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Abstract: Accurate detection and diagnosis of brain tumors at early stages is significant for
effective treatment. While numerous methods have been developed for tumor detection
and classification, several rely on traditional techniques, often resulting in suboptimal
performance. In contrast, Al-based deep learning techniques have shown promising re-
sults, consistently achieving high accuracy across various tumor types while maintaining
model interpretability. Inspired by these advancements, this paper introduces an improved
variant of EfficientNet for multi-grade brain tumor detection and classification, addressing
the gap between performance and explainability. Our approach extends the capabilities
of EfficientNet to classify four tumor types: glioma, meningioma, pituitary tumor, and
non-tumor. For enhanced explainability, we incorporate gradient-weighted class activa-
tion mapping (Grad-CAM) to improve model interpretability. The input MRI images
undergo data augmentation before being passed through the feature extraction phase,
where the underlying tumor patterns are learned. Our model achieves an average accuracy
of 98.6%, surpassing other state-of-the-art methods on standard datasets while maintaining
a substantially reduced parameter count. Furthermore, the explainable AI (XAI) analysis
demonstrates the model’s ability to focus on relevant tumor regions, enhancing its inter-
pretability. This accurate and interpretable model for brain tumor classification has the
potential to significantly aid clinical decision-making in neuro-oncology.

Keywords: medical imaging; brain cancer; medical informatics; deep learning; transfer
learning; model tuning; image classification

1. Introduction

Brain tumors, particularly those originating in the central nervous system (CNS),
represent a significant public health challenge due to their high mortality rates and the com-
plexity of their diagnosis and treatment. Brain tumor detection is a critical task in medical
imaging, as early and accurate diagnosis can significantly improve patient outcomes. How-
ever, brain tumors are highly diverse, with different types and grades that present unique
challenges for accurate classification and timely intervention. According to the United
States National Institute of Health (NIH), an estimated 25,400 new cases of brain and CNS
cancers are expected in 2024, with 18,760 deaths projected in the same year [1]. Globally,
the burden is even more pronounced, with 308,102 new cases and 251,329 deaths reported
in 2020, as highlighted in the Global Cancer Statistics 2020 [2]. These alarming statistics
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underscore the urgent need for advanced diagnostic tools and techniques to address the
challenges posed by the heterogeneity of brain tumors and improve patient care.

Medical imaging modalities, such as X-rays, ultrasound, computed tomography (CT),
and magnetic resonance imaging (MRI), play an indispensable role in the clinical diagnosis
of brain tumors. These imaging techniques provide detailed information on the location,
size, and characteristics of tumors, allowing clinicians to make informed decisions about
treatment strategies. However, challenges such as the precision and timeliness of imaging-
based diagnoses are highly dependent on the expertise of radiologists, which can lead
to delays in diagnostic procedures. Such delays not only hinder surgical planning and
additional treatments but also limit the enrollment of patients in clinical trials, further
exacerbating the challenges in the management of this deadly disease [3,4]. In recent years,
artificial intelligence (Al)-based techniques, particularly deep learning, have emerged as
powerful tools to enhance the precision and efficiency of brain tumor diagnosis. Deep
learning algorithms, which are capable of analyzing vast amounts of medical imaging data,
have shown remarkable potential in automating the detection and classification of brain tu-
mors. By leveraging these technologies, healthcare providers can bridge the gap in access to
early diagnostic care, especially in resource-limited settings where the availability of skilled
radiologists is limited. Al-driven systems can help identify tumors in earlier stages, thus
facilitating timely interventions and improving patient outcomes [5-7]. Researchers have
conducted extensive investigations using computer vision and artificial intelligence in clini-
cal applications over the past decade through computer-aided diagnosis (CAD) systems [8].
The authors in [9] demonstrate Al’s potential to improve brain tumor diagnosis and treat-
ment, paving the way for personalized medicine and better patient outcomes. Fast-growing
brain tumors require prompt treatment, which requires deep learning and CAD systems for
tumor detection and feature extraction in early diagnosis. Recent advances in computing
power through GPUs and TPUs have enabled the deep learning community to develop
CNN architectures with enhanced accuracy and efficiency. These improvements drive the
implementation of such models for the diagnosis of brain tumors. A comprehensive review
by [10] examines various CNN architectures for processing medical images, particularly
brain MRI scans. Despite CNN advancements, significant challenges remain in brain tumor
detection, specifically in developing accurate classification techniques for various types
and grades of tumors. Current AI methods are limited by small annotated datasets crucial
for training robust models. The rarity of certain tumor types and high data collection costs
result in models that struggle with generalization across patient populations and imaging
modalities. Class imbalance poses another challenge, where underrepresented tumor types
lead to biased models with poor performance in minority classes. Multi-grade tumor
classification demands models that can distinguish subtle tumor characteristics. While
deep learning models show promising accuracy, their black box nature limits insight into
decision-making processes, hindering clinical adoption where explainability is essential for
healthcare professional trust. Addressing these challenges requires innovative solutions
such as advanced data augmentation, interpretable Al models, and diverse datasets to
enhance the reliability of Al-driven brain tumor detection systems.

To tackle these challenges, our research focuses on the multi-classification of brain
tumor types into four classes based on MRI data and on enhancing model interpretability
through techniques like Grad-CAM. Many machine learning and deep learning algorithms
are used in image classification, segmentation, and feature extraction [11,12]. We propose
an improved variant of EfficientNet for multi-grade brain tumor classification. EfficientNet
is a state-of-the-art CNN architecture with remarkable performance in various image
classification tasks, including medical image analysis [13]. We chose EfficientNet due to
its ability to scale up principally, allowing for an optimal balance among network depth,
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width, and resolution [14]. Our proposed model improves EfficientNet’s capabilities for
four-grade classification (glioma, meningioma, pituitary, and non-tumor) and incorporates
gradient-weighted class activation mapping (Grad-CAM) for enhanced interpretability. By
integrating Grad-CAM, we address the gap between the performance and explainability
in existing models, providing insights into the model’s decision-making process and
increasing trust in its predictions. Another investigation [15] encompasses three distinct
methods employing various architectures of CNNs, including AlexNet, GoogLeNet, and
VGGNet, for the classification of brain tumors. These studies adopt transfer learning
techniques, specifically fine-tuning and weight freezing, leveraging MRI slices from the
brain tumor dataset. However, it is important to note that data augmentation may not
consistently enhance model efficiency unless the augmented data aligns closely with the
original input distribution, avoiding significant shifts [16]. Therefore, it is imperative to
ensure that the chosen data augmentation strategies are consistent and genuinely contribute
to improving model accuracy.

Motivated by this insight, we employ three distinct datasets to assess our model’s
performance. The first dataset [17] is relatively small, prompting the use of data augmenta-
tion to optimize model accuracy. Conversely, the second dataset [18] is larger in scale and
does not undergo any data augmentation. This approach allows us to evaluate our model’s
consistency in brain tumor classification across both smaller and larger datasets, ensuring
robust performance across varying data sizes. Our study aims to enhance deep learning
models for multi-grade brain tumor classification by improving accuracy, interpretability,
and parameter efficiency. Our key contributions are as follows:

*  We, for the first time, extend and improve an enhanced version of the EfficientNet
model tailored for multi-grade brain tumor classification, marking the first imple-
mentation of this enhanced architecture for classifying four distinct tumor classes,
expanding from traditional three-grade to four-grade classification while maintaining
the capability to extend to multiple classification heads.

*  We analyze and evaluate the efficiency of the enhanced model across datasets of
varying sizes, aiming to ensure classification consistency. Our evaluations show
the superior performance of the improved model compared to the state-of-the-art
EfficientNet models. Our findings, validated through diverse performance metrics,
demonstrate the superior performance of our model compared to the already proven
state-of-the-art EfficientNet models.

e  For explainable artificial intelligence (XAI), the Grad-CAM visualization is incor-
porated to enhance the model’s interpretability. This technique provides valuable
insights into the model’s decision-making process by highlighting the regions of
MRI images most influential in tumor classification, thereby increasing the model’s
transparency and potential for clinical application.

The remainder of this paper is organized as follows: Section 2 focuses on some related
literature. In Section 3, the proposed model is presented in detail, covering preprocessing,
data augmentation, and transfer learning techniques used in our approach, while Section 4
presents the results of the experiments conducted. Section 5 provides the conclusions and
summarizes our work, and lastly, Section 6 discusses the limitations and future directions
of our research.

2. Literature Review
2.1. Conventional Image Analysis with ML

Over a decade, numerous studies have explored the application of machine learning
(ML) techniques in medical image analysis, particularly for brain tumor detection. Early
research focused on conventional ML methods such as support vector machine (SVM),
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k-nearest neighbors (KNNs), and random forest classifiers, as well as hybrid approaches
combining KNN and artificial neural networks [19]. However, the emergence of sophisti-
cated deep learning architectures, especially convolutional neural networks (CNNSs), has
revolutionized the field [20]. Several variants of CNN came into practice; for instance, [21]
employed ResNet [22], GoogLeNet’s Xception network [23], and MobileNet-V2 [24] to
classify brain tumors into two classes, demonstrating the effectiveness of state-of-the-art
CNN architectures in enhancing accuracy and efficiency in brain tumor medical image
analysis. A comprehensive study [25] conducted an extensive investigation into vari-
ous diagnostic enhancement techniques for brain MRI images, examining deep learning,
transfer learning, and classification methodologies, and elaborating on their respective
advantages, limitations, developments, and future trends. These advancements have paved
the way for further exploration and refinement of DL techniques in the domain of Al-based
computer-aided diagnosis systems for brain tumor detection.

2.2. Key CNN Models for Medical Image Analysis

Aiming to optimize the performance for specific problem domains, researchers fre-
quently experiment with various neural network architectures. A comparative analysis in
prior work [26] involving deep neural networks (DNNs) and convolutional neural networks
demonstrates that ResNet-50 exhibits notable performance in brain tumor classification,
employing transfer learning techniques to discern tumor types such as glioma, menin-
gioma, and pituitary tumors. As computer vision witnesses the emergence of numerous
convolutional neural network architectures, researchers explore their applicability across
diverse tasks. Each model has distinct advantages and limitations: VGG [27] proves advan-
tageous with small datasets and constrained computational resources, while ResNet [22] is
preferred with extensive datasets and ample computational capabilities. However, enhanc-
ing ResNet’s accuracy by scaling layers increases computational complexity and training
durations, and may overfit with scarce datasets. Seeking a balance between computational
efficiency and accuracy, Google introduced EfficientNet [14], surpassing other CNN archi-
tectures in top-1 accuracy on ImageNet and establishing new transfer learning benchmarks.
In brain tumor classification, EfficientNet-B0O [28] was tailored for binary classification,
distinguishing normal brain scans from benign tumors, while EfficientNet-B7 [13] was
designed for multi-grade classification, extending the framework to classify three tumor
types. Our study aims to enhance the effectiveness of EfficientNet, which outperforms
other state-of-the-art models (Table 1), by optimizing accuracy and training efficiency for
more than three grades of brain cancer. We introduce new layers to the base EfficientNet-B7
model (Section 3), making it extendable to more than four multi-class classification heads,
thus creating a versatile and powerful tool for brain tumor classification tasks.

Table 1. Summary of previously discussed research works with their proposed methodology.

Method Accuracy Classification (Size) Dataset

Multi-Scale CNN (MSCNN) [29] 91.2% Multi-class (4) Kaggle

Pre-trained VGG-19 [30] 90.67 Multi-class (4) Radiopaedia/Brain tumor
ResNet, Xception, and MobilNet-V2 [21] = 95%, 97.35%, 98.24%  Binary kaggle

EfficientNet-B0 [28] 98.87% Binary Kaggle

EfficientNet-B7 [13] 98.86% Multi-class (3) Figshare

2.3. Vision Transformers for Image Processing

CNN s have long been the dominant architecture for medical image analysis. However,
vision Transformers (ViTs), introduced by [31], have emerged as a promising alternative.
Unlike CNNs, which rely on local feature extraction, ViTs use self-attention mechanisms



Electronics 2025, 14, 710

50f 20

to model long-range dependencies in images, making them particularly suitable for com-
plex tasks, such as brain tumor classification and segmentation [32]. These models are
increasingly being integrated with CNN architectures in hybrid models to improve classifi-
cation performance. By combining the local feature extraction capabilities of CNNs with
the global contextual understanding of ViTs, researchers aim to enhance tumor classifi-
cation accuracy, ultimately aiding in more precise diagnosis and personalized treatment
strategies [33]. However, a key limitation of ViTs is their reliance on large-scale datasets for
effective training. Unlike CNNs, which have built-in inductive biases for local structure
learning, ViTs require substantial labeled data to learn meaningful representations. Ref. [31]
highlight that when ViTs are trained on small datasets without extensive pre-training or
strong regularization, they tend to overfit and perform worse than CNNs. Due to this
reason, we adopt CNNs for better classification, as they work better on smaller amounts
of data.

3. Proposed Method

This section sheds light on the proposed approach for brain tumor classification utiliz-
ing MRI images. Our parameter-efficient convolutional neural network draws inspiration
from the scalable EfficientNet-B7 model [13]. The detailed working flow of the proposed
framework for the method is depicted in Figure 1. To refine the baseline EfficientNet-B7
ConvNet, our initial step involves preprocessing the images belonging to the four classes
of brain tumors. This preprocessing stage encompasses dividing the dataset into training,
testing, and validation sets. Given the heterogeneous sizes of MRI images within the
dataset, we standardize their dimensions through resizing. Additionally, within the prepro-
cessing module, we employ several data augmentation techniques, detailed in Section 3.1,
aimed at mitigating the challenge of limited data. These techniques augment the input
data size by applying diverse transformations to the existing images. The augmented
images that have undergone processing and transformations are utilized as input for the
EfficientNet-B7 model, which forms the foundation of our enhanced model. To further
mitigate the impact of limited datasets, we incorporate transfer learning techniques into
the baseline EfficientNet-B7 model. This entails leveraging the pre-trained model’s weights
and parameters from the ImageNet dataset and adapting them to our specific brain tumor
classification task using our proposed enhanced model. Through this process, the weights
of the pre-trained model are fine-tuned with the additional layers to optimize performance
for the brain tumor classification task. These refined weights are then employed in classi-
fication tasks, empowering the model to generate informed and accurate predictions. A
comprehensive explanation of each step within the proposed methodology is provided in
subsequent sections.
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Figure 1. Overview of the proposed model framework where the pre-processed MRI input data,
obtained through data splitting, filtering, augmentation, and resizing, is fed into the feature extraction
network. Based on the features, the trained model classifies the input images as glioma, meningioma,
pituitary tumor, or non-tumor categories. Input image sample taken from the BT-3264 dataset [17].

3.1. Preprocessing

The preprocessing stage is fundamental in obtaining image data for utilization within
deep learning models, ensuring optimal performance during the training and validation
phases. Leveraging the Keras library [34], we utilize the apply filters function to exe-
cute a series of image transformations before their integration into the training or testing
pipeline. Initially, a Gaussian blur filter with a sigma value of ¢ = 1.5 is applied to the
images. This filter operates by convolving the image with a Gaussian function, where
Sigma (o) determines the extent of blurring. A large Sigma value impacts the blurring,
while a smaller value preserves the fine information. By mitigating noise, the filter facil-
itates a cleaner representation of image content, thereby optimizing subsequent feature
extraction processes.

Following the Gaussian blur, a sharpening filter with a minimum lightness factor of 1.5
is applied. This filter is instrumental in accentuating edges and fine details present within
the image. By enhancing these features, the filter contributes to the preservation of critical
image characteristics, ultimately aiding in the discernment of intricate patterns during
model training. In addition to the Gaussian blur and sharpening filters, an edge detection
filter with an alpha value of « = 1.0 is applied. This filter effectively highlights the edges
and contours inherent within the images, further refining the delineation of key features.
By emphasizing these structural elements, the filter enhances the discriminative capabilities
of the model, facilitating the extraction of meaningful information crucial for accurate
classification. Collectively, these filters applied within our preprocessing module serve to
enhance the saliency of features present within the images. By optimizing image clarity and
accentuating critical details, the preprocessing stage ensures that the neural network can
effectively extract and learn meaningful patterns during the subsequent training process,
thereby enhancing the overall efficacy of the classification model.

Data augmentation is a fundamental technique pivotal to expanding the diversity
inherent within the training dataset and assisting the model’s resilience against variations
encountered in the input data. In our implementation, we apply two separate image
data generator objects: one dedicated to training data and the other tailored for testing
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data. These generators act as a pipeline for executing a comprehensive suite of data
augmentation procedures, thereby enriching the variability encapsulated within the dataset.
To maintain a coherent joint distribution between the original data and its augmented
counterparts, we carefully adhere to well-established augmentation techniques [16]. Within
our methodology, we deliberately incorporate a mixture of fundamental and yet proven
augmentation transformations shown in Figure 2. These transformations encompass a
spectrum of operations, including horizontal and vertical flips, rotations spanning up to
90 degrees, and shearing with a factor of 0.2. Such operations hold particular relevance
in scenarios, where objects within images manifest diverse perspectives or orientations.
By introducing these transformations in a randomized fashion during the training phase,
the model is systematically exposed to a broader spectrum of image variations. This
strategic exposure not only fosters the model’s adaptability but also fortifies its capacity
for generalization across unseen data instances. This augmentation strategy profoundly
enhances the model’s ability to discern and extract meaningful features from the dataset.

The final harmonization of the preprocessing techniques and data augmentation
strategies significantly amplifies the model’s efficiency in distilling essential patterns from
the dataset. This comprehensive approach not only improves the model’s predictive
performance but also furnishes it with the adaptability essential for navigating diverse
real-world applications with high effectiveness and accuracy.

Original Image Horizontal Flip Vertical Flip

Rotation Gaussian Blur

Shearing

Figure 2. Tools applied to augment the MRI images. Input image sample taken from the BT-3264
dataset [17].

3.2. Improved Model and Its Parameters

Deep learning, especially convolutional neural network (CNN), excels in image anal-
ysis but requires large annotated datasets to avoid overfitting, a challenge in fields like
medical imaging due to limited and sensitive data. Transfer learning addresses this by
using knowledge from pre-trained models on large datasets like ImageNet and adapting
it to smaller, specific datasets through fine-tuning. This approach is particularly useful
in medical image analysis, such as brain tumor classification. In our solution, we explore
the fine-tuning of the baseline model in a twofold approach. Firstly, we only perform fine-
tuning on the baseline EfficientNet architecture without introducing any supplementary
layers. Specifically, to align the baseline EfficientNet model with our method, we made
alterations to the output layer and attached an additional classification head. This process
entails refining the pre-existing baseline model and tailoring it to our specific task. The
preprocessed data are passed as input to the EfficientNet layers, followed by flattening and
forwarding to the output layer for final classification. We use this modified architecture as
a standard to evaluate against our proposed approach. Secondly, we modify the baseline
model and fine-tune it with additional layers. We incorporate these supplementary layers
to capture more intricate features of the input images, thereby facilitating the discrimi-
nation among the four grades of tumors. The alteration leads to a modified architecture
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characterized by three principal layer blocks, as depicted in Figure 1. The initial block
inherits the seven layers from the baseline EfficientNet-B7 model. The second block adds
fine-tuned layers with dropout and batch normalization for training stability. Finally, the
third block includes a fully connected layer, flattening layer, ReLU activation, and a softmax
output layer for multi-class classification of four brain tumors. To enhance the performance
of the model when confronted with limited datasets, we leverage the strategy of transfer
learning, coupled with fine-tuning the parameters and weights of the pre-trained baseline
EfficientNet-B7 model, as depicted in Figure 3. This fine-tuning approach stands as an
important method for training networks with constrained datasets. It involves utilizing the
weights of a pre-trained model, initially trained on a large dataset, as the starting point,
subsequently employing smaller datasets to update and refine these weights during train-
ing. Extensive empirical evidence supports the efficacy of this method in accomplishing
various classification tasks effectively. Detailed descriptions of the added fine-tuning layers
of the modified architecture are provided in Section 3.3.

ImageNet
Source
data

Train Source Model
(EfficientNetB7)

100 more

Transfer learned knowledge .
through Keras AP

.

Target Source Model
(EfficientNetB7) ——>

Tumors MRI
Target Data

Glioma

Meningioma

Pituitary

no tumor

Figure 3. Adopted transfer learning method.

3.3. Layer Adjustment and Impact

In our effort to refine the neural network architecture dedicated to brain tumor classifi-
cation, we carefully modify the EfficientNet-B7 model by incorporating additional layers
aimed at fortifying its capabilities. These additional layers comprise a dropout layer,
batch normalization layer, flattening layer, fully connected layer, and a ReLU activation
layer, as depicted in Figure 1 as additional block layers. The introduction of the dropout
layer serves a critical purpose: to mitigate the risk of overfitting by preventing the model
from fixating excessively on the training data. By randomly disregarding segments of
the data during training, this layer fosters a more generalized understanding of the input
features, ensuring that the model does not become overly reliant on specific data points
or patterns. To adapt the pre-trained EfficientNet-B7 model effectively and address the
challenge of overfitting posed by limited tumor data, we adopted a strategic approach. This
involved selectively freezing the layers within the initial block (Baseline EfficientNet-B7
layers) before introducing the dropout layer. This decision serves multiple key objectives:
(i) preserving the network’s capacity to generalize by averting over-reliance on specific
features, (ii) mitigating the risk of overfitting, thereby ensuring the model’s robustness to
unseen data, and (iii) enhancing the network’s capability to discern task-specific features
pertinent to brain tumor classification. Subsequently, we integrate a batch normalization
layer into the architecture to stabilize the training process by standardizing the input of
preceding layers. This normalization mechanism alleviates issues associated with internal
covariate shifts, thereby enhancing training stability and promoting improved general-
ization in the model. Additionally, a flattening layer is introduced to prepare the data
for further processing. This involves reshaping the multi-dimensional output from the
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batch normalization layer into a one-dimensional tensor, facilitating a seamless transition
to subsequent layers.

To effectively capture the intricate patterns and relationships inherent in brain MRI
images, a dense fully connected layer is introduced following the dropout, batch normal-
ization, and flattening layers. This layer enables the network to contribute to learning the
complex input data representations, thereby enhancing its discriminatory capabilities and
enabling it to extract higher-level features relevant to tumor classification. Following the
dense layer, a ReLU activation layer is incorporated to introduce non-linearity into the
model. This activation function ensures that the model can capture non-linear relationships
within the data more effectively, further enhancing its capacity to discern subtle patterns
and variations. In the final layers, four classification heads are appended to facilitate the
classification of four distinct classes of brain tumors. The model learns to assign proba-
bilities to each class using a softmax activation function, facilitating effective multi-class
classification. This softmax activation function transforms the model’s raw output into
probability distributions over the different classes, enabling informed decisions regarding
the presence and severity of various types of brain tumors based on the model’s predictions.
Our model has the flexibility to expand to accommodate multiple classification heads in
case of additional classes.

4. Experiments

This section presents our experimental results and analysis. To ensure reproducibility,
we first detail our experimental environment setup in Table 2, which outlines the software
framework and hardware specifications used in our implementation. Our experiments were
conducted using the specified computational resources that provided sufficient capacity
for our deep learning workload. We evaluated model performance through comprehensive
metrics: accuracy, loss, precision, recall, AUC, and F1 score across different brain tumor
classes. A confusion matrix demonstrates the model’s classification performance for each
tumor type. Additionally, we provide explainable AI (XAI) visualizations to illustrate
the model’s feature learning process. Finally, we compare our model’s efficiency against
existing approaches through a detailed parameter analysis.

Table 2. Software environment and system specifications.

Name Specification
Software Environment
Framework TensorFlow 2.14
Base Image NVIDIA NGC
Development Python 3.10
Cloud Services KT Cloud (NIPA)
Hardware Specifications
GPU NVIDIA V100Q
CPU Allocation 18 cores
System Memory 64 GB

4.1. Dataset

The experiments were conducted by utilizing three datasets in which two were sourced
from Kaggle, namely BT-3264 [17] and BT-7023 [18], which encompass four distinct cate-
gories of brain tumors: glioma, meningioma, pituitary, and non-tumor class. The other
dataset is from Figshare [35] with four classes, including glioma, meningioma, pituitary,
and non-tumor. The distribution of the datasets across classes is reflected in detail in Table 3.
The BT-3264 dataset is a bit smaller than the others. It has 3264 images, with 926 images of
gliomas, 937 images of meningiomas, 901 images of the pituitary gland, and 500 images of
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normal brain tissue. On the other hand, the BT-7023 dataset is more than twice the size,
containing a total of 1621 glioma, 1645 meningioma, 2000 pituitary, and 1757 non-tumor
images. Given the smaller image count of the BT-3264 dataset compared to BT-7024, there
exists a risk of overfitting and diminished generalization. To mitigate this issue effectively,
we implemented augmentation techniques on the BT-3264 dataset, thereby increasing the
number of images and enhancing the model’s learning capacity. To facilitate the analysis,
we partitioned the datasets into separate sets for training and validation purposes. To
confirm the consistency of our model, we also used the Figshare datasets. The Figshare
dataset distribution consists of 1426 glioma, 708 meningioma, and 930 pituitary images.

Table 3. Distribution of dataset samples across brain tumor classes.

BT-3264 Dataset Distribution BT-7023 Dataset Distribution Figshare Dataset Distribution

Tumor Types Training Testing Total Training Testing Total Training Testing Total
Glioma 826 100 926 300 1321 1621 1141 285 1426
Meningioma 822 115 937 306 1339 1645 566 142 708
Pituitary 827 74 901 405 1595 2000 744 186 930
Non-Tumor 395 105 500 300 1457 1757 - - -
3264 7023 3064

4.2. Performance Evaluation

The information in this section provides a full breakdown of the outcomes of training
and validating our suggested model, which is meant to correctly label MRI images showing
brain tumors. We leveraged three distinct datasets, namely BT-3264, BT-7023, and Figshare,
aiming to provide an understanding of the model’s performance across varying data
sizes and complexities. The decision to utilize three datasets stems from their primary
considerations:

e In light of the scarcity of available brain tumor images, it becomes imperative to
evaluate the robustness and adaptability of our model under real-world scenarios,
particularly when dealing with smaller datasets. To confront this challenge head-on,
we implement data augmentation techniques, as outlined in Section 3.1, specifically
tailored to enhance the efficacy of the smaller BT-3264 dataset.

e  Additionally, it is crucial to gauge the scalability and consistency of our model when
confronted with considerably larger datasets. Therefore, we conduct an expanded
evaluation using the larger BT-7023 dataset, opting not to employ any augmentation
techniques, thus ensuring a direct comparison under varying data scales.

*  Inlight of the diverse and complex nature of brain tumor imaging data, it is essential to
assess the robustness and generalization of our model across datasets of varying scales
and characteristics. To address this, we leverage the Figshare dataset, which is widely
recognized and utilized in brain tumor research for its comprehensive collection of
multi-modal MRI scans.

Building upon the findings presented in Section 2 and the comprehensive analysis
detailed in Table 1, our study underscores the superior performance exhibited by the
EfficientNet-B7 model when compared against other state-of-the-art models, including
Multi-Scale CNN, VGG-19, ResNet, Xception, and MobileNet-V2, in the area of multi-class
brain tumor classification tasks.

Primary objective of evaluation: The primary objective in this investigation is to
conduct a comparative assessment between our proposed brain tumor classification model
and the established state-of-the-art EfficientNet-B7 model. In all experiments, we refer to
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the EfficientNet-B7 model and our proposed model as the baseline and customized model,
respectively.

4.2.1. Evaluation Using Smaller BT-3264 Dataset

To validate and assess the effectiveness of our proposed model on datasets with limited
sample sizes, we conducted an evaluation focusing on the accuracy and loss performance
using the BT_3264 dataset. Data augmentation was applied to both the baseline and
our customized model. Illustrated in Figure 4, the comparative analysis presents the
curves of loss and accuracy throughout the training process for both the baseline and
customized models.
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Figure 4. Accuracy and loss comparison between baseline and customized approach using small
dataset BT_3264.

In Figure 4a,c, experimental results for the baseline model are depicted. Here, we
observe fluctuating patterns in both loss and accuracy curves, indicating inherent insta-
bility. Although training accuracy consistently surpasses validation accuracy, occasional
reversals are observed across epochs. The baseline model starts with lower training loss
but converges with validation loss around epoch 25, identified as a critical point of optimal
performance. Beyond epoch 25, validation loss slightly exceeds training loss, suggesting
potential challenges in generalization on smaller workloads. These findings underscore the
necessity for model refinement or incorporation of regularization techniques to enhance
stability and generalization on the baseline model.

In contrast, Figure 4b,d illustrate the performance of our customized model, engi-
neered with specific adjustments to enhance stability. Notably, training accuracy starts
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from a lower point compared to validation accuracy and consistently lags throughout,
with validation accuracy consistently outperforming training accuracy. The optimal epoch,
identified at 39, signifies the divergence point of our customized model. Furthermore,
while training loss initiates at a higher value compared to validation loss, validation loss
consistently remains below training loss post-divergence of our customized model. This
significant improvement in generalization indicates the model’s enhanced performance on
unseen data compared to the baseline model. These enhancements are attributed to the
additional optimization layers detailed in Sections 3.2 and 3.3.

Despite achieving optimal convergence at the start, the baseline model encounters
challenges in stability and generalization, contrasting with the customized model, which
incorporates deliberate adjustments for augmented stability and improved accuracy and
loss metrics. Quantitatively, the baseline model demonstrates a divergence point with
validation accuracy at 95% and loss at 2%, indicating inferior performance compared to
our customized model, which shows a validation accuracy of 97% and loss of 0.3%. This
comprehensive analysis underscores the significance of tailored adjustments in optimizing
model performance, even in the context of smaller dataset sizes.

4.2.2. Evaluation Using Larger BT-7023 Dataset

To assess the scalability and consistency of our model when dealing with considerably
larger datasets, we employed the BT-7023 dataset. Given its larger image count, augmen-
tation techniques were not applied to this dataset. Both our customized model and the
baseline EfficientNet-B7 were evaluated for performance. Figure 5a,c display the accuracy
and loss results for the baseline model, while Figure 5b,d illustrate the accuracy and loss
outcomes of our customized model.

In Figure 5b, we observe that the training accuracy of the customized model starts
at 80%, while the validation accuracy commences higher at around 90%. Throughout the
training process, both curves exhibit similar growth patterns, closely aligning with each
other. Towards the end, the validation accuracy stabilizes at 98%, slightly surpassing the
training accuracy, which stabilizes at 97%. The optimal epoch is determined to be seven
for the customized model. Notably, the customized model trained with the larger BT-7023
dataset demonstrates increased stability in model training. Turning to the loss results
of the customized model depicted in Figure 5d, we observe a similar trend in training
stability, where the training and validation curves converge towards each other. At the
convergence point, the validation loss significantly outperforms the training loss, indicating
consistent generalization of the customized model even with larger datasets. In contrast,
as observed in Figure 5a, the baseline model exhibits rapid convergence in both training
and validation curves, suggesting a potential case of overfitting. This underscores the
necessity for the additional fine-tuning and customization proposed in Sections 3.2 and 3.3
to mitigate overfitting and enhance model performance. In summary, while the baseline
model shows rapid convergence and fluctuations, indicating potential challenges with
overfitting, the customized model with adjustments, achieves a balanced performance and
demonstrates better generalization. These findings highlight the critical importance of
tailored adjustments and careful consideration of model complexity in optimizing brain
tumor classification models for clinical applications. In Figure 6, we present the confusion
matrix obtained from our brain tumor classification evaluation using the extensive BT-7023
dataset. Since we have already shown consistency in the performance of our customized
model, we forego presenting the confusion matrix for the smaller dataset at this point,
as the results from the large dataset are deemed sufficient. Analysis of the confusion
matrix reveals significant overfitting in the baseline model, collaborating with the 100%
training accuracy shown in Figure 5a. However, the baseline model’s inability to generalize
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effectively is apparent in the mis-classifications exhibited within the confusion matrix. To
mitigate this issue, recommendations include the implementation of robust regularization
techniques and the exploration of a more fine-tuned model, as highlighted in our proposed
model. Conversely, our customized model’s confusion matrix showcases fewer instances of
misclassification compared to the baseline model, highlighting its improved generalization
capabilities for optimal brain tumor classification.
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Figure 5. Accuracy and loss comparison between baseline and customized mode using larger dataset
BT_7023.

Figure 7 presents comparative results on the Figshare dataset, reinforcing findings
from our previous experiments. In Figure 7, the customized model demonstrates robust
performance with training and validation metrics converging harmoniously. Both accuracy
curves stabilize around 0.95, while the loss curves show consistent convergence after epoch
20, indicating strong generalization capability. In contrast, the figure reveals overfitting
tendencies in the baseline model despite rapid initial convergence. While training accuracy
approaches 1.0 and loss nears 0, the validation metrics diverge significantly, with accuracy
plateauing at 0.96 and loss stabilizing around 0.3. This performance gap between training
and validation metrics suggests that the baseline model compromises generalization by
overfitting to the training data, whereas our customized approach successfully mitigates
this limitation.
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Figure 7. Accuracy and loss comparison between baseline and customized mode using Figshare
dataset.

4.3. Performance Metric Comparison of the Proposed and State-of-the-Art Methods

As part of this research, an investigation was conducted to assess the model’s robust-
ness, including its parameter utilization across different architectures. The experimental
results demonstrate in Table 4 show the effectiveness of our optimized EfficientNet im-
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plementations. Our EfficientNetB1 achieves state-of-the-art accuracy of 98.6% with only
3.16 M parameters, representing a significant improvement over larger models like the
Ensemble Model (147.74 M parameters, 96.9% accuracy) and Inception-ResnetV2 (73.9 M
parameters, 93.8% accuracy). While MobileNetv3 reaches comparable accuracy (98.5%),
our implementation maintains consistent performance above 98% across all variants with
substantially fewer parameters—ranging from EfficientNetB0 (3.03 M) to B7 (8.37 M). This
marks a notable improvement over the EfficientNet variants reported by [36], which re-
quired 5.9 M and 12.9 M parameters to achieve lower accuracies of 96.6% and 97.5% for BO
and B3, respectively.

Table 4. Comprehensive comparison of the obtained and previous studies results.

Variant Params (M) Acc (%)
EfficientNetB0 [36] 5.9 96.6
EfficientNetB3 [36] 12.9 97.5

Ensemble Model [37] 147.74 96.9
Inception-ResnetV?2 [37] 739 93.8
MobileNetv3 [38] - 98.5
CLAHE+CNN [39] 1.70 83.0
EfficientNetBO 3.03 98.5
EfficientNetB1 3.16 98.6
EfficientNetB2 3.59 98.3
EfficientNetB3 4.04 98.0
EfficientNetB4 4.99 98.0
EfficientNetB5 6.04 97.9
EfficientNetB6 7.16 98.0
EfficientNetB7 8.37 98.4

Table 4 demonstrates that the model’s accuracy diminishes with an increase in the
number of parameters. The fact that accuracy decreases as model size increases is in
line with the fact that transfer learning is hard for domain-specific tasks, as shown in the
EfficientNet study [14], where scaling benefits diminish as datasets decrease. Our strategy
uses strict regularization (Dropout 0.5 + BatchNorm) to avoid medical imaging overfitting,
which happens with insufficient training data and risks getting worse with larger models.
The smallest models (B0-B2) find the best balance between regularization and reusing
features. On the other hand, the classifier’s static 32-unit bottleneck and large dropout
make it too hard for the largest models (B3—-B7) to use more parameters. This method is
a compromise between two strategies: it prioritizes generalization (98.4% peak accuracy)
over unrestricted scaling since adding too many parameters leads to small improvements
at the cost of high computing power. The partial recovery at B7 signifies a continued
capacity to overcome constraints, demonstrating EfficientNet’s inherent resilience. Our
methodology prioritizes domain-specific reliability, avoiding the limitations of basic scaling
in biological applications.

In comparison to other architectures, our model places a higher emphasis on computa-
tional efficiency, which allows it to achieve equivalent diagnostic accuracy while utilizing
a substantially smaller number of parameters, as illustrated in Table 4. Because of this
streamlined design, training is completed more quickly, inference latency is reduced, mak-
ing it suited for real-time applications, and the memory footprint is reduced. This makes it
possible to deploy the model on devices with limited resources. Furthermore, our method
makes complex diagnostic tools more accessible to a wider audience, which is especially
beneficial in environments with limited resources.
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4.4. Explainable Al (XAI) Interpretation and Further Assessment of the Method

To better understand the predictions of the deep model, we used gradient-weighted
class activation mapping (Grad-CAM), a widely adopted XAI technique. Grad-CAM
generates visual explanations by leveraging gradient information flowing into the final
convolutional layer of the deep learning model. These gradients are globally averaged
to produce weights for each feature map, which are then combined to create a coarse
localization heatmap. This heatmap highlights regions of the input MRI scan that most
strongly influenced the model’s classification decision. This interpretation increased confi-
dence among physicians, ensuring that the model’s decisions were consistent with clinical
expectations and knowledge.

Figure 8 demonstrates how artificial intelligence interprets different tumors through
MRI visualization, presenting four key diagnostic categories—meningioma, glioma, pitu-
itary, and non-tumor. Each category is displayed through original MRI sequences and their
corresponding heat map activations, where warmer colors indicate areas of heightened
diagnostic significance. Through enhanced preprocessing and activation mapping, the
model provides clear identification of tumor-specific features, offering an intuitive yet
technically robust approach to Al-assisted neuro-oncological classification.

Our detailed performance analysis compares both the baseline and customized models
across the BT-3264 and BT-7023 datasets. Table 5 summarizes the findings across preci-
sion, recall, area under curve (AUC), and F1 Score. The customized model consistently
outperforms the baseline model, with its additional layers significantly improving clas-
sification performance. The higher AUC values for the customized model demonstrate
its enhanced ability to distinguish between different classes, reducing misclassification
risk in clinical settings. Both models show improved performance with the larger BT-7023
dataset, indicating a positive correlation between dataset size and classification accuracy.
However, the baseline model may face challenges in generalizing to unseen images. The
analysis confirms our customized model’s superior classification performance across both
datasets, highlighting the importance of model adjustments and dataset size in medical
image classification tasks.

Original

Grad-cam maps

Augmented

Grad-cam maps

Predicted Label Meningioma Glioma Pituitary No tumor

Figure 8. Visualization of different tumor types, showing the heat-maps for the original and aug-
mented images (with labels). Each row displays the original MRI scan, the corresponding heatmap
visualization, the augmented MRI scan with increased contrast and brightness, and the heatmap of
the augmented image. Input image sample taken from the BT-3264 dataset [17].
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Table 5. Precision, recall, AUC, and F1 score results of baseline vs. customized model.
Dataset Model Type  Precision Recall AUC F1 Score
BT _3264 Baseline 90 90 94 89
BT _3264 Customized 92 90 98 91
BT_7023 Baseline 96 96 97 96
BT_7023 Customized 97 97 99 97

5. Conclusions

Our research has demonstrated the potential of advanced deep learning techniques
in revolutionizing brain tumor detection and classification. By refining the EfficientNet
architecture, we developed a model that achieves high accuracy in distinguishing between
glioma, meningioma, pituitary tumors, and normal brain tissue. This model’s reduced num-
ber of parameters leads to lower computational resource requirements, while its enhanced
interpretability is demonstrated through Grad-CAM visualization. This combination of
performance and explainability addresses a critical need in medical Al applications. Our
model demonstrates superior performance over existing state-of-the-art methods, achieving
a 97.8% accuracy rate and 96.5% F1 score, underscoring the value of transfer learning and
targeted architectural modifications in adapting general-purpose models to specialized
medical tasks. The model’s robustness, even with limited training data, suggests its po-
tential for real-world clinical applications where large, diverse datasets may not always
be available. While our current work focuses on MRI image analysis, we recognize the
multifaceted nature of medical diagnosis. The integration of additional data modalities,
such as patient history and genetic information, represents a promising direction for fu-
ture research. This multi-modal approach could further enhance the model’s diagnostic
capabilities, potentially leading to more comprehensive and accurate tumor assessments.

6. Limitation and Future Work

Although our model performs well in classifying brain tumors, we must acknowledge
several limitations. First, the fact that it only uses MRI data makes it harder to add more
clinical information, like a patient’s history, genetic markers, or results from other diagnostic
tests. This limitation may reduce its effectiveness in handling rare tumor subtypes or
under-represented patient populations. Additionally, our neural network is not inherently
generalizable to different imaging modalities without adaptation or retraining. It was
trained on MRI scans only, so how well it works on other imaging methods, like PET scans
or functional MR, is still unknown and would need more domain-specific adjustments.
Furthermore, the proposed approach should work in conjunction with laboratory clinicians
to execute the final diagnosis using the classification results from the model. This helps to
alleviate any mistakes from Al-based models.

Future work should focus on developing multi-modal systems that combine imaging
data with electronic health records and genomic information to enhance diagnostic accuracy
and clinical relevance. Also, making models more flexible by using domain adaptation
techniques or transfer learning could make them more useful for a wider range of medical
imaging sources.
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