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Abstract. Modelling of composites requires the consideration of various components that work 

together and interact in a linear and nonlinear way. Linear and nonlinear modelling in view of 

demanding needs, like representative volume element calculations within numerical 

homogenization and the advent of new tools, like physics informed neural networks, are 

reviewed in this article. In particular, a concept is proposed towards the implementation of a 

unilateral contact mechanics law within physics-informed neural networks. The theoretical 

framework and related applications are presented. Results indicate that the proposed deep 

learning approach can further be applied towards solving contact mechanics problems, 

considering the mechanical interactions between the constituents of composites. 
 

 

1 INTRODUCTION 

Interaction between adjacent constituents within a composite at every scale can be described by 

nonlinear laws, including unilateral contact and friction that lead to nonsmooth mechanics 

problems. Numerical evaluation is based on specialized algorithms adopting complementarity 

formulations, nonsmooth optimization, variational and hemivariational inequalities which have 

shown their ability to capture highly nonlinear effects [1,2]. Alternatively, if one wants to use 

classical Newton-type algorithms, appropriate penalty functions can be adopted to enforce 

inequality and complementarity restrictions [3,4]. Beyond classical numerical approaches, 

usage of neural networks for calculation of an approximate solution becomes popular, 

especially within a framework of multi-scale computational homogenization [5-7]. In the latter 

case the effect of the microstructural response for various loadings, including possible nonlinear 
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interactions, is transferred to the homogenized medium through the Representative Volume 

Element (RVE) technique. The solution at the RVE level along the iteration steps may involve 

some errors, especially if data-driven constitutive laws are adopted [4]. Usage of physics-

informed neural networks, combined with complementarity or penalty formulations is proposed 

here to solve the unilateral contact problem between a two-dimensional structure and a rigid 

obstacle. This can be considered as a first step towards the numerical solution of the problem 

of numerical homogenization that includes nonlinear interactions at the RVE level. In this 

context, PINN training [8,9] can be incorporated at the RVE level in order to provide an 

approximate solution of the mechanical problem and, subsequently, be integrated within the 

multi-scale computational homogenization, or FE2 method. Performance comparisons of 

various alternatives and discussion for further work in the data-driven framework are included 

in this article. 

 

2 MODELLING CLASSICAL AND UNILATERAL INTERACTIONS IN 

COMPOSITES 

Different constituent materials must work together within a composite structure. Classical 

interaction leads to continuity conditions in terms of equalities for displacements and stresses 

at neighbouring points, see Figure 1. Nonlinear interaction can be modeled with appropriate 

springs in normal and tangential to the interface directions. Unilateral interaction, including 

contact and stick-slip friction, can be modelled with a set of inequalities and complementarity 

conditions, following the techniques of nonsmooth mechanics, see Figure 2. 

 

Figure 1: Classical interaction between adjacent parts in a composite 
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Figure 2: Unilateral interaction between adjacent parts in a composite 

Classical solution techniques are described in the literature. Most promising among them are 

iterative solvers connected with domain decomposition tools that are appropriate for application 

on parallel computers. In view of data-driven techniques, the Large Time Increment method 

(LATIN) of macro-iterations should be mentioned. 

3 PHYSICS-INFORMED NEURAL NETWORKS 

Recently, artificial neural networks have been applied for the solution of partial differential 

equations. Initial attempts for the solution of elastoplastic and contact problems in mechanics 

by using the minimization of energy, using Hopfield and Tank neural networks have been 

proposed by Kortesis and Panagiotopoulos [10] and Avdelas et al. [11]. Feed-forward NNs 

trained by the backpropagation algorithm, have been used for the approximation of several 

direct and inverse problems in mechanics based on examples (supervised learning), see among 

others [12-15].   
Based on differentiation of the neural network metamodel, which is available through 

automatic differentiation within modern packages, an interesting extension of classical data-

driven technique rises. Namely, usage of governing differential equations and boundary or 

interface relations for training of the neural network without the need of having input-output 

data can be considered. The seminal work, due to Lagaris and his co-workers [16] and recent 
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developments due to Raisi and Karniadakis led to the method of Physics Informed Neural 

Networks (PINNs), [17].   
The PINNs combine a collocation approach for fitting the governing differential equations 

and boundary conditions at certain points in the domain and it’s boundary and share advantages 

with more classical collocation and meshless computational mechanics techniques. Previous 

results of the authors for the solution of beam and rod academic problems [18], and plates in 

bending including contact [19] demonstrate the usage of this technique.  

For complicated problems, including interaction of different domains, PINNs may have 

convergence difficulties. Ensembles of neural networks or different networks for each domain 

have been proposed for the effective treatment of such problems. In theory each involved 

quantity may be approximated by a different neural network and each linear or nonlinear 

interaction between them can be used for training the resulting PINN. In Figure 3 a schematic 

Tonti’s diagram is presented, showing interaction in a problem of solid mechanics. In Figure 4, 

a diagram outlining the proposed PINN is provided. In [20] first relevant results in linear plane 

elastostatics are found and in [21] a recent contribution related to unilateral contact problems is 

presented. 
 
 

 

Figure 3: Tonti’s diagram indicating all involved quantities and relations. Example of linear elasticity and 

unilateral contact 
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Figure 4: Schematic representation of a PINN approach. 

 

4 PROPOSED APPLICATIONS 

The flexibility of PINNs for the solution of complex interaction problems has been outlined. In 

addition to classical and unilateral contact relations, periodic boundary conditions as required 

by numerical homogenization schemes are also easily introduced in the loss function of PINNs. 

On the other hand, complexity of the problem may lead to difficulties in neural network training 

due to ill-posedness, which manifests itself as a vanishing gradient, appearance of local minima, 

that lead to premature stop in the iterative process, and similar numerical difficulties.  

In this section numerical results of solving the complementarity problem with the Fischer-

Burmeister function with the use of PINN for the elasticity equations are presented. The 

smoothed Fischer–Burmeister function 𝜓: 𝑅2 → 𝑅 proposed in [3], [19], [21] for solving the 

linear complementarity problems is written as 𝜓(𝑎, 𝑏) = 𝑎 + 𝑏 − √𝑎2 + 𝑏2. 

It is known that 𝜓(𝑎, 𝑏) = 0   ⟺  𝑎 ≥ 0, 𝑏 ≥ 0, 𝑎𝑏 = 0. It is considered a rectangular 

structure,  0 ≤ 𝑥 ≤ 𝑙1, 0 ≤ 𝑦 ≤ 𝑙2, where 𝑙1, 𝑙2 are the lengths of the sides. It is supposed that 

𝑙1 = 𝑙2 = 1 and the Lamé parameters take the values 𝜆 = 1, 𝜇 = 0.5. For the elasticity 

equations the following boundary conditions have been taken, 𝜎𝑥𝑦(𝑥, 𝑙2) = 0, 𝜎𝑦𝑦 = 𝑃, where 

𝑃 is the external loading forces, which is applied on the top of the structure.  The forces take 

the value  𝑃 = −0.3. Furthermore, 𝑢𝑥(0, 𝑦) = 𝑢𝑦(0, 𝑦) = 0,  the fixed edge of the considered 

rectangular domain,  𝜎𝑥𝑦(𝑙1, 𝑦) = 0, 𝜎𝑥𝑥(𝑙1, 𝑦) = 0  and  𝜎𝑦𝑦(𝑥, 0) = 0, 𝜎𝑥𝑦(𝑥, 0) = 0. 

In our case 𝑎 = −𝑢𝑦 − 𝑔, 𝑏 = −𝜎𝑦𝑦 and instead of the condition 𝜎𝑦𝑦(𝑥, 0) = 0 we include the 
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equation 𝑢𝑦(𝑥, 0) + 𝑔 + 𝜎𝑦𝑦(𝑥, 0) + √(𝑢𝑦(𝑥, 0) + 𝑔)2 + 𝜎𝑦(𝑥, 0) = 0 in the loss function. 

The equation is trained at the corresponding collocation points. The structure under investigated 

is shown in Figure 5. 

 

 
Figure 5: The structure under investigation. 

 

The constructed PINN consists of 4 hidden layers with [15,30,30,15] neurons. For training 

40x40 collocation points (samples) and 30x30 test points have been taken. The 26x26 prediction 

points have been considered. The structure with the rigid obstacle is illustrated on Figure 5. The 

numerical results are shown on Figures 6-9. The loss error is less than 10−4 after 10000 training 

iterations (epochs) of the multi-PINN. 

 

Figure 6: The structure before and after the unilateral contact with g=0.0002 after using the ensemble PINN with 

epochs=4000. 
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Figure 7: The predictions of 𝑢𝑥 , 𝑢𝑦 at the points (𝑥𝑖 , 0) with the gap, 𝑔 = 0.0001 between the elastic structure 

and the obstacle after using the ensemble PINN with different epochs. 

   

Figure 8: The predictions of 𝑢𝑥, 𝑢𝑦 at the points (𝑥𝑖 , 0) with the gap, 𝑔 =, 0.0002 between the elastic structure 

and the obstacle after using the ensemble PINN with different epochs. 

 

Figure 9. The displacements 𝑢𝑥, 𝑢𝑦 of the structure after using the PINN with epochs=4000 and g=0.0002. 



Georgios E. Stavroulakis, Aliki D. Mouratidou and Georgios A. Drosopoulos 

 8 

4 CONCLUSIONS 

A deep learning approach is proposed in this article, aiming to integrate a Physics-informed 

neural network architecture for an academic plane elasticity problem with unilateral contact 

conditions. An ensemble approach is adopted to simulate the elastic material properties and the 

unilateral contact between a two-dimensional structure and a rigid obstacle. Results show a 

satisfactory performance in terms of the arising error. The work can be extended to simulate 

the interaction between the constituents of more general heterogeneous materials. This will be 

the first step towards applications in multi-scale computational homogenization. 

 

ACKNOWLEDGEMENTS 

 

This research was implemented in the framework of the Action “Flagship actions in 
interdisciplinary scientific fields with a special focus on the productive fabric”, which is 
implemented through the National Recovery and Resilience Fund Greece 2.0 and funded 
by the European Union NextGenerationEU (Safe-Aorta Project ID: TAEDR-0535985). 
Furthermore, support from University of KwaZulu-Natal, Durban, South Africa is greatfully 
acknowledged. 

REFERENCES 

[1] Panagiotopoulos, P.D. Inequality Problems in Mechanics and Applications. Convex and 

Nonconvex Energy Functions. Birkhäuser, Basel - Boston - Stuttgart, (1985). 

[2] Demyanov, V.F., Stavroulakis, G.E., Polyakova, L.N. and Panagiotopoulos, P.D. 

Quasidifferentiability and nonsmooth modelling in mechanics, engineering and economics. 

Kluwer-Springer, (1996). 

[3] Stavroulakis, G.E. and Antes H. Nonlinear equation approach for inequality elastostatics: a 

two-dimensional BEM implementation. Computers & Structures (2000) 75(6):631-646. 

[4] Drosopoulos, G.A. and Stavroulakis, G.E. Non-linear Mechanics for Composite, 

Heterogeneous Structures, CRC Press, Taylor & Francis, (2022).  

[5] Drosopoulos, G.A., Wriggers, P. and Stavroulakis, G.E. A multi-scale computational 

method including contact for the analysis of damage in composite materials. Computational 

Materials Science (2014) 95:522-535. 

[6] Drosopoulos, G.A., Giannis, K., Stavroulaki, M.E. and Stavroulakis, G.E. Metamodeling-

assisted numerical homogenization for masonry and cracked structures. ASCE Journal of 

Engineering Mechanics (2018) 144(8):04018072. 

[7] Drosopoulos, G.A. and Stavroulakis, G.E. Data-driven computational homogenization using 

neural networks: FE2-NN Application on damaged masonry. ACM Journal on Computing and 

Cultural Heritage (2021) 14:1-19. 

[8] Raisi, M., Perdikaris P. Karniadakis, G. Physics-informed neural networks: A deep learning 

framework for solving forward and inverse problems involving nonlinear partial differential 

equations. Journal of Computational Physics (2019) 378:686-707. 

[9] Muradova, A.D. and Stavroulakis G.E. Physics-informed Neural Networks for the Solution 

of Unilateral Contact Problems, 13th International Congress on Mechanics, HSTAM, Patras, 

Greece, 451-459 (2022). 



Georgios E. Stavroulakis, Aliki D. Mouratidou and Georgios A. Drosopoulos 

 9 

[10] Kortesis, S. and Panagiotopoulos, P.D. Neural networks for computing in structural 

analysis: Methods and prospects of applications. International Journal for Numerical Methods 

in Engineering (1993) 36:2305-2318.   

[11] Avdelas, A.V., Panagiotopoulos, P.D. and Kortesis, S. Neural networks for computing in 

the elastoplastic analysis of structures. Meccanica (1995) 30:1–15.   

[12] Waszczyszyn Z. and Ziemiański L. Neural Networks in the Identification Analysis of 

Structural Mechanics Problems. In: Mróz Z., Stavroulakis G.E. (eds) Parameter Identification 

of Materials and Structures. CISM International Centre for Mechanical Sciences (Courses and 

Lectures), vol 469. Springer, Vienna, (2005). 

[13] Stavroulakis, G., Bolzon, G., Waszczyszyn Z. and Ziemianski, L. Inverse analysis. In: 

Karihaloo, B., Ritchie, R.O., Milne, I. (eds in chief) Comprehensive structural integrity. 

Numerical and computational methods, vol 3, chap 13. Elsevier, 685–718, (2003). 

[14] Muradova A.D. The spectral method and numerical continuation algorithm for the von 

Kármán problem with postbuckling behaviour of solution. Advances in Computational 

Mathematics (2008) 29:179-206.   

[15] Muradova, A.D. and Stavroulakis, G.E. Buckling and postbuckling analysis of rec-tangular 

plates resting on elastic foundations with the use of the spectral method. Computer Methods in 

Applied Mechanics and Engineering (2012) 205–208:213–220. 

[16] Lagaris, E., Likas, A. and Fotiadis, D.I. Artificial neural networks for solving ordinary and 

partial differential equations. IEEE Transactions on Neural Networks (1998) 9:987-1000. 

[17] Raissi, M., Perdikaris, P. and Karniadakis, G.E., Physics-informed neural networks: A 

deep learning framework for solving forward and inverse problems involving nonlinear partial 

differential equations. J. Comput. Phys. (2019) 378:686-707. 

[18] Katsikis, D., Muradova, A.D. and Stavroulakis, G.E. A gentle introduction to physics-

informed neural networks, with applications in static rod and beam problems. Journal of 

Advances in Applied & Computational Mathematics (2022) 9:103-128. 

[19] Muradova, A. and Stavroulakis, G.E. Physics-informed neural networks for elastic plate 

problems with bending and Winkler-type contact effects. Journal of the Serbian Society for 

Computational Mechanics (2021) 15:45-54. 

[20] Muradova, A.D, Drosopoulos, G.A. and Stavroulakis, G.E. Ensemble of physics-informed 

neural networks for solving plane elasticity problems with examples. Acta Mechanica (2024) 

(submitted, under revision). 

[21] Sahin, T., von Danwitz, M. and Popp, A. Solving forward and inverse problems of contact 

mechanics using physics-informed neural networks. Adv. Model. and Simul. in Eng. Sci. (2024) 

11:11. 

 
 


