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Abstract: Hospital readmissions are regarded as a compounding economic factor for healthcare
systems. In fact, the readmission rate is used in many countries as an indicator of the quality of
services provided by a health institution. The ability to forecast patients’ readmissions allows for
timely intervention and better post-discharge strategies, preventing future life-threatening events,
and reducing medical costs to either the patient or the healthcare system. In this paper, four machine
learning models are used to forecast readmissions: support vector machines with a linear kernel,
support vector machines with an RBF kernel, balanced random forests, and weighted random forests.
The dataset consists of 11,172 actual records of hospitalizations obtained from the General Hospital
of Komotini “Sismanogleio” with a total of 24 independent variables. Each record is composed of
administrative, medical-clinical, and operational variables. The experimental results indicate that the
balanced random forest model outperforms the competition, reaching a sensitivity of 0.70 and an
AUC value of 0.78.

Keywords: machine learning; forecasting; readmissions

1. Introduction

In recent decades, researchers have paid special attention to the readmission rate as
it is considered a globally attractive and reliable indicator of the effectiveness and quality
of hospital care provided to the patients. National health systems in many countries (e.g.,
the U.S.) began using the readmission rates as a publicly reported metric that can be used
for hospital comparison and determination of hospital services reimbursement. Accurate
forecasting of hospital readmissions can contribute significantly to the improvement of the
quality of services provided by a specific hospital or by a health care system as a whole.
The substantial health, economic and social benefits of such forecasting are undeniable.
The benefits for the patients are related to the timely diagnosis and effective treatment of a
health issue, the prevention of complications due to the delayed or incorrect treatment, and
the shortening of hospitalization time while reducing potential psychological consequences.
The number of readmissions to the total hospital admissions is a significant ratio, which
can be used as a business intelligence (BI) tool to uncover service quality insights and
improve patient care. The study of readmission rates may enhance the discharge processes
by providing better medication reconciliation and implementing follow-up processes for
discharged patients.

Inpatient curative costs constitute the majority of a hospital’s total expenditures.
According to the 2019 OECD survey, the average spending on inpatient care services for the
36 OECD countries accounts for approximately 65% of a hospital’s total expenditures [1].
In Greece, a member of the OECD, this figure peaks by reaching 93%. The definition
of the term “readmission” ranges in the relevant literature from 1 [2–4], 2 [5], 3 [6] to
12 months [7] after first initial admission. Almost 20% of the patients in the U.S. covered
by Medicare are readmitted within 30 days of their initial discharge with an estimated
annual cost of $17 billion [8]. The readmissions rate as a quality measure of the provided
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healthcare services has been extensively researched for decades [9–12]. Identifying the
high-risk patients for readmissions, managing medication reconciliation, optimizing the
use of technology, and planning a transitional care model, are some of the strategies that
can be applied to reduce preventable readmissions.

Obviously, readmission forecasting can prevent some repeatable hospitalizations,
though it can also lead to the optimal distribution of available resources and the identifica-
tion of the readmission risk factors that were previously unidentified. Usually, readmission
forecasting is based on traditional statistical forecasting models, such as in the work of
Kansagara et al. [13] and Zhou et al. [14].

More recently, there are studies in the relevant literature employing methodological
tools from the arsenal of machine learning. Machine learning (ML) is one of the most
important and fastest growing branches of artificial intelligence. ML techniques have been
successfully applied to various problems, ranging from pattern recognition, computer
vision, economics, and finance, to medical applications. The most important property of
these methods is their distinctive ability to train an accurate and general model from finite
input data.

Li et al. [15] used administrative and demographic data from a data set of 1,631,611 hos-
pitalization records in Quebec during the period 1995 to 2012. The aim of the study, as they
mention, was to find the probability of a patient’s readmission within 30 days after the
initial discharge. They did so by comparing a traditional logistic regression model with the
appropriate penalization and a toolbox of machine learning methods, including random
forests, deep learning, and extreme gradient boosting. The findings show that the random
forest and extreme gradient boosting algorithms are the most accurate models, achieving
an area under the curve (AUC) value of 0.79 at hospital admission and an AUC value above
0.88 at hospital discharge.

Moreover, Wang et al. [12] evaluated the merits of convolutional neural networks
(CNN) using the general hospital wards data for 30-day readmission prediction. They
found that the area under the curve (AUC) was 0.70, significantly higher than all the
baseline methods. Futoma et al. [16] applied a deep neural network (NN) to predict
early hospital readmission and achieved better predictive performance in all conditions
examined (AUC = 0.73) compared to penalized logistic regression models.

In a recent study, Zhou et al. [17] focused on elderly hospital readmission prediction,
proposing a fuzzy partition enhanced weighted factorization machine (WFM) model. The
model was tested on a large-scale dataset from public hospitals in Hong Kong, which
included elderly (65+) patients with chronic kidney disease (CKD). The proposed WFMFP
model outperformed several widely used methods, including standard FM, XGBoost,
Lightgbm, gradient boosting machine, random forests, and SVMs with different kernels.

In a meta-research, Mahmoudi et al. [18] collected 41 studies during the period from
2015 to 2019, focusing on the comparison of traditional and ML forecasting models. They
found that on average, ML models outperformed statistical ones: the AUC value achieved
by the machine learning models was 0.74; the AUC value from traditional regression
models was 0.71. However, the difference was not statistically significant. Another recent
meta-research by Huang et al. [19] studied 43 ML based studies on forecasting hospital
readmissions in the U.S. between 2015 and 2019. According to this, the neural networks
and the boosted trees were the most accurate forecasting models.

To the best of our knowledge, there is just one attempt to forecast the readmission rate
in Greece [20]. The authors in this paper tested five ML algorithms for the prediction of
hospital readmissions using data from the General Hospital “Elpis” in Athens, Greece. The
dataset does not use any medical data in the prediction but includes eight administrative
variables derived from the hospital information system on 131,872 hospitalization records
spanning the period from 2000 to 2017. The authors concluded that the K-nearest neighbors
algorithm provided the most accurate model with an AUC = 0.785.

It is worth noting that, based on the recent Greek and international literature studied,
only a minority of the research papers reported the application of a method to address
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imbalanced datasets. Du et al. [21] proposed a new risk prediction method termed joint
imbalanced classification and feature selection (JICFS) to overcome the issue of class-
imbalance in hospital readmission. Wang et al. [12] proposed a cost-sensitive deep learning
model to address the imbalanced problem in medical data. In another study, Du et al. [22]
introduced a method combining a graph-based technique, an optimization framework, and
a neural network to achieve superior performance in predicting hospital readmissions.

In this paper, we use data from the Sismanogleio Public Hospital in Komotini, Greece.
The dataset covers the period from 2018 to 2019. The variables are taken from the hospital
information system. All records used were anonymized at the source, and the patients’
identifying information was substituted by a numerical sequence before we received them.
We employ four alternative machine learning models: support vector machines with linear
kernel, support vector machine with RBF (radial basis function) kernel, weighted random
forests, and balanced random forests. In our performed empirical analysis, we considered
the problem of the imbalance on our dataset: there is one readmission for every 6.42 cases
(1741 readmissions in 11,172 total cases/admissions). We record a readmission whenever a
patient is admitted again to the hospital within a period of 30 days after the initial discharge.
The initial data set was divided into two sub-samples: the in-sample (90% of our dataset)
used to train the models and the out-of-sample (10% of our dataset) used to test their
generalization ability. We created the sub-samples using a stratified random sampling
technique to preserve the ratio of readmissions observed in the full data set to the two
sub-samples. In our setup, we test the performance of our models using both the sensitivity
and the AUC metrics.

We must note that this is one of the few studies in the literature that forecasts readmis-
sion rates based on three types of real-world data: a) medical-clinical data, b) administra-
tive/demographic data, and c) operational data. To the best of our knowledge, most of the
research that is published in this field uses mainly EMR data or a mix of medical data and
variables that belong to the domain of demographic factors. We believe that the addition of
hospital operational data is an important contribution to this line of literature.

Amongst a total of 84 studies that have been included in the systematic reviews by
Mahmoudi et al. [18] and Huang et al. [19], a variety of clinical data, composite clinical
scores, disability/functional status measures, demographics, and socioeconomic status
features have been used. None of the abovementioned studies have taken advantage of the
operational data of the clinics and hospitals and thus have not examined the use of such
data to forecast readmissions.

Operational data such as the current clinic’s occupancy rate, clinic’s number of doctors,
and clinic’s number of nurses on site may play an important role in the hospital care
and attention provided to incoming patients, improving the diagnosis accuracy and/or
reducing the probability of medical errors or omissions and/or the provision of less than
optimal medical services. Thus, the inclusion of these operational capacity variables is part
of the innovation of our research.

The rest of this paper is structured as follows: Section 2 presents the dataset. Section 3
provides a description of the proposed methodology used in the empirical section and we
present the performance of the four machine learning methodologies on our data. Section 4
provides the conclusions, a discussion on the findings and suggests possible future research
based on the results of this study.

2. The Data

The data for this study were collected from the information system of the General Hos-
pital of Komotini “Sismanogleio” in Greece. The data records were completely anonymized,
and each patient was referenced by a random code. The data were collected from 3 infor-
mation data sources of the hospital information system: the patient administration system,
the business intelligence system, and the laboratory information system. The data spans
from 1 January 2018 to 31 December 2019. We compiled a dataset of 25 variables, that
includes administrative/demographic variables, medical-clinical variables, and operational
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status data of the hospital. More than 20,973 hospitalizations occurred within this period.
Nonetheless, 46.7% of these cases were incomplete records, missing at least one variable.
We chose to eliminate these incomplete records from our dataset and work only with full
ones, since the methodologies we used require datasets with no missing values (N/As)
in order to work properly and efficiently. As a result, we ended up with a dataset of
11,172 cases. In 1741 of these cases (15.6%) the patient was readmitted to the hospital within
the next 30 days of his last discharge.

We modelled the readmission occurrence using a binary dummy dependent variable,
where 1 refers to the readmission, and 0 refers to the opposite case. In Table 1, we present
the 24 explanatory variables of our dataset. More specifically, we considered 11 variables
of general information for each patient (Panel A), three clinic operational status variables
(Panel B), and ten explanatory variables that pertain to laboratory results from tests that
were conducted on the first day of the patient’s hospitalization (Panel C).

Table 1. Input Variables of the Dataset.

No Independent Variables Characterization of Each Variable

Panel A: General Information/Patient Data

1 Patient Age Quantitative variable, Integer
2 Patient Gender Qualitative variable, Categorical
3 Length of Stay Quantitative variable, Integer
4 Patient Transfer Qualitative variable, Binary
5 ICD-10 Diagnosis on Admission Qualitative variable, Categorical
6 ICD-10 Diagnosis at Discharge Qualitative variable, Categorical
7 Admission Clinic Qualitative variable, Categorical
8 Discharge Clinic Qualitative variable, Categorical
9 Clinic Change Qualitative variable, Binary
10 Hospitalization Outcome Qualitative variable, Categorical
11 Past Hospitalization Qualitative variable, Binary

Panel B: Operational Status of the Clinic

12 Clinic’s Occupancy Rate Quantitative variable, Continuous
13 Clinic’s Number of Doctors Quantitative variable, Integer
14 Clinic’s Number of Nurses Quantitative variable, Integer

Panel C: Laboratory results

15 Blood Sugar (Glucose) Quantitative variable, Continuous
16 Indication (Normal Range) Blood Sugar Qualitative variable, Categorical
17 Potassium Quantitative variable, Continuous
18 Indication (Normal Range) Potassium Qualitative variable, Categorical
19 Sodium Quantitative variable, Continuous
20 Indication (Normal Range) Sodium Qualitative variable, Categorical
21 Blood Urea Nitrogen Quantitative variable, Continuous
22 Indication Blood Urea (Normal Range) Nitrogen Qualitative variable, Categorical
23 Blood Creatinine Quantitative variable, Continuous
24 Indication (Normal Range) Blood Creatinine Qualitative variable, Categorical

The binary dummy variable clinic change takes the value of 1 when there is a difference
between the admission and discharge clinics, and 0 to the opposite case. The past hospital-
ization variable indicates whether the patient was previously admitted to the same hospital
within the past 30 days. Most of the variables required a series of preprocessing steps
such as cleaning and filtering, using categorization techniques such as one-hot-encoding to
convert integer variables to binary ones. Some of the numerical variables required a data
normalization process, as each of the independent numerical variables take values on a
different range.
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3. Methodology
3.1. Support Vector Machines

The support vector machines [23] is a supervised machine learning methodology based
on statistical learning developed for both classification and regression tasks. The support
vector classification is used to separate the data into two classes by finding a hyperplane
that maximizes the distance between the two classes. The hyperplane is defined by a
small subset of data points, called support vectors (SV), identified through a minimization
procedure (see Figure 1).
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The initial dataset is split into two subsets: the training set (in-sample) and the testing
set (out-of-sample). Most of the data is used in the training process, where the separating
hyperplane is defined. In the testing set, the generalization ability of the model is tested on
the small part of the dataset that was set aside during the training step.

3.1.1. Kernel Methods

Real-life phenomena are often nonlinear and cannot be adequately described by linear
classifiers (hyperplanes). To solve this drawback, the SVM paradigm is paired with kernel
functions, projecting the data from the initial input space to a higher dimension space
(called feature space) where the two categories may be separated linearly (Figure 2). When
the kernel function is non-linear, the resulting SVM model is non-linear as well.

In this paper, we tested two kernel specifications: the linear kernel and the nonlinear
radial basis function (RBF) kernel. The linear kernel detects the separating hyperplane in
the original dimensional space of the data set, while the RBF displays the original data
set in a higher dimensional space. The mathematical representation of each kernel is
the following:

Linear: K (xi , xj) = xT
i xj (1)

RBF: K (xi , xj) = e(−γ‖xi−xj‖2) (2)

where γ is the internal hyper-parameter of the RBF kernel that needs to be optimized.
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3.1.2. Over-Fitting

A common issue encountered during the training step is overfitting, occurring when
the model “learns” to accurately describe the training data while performing worse in the
test set. This is referred to in the relevant literature as the “low bias—high variance” issue.
The issue is often treated using a cross-validation framework. Based on this technique, the
initial train dataset is split into k equal-sized folds (parts). The training step is performed
k times using a different fold each time for testing and the rest k-1 folds for training.
This procedure is repeated k times with the same set of parameters until all folds have
passed through the testing procedure. The performance of the model for the specific set of
hyperparameters is evaluated by the average accuracy over all k test folds. An example of
a three-fold cross-validation scheme is presented in Figure 3. In this study, we employ a
5-fold cross-validation procedure. Finally, the model’s generalization ability is tested using
its out-of-sample accuracy on the 10% of the data that were not used in the training step.
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value combination.
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3.1.3. Weights

Our unbalanced dataset contains five times more non-readmitted cases than read-
missions. We restore this imbalance by assigning inversely proportional weights to the
misclassification cost.

3.2. Random Forests

The random forests algorithm combines the concept of decision trees with the boot-
strapping and aggregating algorithm that is usually called bagging [24]. This method
addresses the problem of overfitting that may occur in decision trees by combining many
decision trees together into one setup called random forest.

Each tree uses a randomly selected replacement subsample of size n (equal to the
size of the initial dataset). The observations that were not selected in the bootstrapping
process form the out-of-bag (OOB) set. These are used to test the generalization ability of
the trained model. To reduce the dependence of the models on the training set, each tree
uses a randomly selected subset of the explanatory variables (features). Normally, we use
the square root of the total number of features. The system aggregates the classification of
each tree and retains the most popular class.

Datasets with imbalanced classes can be treated using weights, as in the SVM case, or
by under-sampling the majority class or oversampling the minority class, yielding balanced
datasets. The latter case is often termed the balanced random forest model.

3.3. Performance Metrics

In order to demonstrate the detailed forecasting performance of the machine learning
classification models, we produce the confusion matrix, as illustrated in Table 2. The
confusion matrix provides a detailed summary of the predictive ability of a model.

Table 2. Classification Results using a confusion matrix. True positives (TP)—number of samples
correctly classified as readmissions. True negatives (TN)—number of samples correctly classified as
non-readmissions. False positives (FP)—number of samples incorrectly classified as readmissions.
False negatives (FN)— number of samples incorrectly classified as non-readmissions.

Predicted

0 1

Actual

0 TN
(True Negatives)

FP
(False Positives)

1 FN
(False Negatives)

TP
(True Positives)

Based on the results of the confusion matrix, the following performance metrics can
be calculated to evaluate the models.

Recall =
TP

TP + FN
(3)

Accuracy =
TP + TN

TP + FN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

F1-Score = 2× Precision× Recall
Precision + Recall

(6)

The values of recall, accuracy, precision and F1-score range from 0 to 1. The higher
the values, the better the model. We chose the recall (sensitivity) to be used as the key
performance metric to evaluate and compare the ML models since there is a significant
imbalance between the two classes of the target variable. As far as the quality of services of
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a hospital is concerned, we are more interested in predicting the positive data class, i.e., the
cases of readmissions, than the negative cases. Therefore, the effort is focused on predicting
all true positives, while minimizing false negatives.

In classification problems, accuracy is considered a significant performance metric as
well. However, for unbalanced datasets, a high value of accuracy can be a misleading factor
since the models tend to choose the majority class—achieving extremely high accuracy but
at the same time having little success in predicting the minority class. This effect is often
called the “Accuracy Paradox” [25].

Precision is the fraction of true positive cases among all cases predicted to be positive,
while the F1-score is the harmonic mean of precision and sensitivity.

The area under the receiver operating characteristic curve (AUC) measures the proba-
bility that a model will rank a randomly selected positive instance higher than a randomly
selected negative instance. This metric ranges from 0.5 to 1.0. When the value tends to
be towards 1, it indicates a perfect ability to distinguish the different classes, while when
the value tends to be towards 0.5, it means that it does not have a better performance than
random guessing.

3.4. Empirical Results
3.4.1. SVM Models

We applied a coarse-to-fine grid search scheme on the training set in order to find the
optimal values of the hyperparameters that maximize the predictive ability of the SVM
models. We used a 5-fold cross-validation process to avoid over-fitting. Throughout the grid
search procedure, we took into account the unbalanced nature of our dataset by applying
weights to the misclassification cost. The procedure continues until the parameters of the
optimal model are identified.

Table 3 summarizes the results and depicts the hyperparameters of the two SVM
kernels that maximize the recall.

Table 3. Optimal parameters of SVM Models.

Parameter C Parameter γ

SVM Linear Kernel 0.06 —

SVM RBF Kernel 194.38 0.0001

The generalization ability of the trained model is evaluated using the testing dataset,
including 1118 observations, out of which 952 refer to non-readmitted patients and 166
to readmitted ones. As performance evaluators, we use the metrics of recall (sensitivity),
accuracy, precision, F1-score, and AUC. The results have been summarized in Tables 4–6.

Table 4. Confusion matrix of SVM Model with linear kernel.

Confusion Matrix (SVM, Linear Kernel)

Predicted

0 1

Actual

0 TN
732

FP
220

1 FN
68

TP
98
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Table 5. Confusion matrix of SVM Model with RBF Kernel.

Confusion Matrix (SVM, RBF Kernel)

Predicted

0 1

Actual
0 TN

730
FP
222

1 FN
67

TP
99

Table 6. Performance metrics of SVM Models.

SVM Linear Kernel
Recall Accuracy Precision F1-Score AUC

0.59 0.74 0.31 0.40 0.77
SVM RBF Kernel

Recall Accuracy Precision F1-Score AUC
0.60 0.74 0.31 0.41 0.76

Both SVM kernels produced similar results considering all performance metrics.

3.4.2. Random Forest Models

Similarly, to the procedure we followed concerning the SVM models, we apply a
coarse-to-fine grid search evaluation scheme on the training set in order to find the optimal
value of the hyperparameters that maximize the predictive capacity ability of the random
forest models. In this study, we limit our search to the optimal value of the total number of
decision trees.

The generalization ability of the trained models is tested using the out-of-bag (OOB) process.
Table 7 summarizes the results and depicts the optimal hyperparameters on recall

(Sensitivity) for the two random forest models that we tested.

Table 7. Optimal Parameters of random forest models.

Total Number of Decision Trees

Weighted Random Forest 25

Balanced Random Forest 730

The performance of the random forest models is summarized in Tables 8–10.

Table 8. Confusion matrix of weighted random forest model.

Confusion Matrix (Weighted Random Forest)

Predicted

0 1

Actual
0 TN

942
FP
10

1 FN
125

TP
41
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Table 9. Confusion matrix of balanced random forest model.

Confusion Matrix (Balanced Random Forest)

Predicted

0 1

Actual
0 TN

704
FP
248

1 FN
50

TP
116

Table 10. Performance metrics of random forest models.

Weighted Random Forest

Recall Specificity Accuracy Precision F1-Score AUC

0.25 0.98 0.88 0.80 0.38 0.74
Balanced Random Forest

Recall Specificity Accuracy Precision F1-Score AUC

0.70 0.74 0.73 0.32 0.44 0.78

The weighted random forest algorithm produced a very low sensitivity of 0.25. Thus,
the forecasting ability of this model with respect to the class of interest, readmissions, is
very low; it correctly predicts only 25% of all readmissions. The accuracy metric is high at
0.88, but this result is driven by the imbalanced nature of the dataset: The model forecasts
the more prevalent class quite well, no readmissions, and the sparse class poorly (25%),
the one of more interest, the actual readmissions. Nonetheless, the precision is high at
80%. Thus, of the cases that were forecasted as readmissions, 80% of those were correctly
predicted. The rate of false alarms (1-specificity) is 1%.

The balanced random forest algorithm achieves a significantly higher sensitivity of
0.70, i.e., it correctly predicts 7 out of 10 hospitalizations whose patients will need to
be readmitted. The overall accuracy is similar at 73%, while the precision is 32%. This
means that, of the cases that the model forecasts as readmissions (true positives + false
positives), 32% are actual readmissions (true positives). According to these results, this
model manages to improve the identification of readmission cases from 25% to 70%, at the
expense of a higher rate of false alarms (false positives). The false alarm rate in this case is
26% (1-specificity).

For the balanced random forest model, we estimated the impurity-based feature
importance to identify the individual effect level of each feature (Table 11). The importance
of a feature is computed as the (normalized) total reduction of the criterion brought by that
feature. It is also known as the Gini importance.

According to the results, the two most important features are the coded diagnosis
on admission and at discharge. They reveal that, as expected, some diseases (proxied
by their diagnosis) have a higher probability of readmission than others. The next one,
however, was quite intriguing: the clinic’s occupation rate—an operational variable—is the
third most important feature in readmission forecasting. It is more important than patient
age and length of stay. Thus, our innovative approach to include such variables as well
uncovers their importance in forecasting readmissions. The other two operational variables,
clinic’s number of doctors and clinic’s number of nurses, are somewhat important as they
are ranked in the middle of the list. This is a finding that should be further investigated
in a follow-up study and considered seriously by hospital management. The rest of the
feature list follows without any great surprises.
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Table 11. Feature importance ranking, the significance of each feature in the classification of the
random forest model in decreasing order.

Importance Feature

0.141501 ICD-10 Diagnosis at Discharge

0.129996 ICD-10 Diagnosis on Admission

0.059492 Clinic’s Occupancy Rate

0.056195 Hospitalization Outcome

0.05464 Blood Urea Nitrogen

0.054075 Patient Age

0.052316 Potassium

0.051854 Blood Sugar (Glucose)

0.048263 Length of Stay

0.043971 Blood Creatinine

0.042001 Sodium

0.030861 Discharge Clinic

0.03023 Clinic’s Number of Doctors

0.029398 Clinic’s Number of Nurses

0.024448 Indication (Normal Range) Blood Sugar

0.020731 Admission Clinic

0.020721 Patient Gender

0.020681 Past Hospitalization

0.019997 Indication (Normal Range) Blood Creatinine

0.019523 Indication (Normal Range) Potassium

0.016082 Indication Blood Urea (Normal Range)
Nitrogen

0.01222 Patient Transfer

0.01015 Indication (Normal Range) Sodium

0.00112 Clinic Change

3.4.3. Comparative Results

Figure 4 summarizes the results of the four forecasting methodologies used. The
SVM-linear and the SVM-RBF models have a sensitivity of 0.59 and 0.60, respectively. Thus,
they managed to successfully predict approximately 59% and 60% of readmission cases,
respectively. The existence of a large number of false positives is reflected in the precision
metric, which is quite low at 0.31. Thus, the SVM models exhibit good sensitivity but an
increased rate of false alarms with respect to readmissions.

The 88% accuracy of the weighted random forest model is high, but it is misleading
since it predicts only 25% of the readmissions, the minority class that we are interested in.

According to these results, the best model is the balanced random forest, with a
sensitivity of 0.70, which is far higher than the other three models. Also, in terms of the
precision metric, the balanced random forest models slightly outperform the two SVM ones.

Concerning the area under the curve (AUC), the performance of the models is similar
and consistent with previous results in the Greek and international literature (Figure 5).
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4. Conclusions and Future Work

Predicting patients’ readmissions to hospitals can improve the quality of services
provided by a health care system. It could also increase the effectiveness of initial treatment
at hospitals, saving a lot of lives. The study of readmission rates may enhance discharge
processes by providing better medication reconciliation and follow-up processes for dis-
charged patients. In this study, we focused on forecasting hospital readmissions based on
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real-world hospital data of inpatients. The object was to build a model to predict the risk of
patients’ readmission within 30 days of their index discharge.

To do this, we collected and combined a large dataset comprised of administra-
tive/demographic data, medical-clinical data, and operational data regarding hospitaliza-
tions in the General Hospital of Komotini, Greece, between 2018 and 2019. The dataset
included 11,172 cases, divided into two subsamples: in-sample and out-of-sample. Four
different machine learning techniques—support vector machine with linear kernel, sup-
port vector machine with RBF kernel, weighted random forest, and balanced random
forest—were trained using the in-sample dataset. For each ML model, the optimal values
of the respective hyperparameters were initially found using five-fold cross-validation and
out-of-bag methods to avoid overfitting. The generalization ability to unknown data was
evaluated for each model using the out-of-sample dataset in terms of the sensitivity and
AUC performance metrics.

The experimental results demonstrated that the balanced random forest model achieved
the best performance for identifying readmission cases. Although all models managed to
produce similar results in terms of the AUC metric, the balanced random forest was found to
have higher sensitivity and better generalization ability than the other proposed algorithms.
Our results are promising and the proposed algorithms could be applied to a larger sample
size from different source hospitals. Future work should also focus on applying other
machine learning algorithms using this real-world dataset.
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