 308 chicks were used for the study and all chicks were 100 

housed in the same deep litter pen with softwood shaving as bedding, and under the same common 101 

environmental and diet conditions. The chicks were reared from day 0 to day 7 and were 102 

characterized based on the day 7 bodyweight, before sample collection.  Chicks were fed 103 

commercial Hygates baby chick crumbs (containing 19% crude protein, 4.5% crude fiber and 3.5% 104 

oil) that met the nutritional requirement of the Ross 306 breed.  105 

Bodyweight of chicks was recorded individually on day 0 and day 7. Chicks were ranked 106 

and those in the first and fifth quintiles were categorized as super performers (SP) and under 107 

performers (UP) respectively. SP chicks had an average bodyweight of 260g and UP; 200g, 108 

bodyweight thresholds were selected based on the performance target outlined for male Ross 308 109 

chicks on day 7 (Aviagen, 2019). On day 7, ten chicks from each group SP and UP 110 
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(n=10/bodyweight group) were randomly selected and euthanized. Bodyweight uniformity was 111 

calculated using the formula below. 112 

Uniformity % = Number of birds within range ±10% of mean weight ÷ Total number of birds 113 

weighed × 100  114 

The liver, gizzard and full intestine were excised and weighed using a precision balance 115 

while the legs were collected and stored at -200C until further bone mineral analysis. The ileal 116 

segment was excised, and snap frozen immediately with dry ice before being stored at -80°C until 117 

RNA extraction. 118 

Crude ash and mineral analysis  119 

The legs collected were thawed and defleshed to extract the tibial bones. Care was taken to make 120 

sure all the flesh was removed and immediately stored in the freezer at -200C until drying the next 121 

day. The tibial bones were oven-dried at 1050C using a Griffin oven for 24hrs and ashed at 6000C 122 

overnight using Carbolite AAF 11/18 to determine the tibial ash, then the ash weight of individual 123 

tibial bone was expressed as a percentage of dry weight. The tibial bone ash was acid digested 124 

using the hot plate method following internal laboratory procedure for sample preparation. A 125 

maximum of 0.2g of each sample was digested with 10ml of nitric acid and heated for 2 hours at 126 

950C, 50ml MilliQ water was added to each and 8ml taken from the top, transferred to 8ml tubes 127 

and samples were diluted to 1/10 and mineral concentration analyzed using an ICP-MS method 128 

(Thermo-Fisher Scientific iCAP-Q; Thermo Fisher Scientific, Bremen, Germany).  129 

RNA extraction and microarray analysis 130 

RNA was extracted from the ileum of 7-day old broiler chicks using the Direct-zol™ RNA 131 

MiniPrep Kit (Cambridge Bioscience, UK). RNA integrity was confirmed using an Agilent 2100 132 
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Bioanalyzer with the RNA 6000 Nano Kit (Agilent Technologies, Palo Alto, CA). The RNA 133 

integrity numbers (RIN) were ≥8.7 for all samples. Whole-genome transcriptome analysis was 134 

conducted by hybridising three biological samples of total RNA per group to GeneChipTM Chicken 135 

Gene 1.0 ST arrays (Affymetrix, Santa Clara, CA, USA). First strand cDNA was produced by 136 

reverse transcription followed by second strand synthesis. Double stranded cDNA was then used 137 

to synthesise biotinylated complementary RNA in vitro, which was purified and fragmented in 138 

different sizes (200-2000 bp). These fragments were hybridised onto GeneChipTM Chicken Gene 139 

1.0 ST arrays using the GeneChip System 3000 instrument platform (Affymetrix, Santa Clara, CA, 140 

USA). All steps were conducted at the Nottingham Arabidopsis Stock Centre.  141 

Gene expression profile data was generated as CEL files and analysed using Partek 142 

Genomics Suite 6.6 (Partek Incorporated, St. Louis, MO, USA). The raw CEL files were 143 

normalised using the RMA background correction with quantile normalisation, log base 2 144 

transformation and mean probe-set summarisation with adjustment for GC content. 145 

Quantitative real-time polymerase chain reaction (qRT-PCR) confirmation of the microarray 146 

data 147 

To verify the reliability of the microarray data, three immune related genes (IL20RA, IL8L1 and 148 

CCL17) and one gene related to detoxification (GSTA3) were selected for further validation using 149 

the RT-qPCR technology. The immune-related genes were selected to verify the observation from 150 

the microarray data that the SP chicks had better innate immune activation compared to the UP 151 

group. Four genes from the microarray data GAPDH, GALNS, FABP5 and FAM133B were also 152 

chosen as housekeeping genes for qRT-PCR because there was no change in their expressions 153 

between the two groups. The primer pairs used for the quantitative PCR of these genes are reported 154 
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in supplementary file 1. Total RNA (250ng) was reverse transcribed using the cDNA reverse 155 

transcription kits according to the manufacturers’ protocol UltraScript 2.0 cDNA synthesis kit 156 

(PCR Biosystems, London UK). The real time PCR reactions were performed using the Bio-Rad 157 

CFX Maestro, the reaction contained 1ul of cDNA as a template in a 10ul reaction, the master mix 158 

contained 0.4ul of the reverse and forward primers from a 10uM stocks, 5ul of the Syber green 159 

master mix 2X qPCRBIO SyGreen Blue Mix Hi-Rox (PCR Biosystems, London UK), and 3.6ul 160 

of RNase free water. The PCR reaction conditions were set at 950C for 20 seconds, followed by 161 

40 cycles of 950C for 3seconds and 600C for 30 seconds. A melting temperature curve for every 162 

PCR reaction was determined at the end of each run for amplification specificity, and all the 4 163 

samples were performed in triplicate. Relative expression of each mRNA was determined using 164 

the 2−ΔΔCt. method using the Bio-Rad software.  165 

Functional annotation and pathway analysis 166 

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) 167 

(https://david.ncifcrf.gov/tools.jsp) and Ingenuity Pathway Analysis (IPA) were used to determine 168 

the biological functions of the differentially expressed genes based on the Gallus gallus reference. 169 

Pathway analysis was carried out using the KEGG database as utilized through the DAVID online 170 

database. 171 

Statistical Analysis  172 

The individual chick served as the experimental unit. Bodyweight measurement, digestive 173 

organ weights and other data derived from the two experimental BW groups SP and UP were 174 

compared using the student t-test (Prism version 8.0.0 for Windows, GraphPad Software, San 175 

Diego, California USA, www.graphpad.com), significant differences were observed at p<0.05.  176 

https://david.ncifcrf.gov/tools.jsp
http://www.graphpad.com/
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Differentially expressed genes (DEG) were identified by one-way ANOVA, DEG comprised 177 

genes upregulated or downregulated by at least 1.25-fold with an un-adjusted p-value ≤ 0.05.  178 

Statistical analysis for the qPCR data were performed using the ANOVA statistical package of the 179 

Bio-Rad CFX Maestro analysis software. 180 

Results 181 

Day 7 bodyweight and Digestive Organ Weights  182 

The mean bodyweight of the bird population on day 7 was 231.2±34.2g, CV of 14.8% and 183 

uniformity of 56%.  The organ characteristics of the chicks in the BW groups are presented in 184 

Table 1. The SP chicks had significantly heavier liver (SP = 12g; UP = 8g; P < 0.0001), gizzard 185 

(SP = 14g; UP = 10g; P < 0.0001), intestine weight (SP = 23g; UP = 15g; P < 0.0001) and intestinal 186 

length (SP = 110cm; UP = 94cm; P = 0.0001). It was noteworthy that the UP group had a 187 

proportionally heavier gizzard compared to the SP groups. 188 

Tibia bone ash and mineral concentration 189 

The tibial bone ash and macro mineral concentration of the UP and SP chicks on D7 is 190 

shown in table 2, while the trace mineral concentration is presented in table 3. The SP group had 191 

higher bone ash when compared with the UP group (SP = 47%; UP = 44%; P = 0.014). The UP 192 

group had significantly higher Cs (UP = 0.04; SP = 0.03; P = 0.023), Cd (UP = 0.02; SP = 0.01; P 193 

= 0.04) and Pb (UP = 0.34; SP = 0.20; P = 0.014) when compared with the SP group. While the 194 

SP chicks had significantly higher tibial Na (SP = 12.7%; UP = 11%; P = 0.014), P (SP = 19.57%; 195 

UP 18.62%; P = 0.018), and Rb (SP = 0.009, UP = 0.008; P = 0.033) concentrations compared to 196 

the UP group.  197 

 198 
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Ileal transcriptomic profile and differentially expressed genes. 199 

The transcriptomic profile analysis revealed 233 genes that were differentially expressed 200 

with a P < 0.05 and fold change cutoff of ≥1.25 between the SP and UP groups. The biological 201 

details of the DEGs mapped in the IPA database are provided in supplementary file, while the 202 

details of the top 29 most conspicuous DEGs with fold change (≥+1.5 and ≥-1.5) are shown in 203 

table 4. All the DEGs including the up-regulated (150 genes with low stringent cutoff ≥+1.25) and 204 

down-regulated (83 genes with cutoff ≥-1.25) expressed in the ileum of 7-day old chicks of distinct 205 

bodyweight were categorized into 3 main functions of biological process, molecular function, and 206 

cellular component according to GO analysis using DAVID online tool. Each of the GO categories 207 

were further divided into subcategories, and the DEGs were all annotated in all the three GO terms 208 

as shown in figure 1. The biological process comprises of 26 terms, including prostaglandin 209 

biosynthesis, positive regulation of cell proliferation, superoxide metabolic process, tissue 210 

development, inflammatory response etc. Molecular function was divided into 12 terms, including 211 

heparin binding, frizzled binding, growth factor activity etc. The cellular component comprises of 212 

8 terms which includes extracellular space, integral component of plasma membrane, extracellular 213 

region, photoreceptor outer segment, brush border etc. as illustrated in figure 1. Functional 214 

annotation clustering was performed using DAVID tool on the GO terms and 2 clusters were 215 

obtained. The first cluster relates to Wnt protein binding, and the second cluster relates to 216 

polymerase II core promoter proximal region sequence-specific DNA binding. The enriched 217 

pathways annotated include calcium signaling, Wnt signaling, cytokine-cytokine receptor 218 

interaction, cardiac muscle contraction, mucin type O glycan and other mucin type O glycan as 219 

shown in table 5.220 
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Discussion 221 

Broiler chicks exhibit considerable variation in bodyweight (BW) performance despite successive 222 

selective inbreeding and stringent management practices which ultimately impacts flock 223 

uniformity. While there is an abundance of literature investigating improvement in growth 224 

performance, the basis for variation in bodyweight has received less attention. Therefore, the 225 

present study explored various physiological and transcriptomic aspects in understanding the 226 

important drivers of variation in bodyweight in the early life of the broiler chick. As expected, the 227 

SP chicks had heavier organs when compared to the UP group. Published research reported that 228 

the weight contribution of internal organs to bodyweight reflects the health condition of the 229 

animals (Smith et al., 2011). It was also reported that the size of the visceral organs may influence 230 

energy requirements for basal metabolism as it relates to feed intake (Fitzsimons et al., 2014). 231 

Thus, in the present study, the SP chicks exhibited heavier liver, and intestinal weight with longer 232 

intestines compared to the UP chicks, indicating that these observed differences in the digestive 233 

organ, are related to BW and possibly feed intake.  The significant difference observed in this 234 

study in gizzard weight relative to body weight of the UP chicks disagreed with the report of 235 

Ribeiro et al. (2004), who reported no significant effect of body weight on the relative weight of 236 

the gizzard of Ross 308 chicks on day 7. The gizzard acts as a pacemaker of normal gut motility 237 

(Ravindra, et al 2021), stimulating the mixing of digesta with enzymes and nutrient digestion. In 238 

the present study, it may be suggested that the heavier relative gizzard weight observed in the UP 239 

chicks may not be necessarily related to the predicted feed intake as a function of bodyweight but 240 

could be associated with other factors related to the environment such as habitual consumption of 241 

bedding.  242 
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Bone ash has been used to assess skeletal mineralization in poultry production (Hall et al., 243 

2003), The percentage of bone ash in poultry is a general indicator of bone mineralization (Thorp 244 

and Waddington, 1997). High bone ash and mineralization correlates to stronger bone and ability 245 

of the skeleton to withstand gravity and additional loading (Shim, et al., 2012).  Ca, one of the 246 

primary bone minerals showed no significant difference between the two groups, tibial P 247 

concentration on the other hand showed a significant increase in the SP chicks compared to the 248 

UP chicks; this increase in bone P concentration in the SP chicks may be linked to the Wnt 249 

signaling pathway which was enriched in the SP relative to the UP group. Wnt signaling had been 250 

reported to be associated with both calcium and P absorption in broilers (Wang, et al., 2022). The 251 

Wnt signaling cascade had also been reported to play a central part in regulating the development 252 

of calcium signaling pathway (Lu and Carson, 2009). It is also noteworthy that the calcium 253 

signaling pathway was one of the most enriched pathways identified in the SP group relative to 254 

the UP. This may be attributed to the heavier bodyweight of the SP group with higher metabolic 255 

demand, as calcium signaling is important in stimulating metabolic process and encouraging the 256 

differentiation of adipocytes (Song, et al., 2019). Taken together, these pathways identified in the 257 

SP group could be linked to the higher concentration of bone P in the SP group. 258 

Minerals of physiological importance including toxic metals can bioaccumulate in calcified 259 

tissues such as teeth and bones (Rasmusson and Eriksson 2001), and 80% of the bioaccumulation 260 

results from dietary intake (Baykov et al., 1996; Orzechowska et al., 2010). The UP group had 261 

significantly higher concentrations of tibial cadmium (Cd), caesium (Cs) and lead (Pb) compared 262 

to the SP group. The increase in the concentration of these minerals in the UP group, merits further 263 

mechanistic investigation. For example, the higher bone Cd concentration may be linked to the 264 

decrease in phosphorus concentration in this group, as it was reported that when cadmium 265 
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accumulates in the body, it causes damage to the kidney which in turns inhibits the activity of 266 

vitamin D, thus preventing the calcination and storage of phosphorus in the bone (Youness, et al., 267 

2012).  268 

The exploratory ileal transcriptomic profiling of 7 Day old Ross 308 chicks was aimed at 269 

identifying the potential candidate genes and pathways associated with variability in growth 270 

performance of chicks at this life stage. The concept of the present study benefited from the 271 

sampling of chicks from the same breed population maintained under the same environmental and 272 

diet conditions. The functional annotation of the differentially expressed genes (DEGs) performed 273 

to elucidate the biological implication of these genes reported interesting observations which may 274 

be associated with the differences in the growth rate of these chicks.  275 

In the current study, an upregulation of the IGF gene (IGF-1) in the SP group was observed 276 

relative to the UP, a gene which modulates the growth-promoting effect of growth hormones 277 

(Wang, et al., 2003). IGF-1 is among the members of the insulin-like growth factor family which 278 

regulates cell growth, and proliferation and plays a distinct role in lean meat content during the 279 

growth of dairy cattle (Mullen, et al., 2011). IGF-1 is an important gene controlling body size 280 

(Wang, et al., 2004). It has been reported that the signal transduction commenced from the binding 281 

of growth hormone (GH) to its receptor which leads to the activation of specific gene coding 282 

insulin like growth factor 1 (IGF-1) and is released into circulation to bind to its specific receptor 283 

known as the IGF type-1 receptor which then stimulates cell proliferation (Okumura and Kita, 284 

1999). The up-regulation of the IGF-1 gene in the SP chicks relative to UP chicks could be 285 

associated with the greater bodyweight of the former, as this gene is wholly involved in growth 286 

and controlling body size (Wang, et al., 2004).  287 
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There was an up-regulation in the expression of genes acting as immune mediators 288 

including pro-inflammatory cytokines and chemokines such as Interleukin 8 like 1 (IL8L1) in the 289 

SP compared to the UP group. Interleukin 8 Like 1 (IL8L1) has been reported to be involved in 290 

the recruitment of heterophils to the site of infection in the chicken intestine (Kogut., 1994 & 2002) 291 

and these heterophils are pivotal in activating the innate immune response (Genovese, 2000). 292 

Based on the reported literature (Swaggerty, et al., 2005., Bar-Shira, and Fridman., 2006., Terada, 293 

et al., 2018), it may be speculated that the upregulations of these proinflammatory and chemokine 294 

genes in the ileum of the experimental chicks may play distinct roles in innate host defense 295 

triggered by exposure to feed and microorganism during the first week of life. It has been reported 296 

that young hatchlings respond to environmental stimuli by gradual development of pro 297 

inflammatory functions (Withanage, et al., 2004; Bar-Shira and Friedman, 2006). The immune 298 

protection of hatchlings could emanate from maternal antibodies which are active systemically and 299 

in the gut cavity and innate effector mechanisms which are active alongside all mucosa linings 300 

(Bar-Shira and Fridman, 2006).  301 

Another interesting cytokine that was upregulated in the SP chicks in the present study is 302 

Interleukin 26 (IL26). Interleukin 26 is a member of the IL-10 cytokine family which plays a role 303 

in the local mechanism of mucosal immunity and induces the expression of IL8 (Ouyang and 304 

O’Garra, et al., 2019). It has also been reported that the IL26 gene activates the immune-related 305 

pathways such as JAK/STAT, NF-kB, and MAPK signalling pathways; crosstalk between these 306 

pathways may modulate the expression of chemokines and cytokines in chicken cell lines (Truong, 307 

et al., 2017). Also, the JAK/STAT pathway is crucial to T cell differentiation, B cell maturation, 308 

and development, secretion of SIgA, mucus, and antibody production which are pivotal to 309 

maintaining antiviral and anti-bacterial defense at the mucosal surface (Heneghan, et al.,2013). 310 
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Based on this report, the up regulation of IL26 and chemokine (IL8L1), may suggest that the SP 311 

chicks could be more advantaged in terms of innate preparedness of the gut for development and 312 

strong defense against enteric pathogens. 313 

In addition to the increased expression of important pro-inflammatory cytokines genes involved 314 

in immune response, in the SP group, we observed an increase in the expression of glutathione S-315 

transferase alpha (GSTA3), which is an antioxidant enzyme specifically involved in the clearance 316 

of various peroxidation products (Anyia and Imaizumi, 2011). The increase in the expression of 317 

the GSTs (GSTA3) and their activities in the SP chicks compared to UP chicks may positively 318 

affect glutathione metabolism and metabolism of xenobiotics by cytochrome P450. The chicken 319 

intestine is known to be the primary site of exposure to dietary xenobiotics, which are potential 320 

toxins and may promote the proliferation of cellular free radicals (Wang, et al., 2019). Thus, it may 321 

be speculated that the observed increase in expression of the GSTs genes in the SP group may play 322 

a strong role in the detoxification of xenobiotic toxins and reduction in oxidative stress compared 323 

to the UP chicks. This may also be attributed to the speculated higher feed intake in the SP chicks, 324 

as a result, SP group may be exposed to a higher intake rate of xenobiotics, thus higher expression 325 

of the GST genes to combat this.  326 

It is also noteworthy that in the present study there was upregulation of microRNAs 327 

(MiRNAs) such as MiRNA 23, 25, 27 and 7 (Mir-23, Mir-25, Mir-27, and Mir-7), in the SP relative 328 

to UP group. MiRNAs are a class of endogenous non-coding RNA, comprising about 22 329 

nucleotides (Bartel, 2004) which are known to play a crucial role in the regulation of gene 330 

expression at the post-transcriptional level. They act by binding complementary sequences on 331 

messenger RNA target genes, thereby causing cleavage or repressing translation (Bartel, 2004). 332 

Mir-27 is known to regulate the expression of NFE2L2 (a transcriptional factor that modulates 333 
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gene transcription of antioxidant response element), and an increase in the expression level of 334 

NFE2L2 is associated with oxidative stress (Zaccaria, et al., 2017). An increase in the expression 335 

level of Mir-27 has been reported to downregulate mRNAs coding for NFE2L2 and in turn reduce 336 

oxidative stress markers in an in-vitro study involving Human keratinocyte cell lines (HaCat cells) 337 

(Zaccaria, et al 2017). There was an upregulation of Mir-27 and downregulation of the NFE2L2 338 

gene in the SP group relative to the UP group, this may agree with the study of Zaccaria, et al. 339 

(2017), who reported an increased expression level of Mir-27 which consequently led to a decrease 340 

in the expression level of NFE2L2 in an in-vitro experiment.  341 

The enriched pathways annotated by DAVID from the DEGs reported in the SP and UP 342 

chicks revealed 6 pathways that could be associated with the differences in bodyweight 343 

performance of these chicks, and they involved calcium signalling, Wnt signalling, cytokine-344 

cytokine receptor interaction, cardiac muscle contraction, mucin-type O-glycan biosynthesis, and 345 

other O-glycan biosynthesis. Genes involved in the calcium signalling pathway were mostly 346 

upregulated in the SP chicks which include HTR2A, ADCY1, CACNA1C, CCKAR, and NOS2. 347 

Calcium signalling has been noted to be one of the highly versatile intracellular signals that 348 

participates in cell signalling for a wide range of cell processes such as apoptosis, cell cycle, 349 

division, migration, invasion, metabolism, differentiation, transcription etc. (Pratt, et al., 2020). 350 

The Ca ion governs intracellular signalling pathways and contributes to long term physiological 351 

response regulation such as muscle contraction, neurotransmission, and metabolic regulation 352 

(Pratt, et al., 2020). This important pathway enriched in the SP chicks may be playing a vital role 353 

in growth and contributing to the differences observed in the SP and UP groups. Importantly, 354 

further studies may be merited to understand if circulatory levels of calcium serve as a better 355 

biomarker in assessing differences in growth rates in broiler chicks.  356 
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The second most enriched pathway reported in this study was the Wnt signalling pathway. 357 

This pathway has been reported to play a vital role in self-renewal of most tissue in mammals, 358 

particularly the development and renewal of small intestinal epithelial tissue and stimulates the 359 

differentiation of crypts and Paneth cells (Liu, et al., 2022). It is also reported to be linked to liver 360 

development, haematopoietic system development and osteoblast maturation (Clevers, 2006: 361 

Perugorria, et al., 2019). Wnt signalling also facilitates Ca and P metabolism in broilers (Wang, et 362 

al., 2022), thus the enrichment of the Wnt pathway in the SP group in this study may be linked to 363 

the increase in the concentration of bone P in the SP compared to the UP group, as higher 364 

concentration of minerals in animal tissues are a valuable biomarker of its bioavailability (Wang, 365 

2007). The significance of the Wnt signalling and its implication in the SP chicks in the present 366 

study may provide insight into the underlying factors contributing to growth and body size 367 

differences in these groups of chicks studied.  368 

Most of the genes involved in Wnt signalling, cytokine-cytokine receptor interaction, and 369 

mucin-type O-glycan biosynthesis was up-regulated in the SP chicks’ group. Notably, all genes 370 

related to mucin-type O-glycan biosynthesis were upregulated in the SP group, which includes 371 

ST3GAL1, GALNT15, and WBSCR17. It has been demonstrated that mucin-type O-glycans are 372 

pivotal in establishing whether host diseases will be averted or promoted concerning interactions 373 

with microbes present in the environment (Bergstrom and Xia, 2013). Mucins are the main 374 

component of mucus which are secreted by the goblet cells and form a protective homeostatic 375 

barrier between resident microbiota and the underlying immune cells (Johansson, et al., 2008., 376 

Struwe, et al., 2015). It has been reported that homeostasis of gut bacteria in chicken can be 377 

implicated by mucin types, O-glycan composition, i.e., the extent of glycosylation and 378 

oligomerization of mucin and mucus layer characteristics (Derrien, et al., 2010). Having the mucin 379 
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type O-glycan pathway activated in the SP group may suggest implications which include, a higher 380 

level of mucin glycosylation which may enable mucins to function as a protective barrier. Mucus 381 

production is very important in young chicks for gut protection as they still have developing 382 

immune system (Duangnumsawang, et al., 2021), and for assimilation of metal ions in its available 383 

form in the intestine (Powell, et al., 1999). 384 

An important consideration which may be influencing the aforementioned changes in DEG 385 

are that the SP chicks, ranked on the basis of BW on Day 7, exhibited greater bodyweight at day 386 

1 when compared to the UP chicks. Bodyweight has been reported to be highly correlated to feed 387 

intake in Ross 308 broiler chicks (Mohammadrezaei, et al., 2011). The SP group likely consumed 388 

more feed post-hatch compared to the UP group, driving the development of the intestinal 389 

epithelium including enterocytes and goblet cells which drove gut barrier function, as suggested 390 

by the enriched pathways implicated in the SP group. Immediate access to feed by hatchlings has 391 

been reported to support intestinal epithelium development including goblet cells and enterocytes 392 

for more efficient barrier function (Duangnumsawang, et al., 2021). In the present study, 7day old 393 

chicks in the SP group exhibited superior bodyweight from day 1 compared to the UP group. Thus, 394 

this may affect the ability of the chicks in the groups to access feed due to hierarchy, thereby 395 

affecting growth performance especially in the UP group. 396 

Conclusion 397 

The present study revealed differences in the digestive organ weights, bone ash and 398 

mineral concentrations in 7-day old Ross 308 chicks with distinct bodyweights. The 399 

present study collected data from chicks raised in one pen which may be a potential 400 

source of limitation in the study, replication is recommended in further research to get 401 

more detailed knowledge of the wider population. The SP chicks had higher bone ash 402 
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and bone P concentration which may be linked to the enriched Wnt signalling pathway 403 

in this group relative to the UP group. The increase in bone Cd, Pb and Cs in the UP 404 

group merits further mechanistic investigation, to ascertain the possible drivers of the 405 

accumulation. The transcriptomic profile revealed differentially expressed genes in the 406 

ileum of 7days old Ross 308 broiler chicks with distinct body weight. We observed the 407 

up regulation of cytokines and chemokine genes, GSTs, and Mir genes, together with 408 

Ca signalling and Wnt signalling pathways in the SP group relative to the UP group, 409 

which may be involved in the difference between the bodyweight groups.  410 
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Table 1: Digestive tract and ancillary organ weight of chicks at 7 days of age (n = 10 per BW 650 

group) 651 

Parameters  SP   UP   SEM  P-value   

D0 BW (g) 61 52 ±2.3  0.001 

D7 BW (g) 276 174 ±6.4 ≤ 0.001 

Liver wt (g) 12 8 ±0.7 ≤ 0.001 

Relative Liver (g/kg) 44 43 ±0.30 0.921 

Gizzard wt (g) 14 10 ±0.6 ≤ 0.001 

Relative gizzard wt 52 58 ±0.2 0.015 

Intestinal wt (g) 23 15 ±1.1 ≤ 0.001 

Relative intestinal wt 

(g/kg) 

86 83 ±0.4 0.463   

Intestinal length (cm) 110 94 ±4.5 0.003 

UP denotes Under-performers, and SP- Super-performers chicks, D0 BW – Day 0 bodyweight, D7 652 

BW Day 7 body weight, ADWG- Average daily weight gain, wt - weight 653 

 654 

  655 
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Table 2: Tibial ash and macro mineral concentrations of the UP and SP chicks at D7 of age, (n = 656 

10 chicks per BW group) 657 

Ash and mineral 

concentrations (g/kg)   

SP   UP   SEM  P-value   

Ash 470  440 ±1.2 0.014   

Ca 363 352 ±7.0  0.143 

P   195 186 ±3.5 0.018   

Na   12 11 ±0.56  0.014  

S  4 3 ±0.31  0.066   

K   9 10 ±0.49  0.215   

Mg   8 7 ±0.26  0.506   

UP denotes Under performers group, SP denotes Super performers group; Minerals are expressed 658 

on a crude ash basis. (n = 10 per BW group) 659 

 660 

 661 

 662 

 663 

  664 
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Table 3: Trace mineral concentrations of the UP and SP chicks at D7 of age (n = 10 chicks per 665 

BW group)  666 

Trace mineral 

concentrations 

(mg/kg)   

SP   UP   SEM  P-value   

Cd 0.02 0.23 ±0.0020 0.048 

Cs 0.02 0.03 ±0.0040 0.023 

Rb 0.01 0.01 ±0.0070 0.034   

Pb   0.2 0.3 ±0.04  0.014  

Mn 14 16 ±1.06  0.097   

Se 0.2 0.2 ±0.02  0.765   

Sr   225 208 ±8.9 0.062   

Cr 1.2 1.0 ±0.19 0.230 

Fe 308 318 ±38.0 0.789 

Cu 3.2 3.1 ±0.20 0.709 

Zn 466 467 ±19.4 0.970 

UP denotes Under performers group, SP denotes Super performers group. (n= 10 per BW group) 667 

 668 

 669 

 670 

 671 

672 
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Table 4: Most conspicuous differentially expressed genes (foldchange from +1.50 or -1.50) in the ileum of 7-day old 673 

Ross 308 male chicks in SP group compared to the UP group. 674 

Gene 
symbol 

Entrez Gene Name Location Type of molecule Expr Fold Change P-value 

IL22RA2 
interleukin 22 receptor subunit 
alpha 2 

Plasma 
Membrane 

transmembrane 
receptor +2.77 0.010 

CDHR1 
cadherin related family member 
1 

Plasma 
Membrane other +2.34 0.029 

TTLL2 tubulin tyrosine ligase like 2 Other other +2.16 0.039 

ATP8B1 
ATPase phospholipid 
transporting 8B1 

Plasma 
Membrane transporter +2.12 ≤ 0.001 

IL20RA 
interleukin 20 receptor subunit 
alpha 

Plasma 
Membrane 

transmembrane 
receptor +1.92 0.034 

ODF2L 
outer dense fiber of sperm tails 
2 like Cytoplasm other +1.86 0.036 

NOXO1 NADPH oxidase organizer 1 
Plasma 
Membrane other +1.85 0.023 

mir-27 microRNA 27a Cytoplasm microRNA +1.81 0.004 

IL26 interleukin 26 
Extracellular 
Space cytokine +1.77 0.019 

ITGBL1 integrin subunit beta like 1 
Extracellular 
Space other +1.74 0.042 

mir-23 microRNA 23a Cytoplasm microRNA +1.69 0.029 
ME1 malic enzyme 1 Cytoplasm enzyme +1.65 0.008 

CCL17 C-C motif chemokine ligand 17 
Extracellular 
Space cytokine +1.63 0.026 

PCNX2 Pecanex 2 Other other +1.63 0.002 

ZPLD1 
zona pellucida like domain 
containing 1 Other other +1.59 0.022 

SMOC2 
SPARC related modular 
calcium binding 2 

Extracellular 
Space other +1.58 0.015 
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MFAP5 microfibril associated protein 5 
Extracellular 
Space other +1.58 0.039 

HPGDS 
hematopoietic prostaglandin D 
synthase Cytoplasm enzyme +1.54 0.026 

SHISAL1 shisa like 1 Other other +1.54 0.016 

SLC38A4 
solute carrier family 38-member 
4 

Plasma 
Membrane transporter +1.52 0.017 

GSTA3 
glutathione S-transferase alpha 
3 Cytoplasm enzyme +1.51 0.002 

WNT7B Wnt family member 7B 
Extracellular 
Space other +1.50 0.036 

DDX60 DExD/H-box helicase 60 
Cytoplas
m enzyme -1.57 0.040 

COL17A1 
collagen type XVII alpha 1 
chain 

Extracell
ular 
Space other -1.65 0.044 

WASF1 WASP family member 1 Nucleus other -1.88 0.003 

LRFN5 

leucine rich repeat and 
fibronectin type III domain 
containing 5 Nucleus other -1.92 0.006 

CPO carboxypeptidase O 
Plasma 
Membrane enzyme -2.13 0.024 

CA7 carbonic anhydrase 7 Cytoplasm enzyme -2.42 0.047 

SLC34A2 
solute carrier family 34-member 
2 

Plasma 
Membrane transporter -3.62 0.002 

 675 

 676 

 677 
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Table 5: Enriched Pathway implicated by bodyweight differences in SP and UP chicks. 678 

Pathways No of 

genes 

%  P- value DEGs involved 

Calcium signalling pathway 9 4.6 0.006 HTR2A, ADCY1, CACNA1C, CCKAR, GDNF, NOS2, PPIF, RET, 

TACR2 

Wnt Signalling pathway 6 3.1 0.036 CTBP2, WNT7B, FZD1, ROR2, SFRP1, SERPINF1 

Cytokine-cytokine 

receptor interaction 

 7 3.6 0.015 LOC418668, IL1RAP, IL20RA, IL4R, IL8L1, TNFRSF1B 

Cardiac muscle contraction 4 2.1 0.045 CACNB4, CACNA1C, SLC9A7, UQCR10 

Mucin type O-Glycan 

biosynthesis 

 3 1.5 0.060 ST3GAL1, GALNT15, WBSCR17 

Other types of O-glycan 

biosynthesis 

3 1.5 0.100 WBSCR17, GALNT15, POGLUT1 

SP: Super performers, UP: Under performers, DEG: Differentially expressed genes. 679 

 680 
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 681 

Figure 1: Functional annotation of the ileal DEGs in  7day old Ross 308 chicks (SP relative to UP), SP denotes Super performer and 682 

UP denotes Under performers. The higher the number of DEGs in each process, the more implicated will the process be in the SP group 683 

relative to the UP group.684 

 685 


