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Abstract—Machinery prognostics has garnered increasing 

research attention due to its critical role in industries such as 

manufacturing and renewable energy. Data-driven techniques, 

particularly recurrent neural networks (RNNs) and 

convolutional neural networks (CNNs), have shown promise in 

accurately extracting features for estimating the remaining 

useful life (RUL) of machinery. However, the non-stationary 

and non-linear nature of machinery signals poses significant 

challenges to achieving accurate prognostics. This study 

introduces a novel hierarchical recurrent neural network 

method called hierarchical long short-term memory (H-LSTM) 

that is based on the long short-term memory (LSTM) model. H-

LSTM is meant to address the problems with traditional RNNs 

that only use the previous time step for sequential data learning. 

It incorporates a hierarchical structure, enabling influence from 

multiple preceding time steps at each current step. 

Experimental evaluation on the FEMTO benchmark bearing 

dataset under varying operational conditions demonstrates that 

the proposed H-LSTM approach achieves up to fourfold 

improvements in performance compared to state-of-the-art 

methods, particularly for low signal-to-noise ratio (SNR) 

signals. 

Keywords— Machinery prognostics, deep learning, recurrent 

neural networks, remaining useful life 

I. INTRODUCTION  

The prediction of the remaining useful life (RUL) of 
rotating machinery is crucial for enhancing operational 
efficiency and preventing unexpected failures in various 
applications, including manufacturing, wind turbines, and 
space exploration  [1], [2]. Predictive approaches for RUL 
estimation are broadly categorized into model-based and data-
driven methods. Model-based techniques, such as particle 
filters, Kalman filters, and unscented filters, rely on 
mathematical models to describe equipment degradation but 
often require expert knowledge and struggle with non-linear 
and complex degradation patterns [3]. In contrast, data-driven 
approaches, leveraging machine learning and deep learning, 
have gained prominence due to their ability to automatically 
estimate equipment lifespan with higher reliability and 
reduced dependence on domain expertise [4], [5].  

Convolutional neural networks (CNNs) have emerged as 
effective data-driven techniques for extracting spatial features 
in prognostics and health management (PHM) tasks. Ren et al. 
[6] demonstrated the capability of CNNs to analyze bearing 

signal degradation and predict RUL, highlighting their 
efficiency in spatial feature learning. Enhancements to CNN-
based approaches include incorporating statistical analyses, as 
proposed by Majali et al. [7] where time and spectral domain 
features are utilized during CNN training to improve lifespan 
prediction accuracy. Similarly, statistical feature extraction 
followed by autoencoder-based selection has been proposed 
by Ren et al. [3] to refine input features for CNNs. Despite 
these advancements, the reliance on preliminary statistical 
preprocessing steps may exclude non-stationary 
characteristics and increase computational demands [8]. 
Furthermore, conventional CNN approaches often neglect 
temporal correlations in degradation phases. Instead, they 
focus on Euclidean distance-based spatial feature extraction 
within grid structures, which makes it more useful for grid 
structure applications. 

The gradual degradation of machinery during operation 
necessitates the analysis of temporal interdependencies 
between various conditions to predict the RUL. Recurrent 
neural networks (RNNs) are well-suited for capturing such 
temporal dependencies; however, issues like vanishing or 
exploding gradients during backpropagation hinder their 
performance [9]. Advanced RNN variants, such as long short-
term memory (LSTM) and gated recurrent units (GRU), 
mitigate these challenges by utilizing gating mechanisms to 
retain relevant information. Studies such as Mao et al. [10] 
have demonstrated the efficacy of LSTM in temporal feature 
extraction for RUL prediction, while Chen et al. [11] 
incorporated empirical mode decomposition (EMD) as a 
preprocessing step to enhance LSTM's ability to learn from 
noisy signals. Other advancements include adversarial 
learning to filter noise and bidirectional LSTM (Bi-LSTM) to 
capture both forward and backward dependencies, as well as 
GRU-based architectures with health indicator frameworks 
[12]. Despite these innovations, limitations persist: EMD may 
introduce mode aliasing, adversarial approaches face 
challenges with imbalanced normal and fault state samples, 
and the sequential nature of LSTM and GRU models risks 
losing critical features due to reliance on stepwise data 
dependencies. These constraints underscore the need for 
further improvements in temporal modeling for machinery 
prognostics. 

To address these challenges, this paper proposes a variant 
of the traditional LSTM named hierarchical LSTM (H-



LSTM), designed to learn various hidden patterns in 
machinery signals. The algorithm gets updated from an input 
vector of time data samples and the hidden states of an 
arbitrary number of subordinate units instead of relying only 
on one preceding unit in the conventional structure, enabling 
the formation of more complex network topologies. Each 
LSTM unit can thus incorporate information from multiple 
subordinate units, facilitating more robust feature learning. 
The proposed method was evaluated using the PRONOSTIA 
dataset, which comprises seventeen distinct bearings 
operating under various conditions. In this dataset, the 
bearings are subjected to different operational scenarios and 
run until failure, providing real-world performance data for 
evaluation.  

This paper is structured as follows: Section 2 includes the 
methods and materials adopted; Section 3 delves into the 
methodology. Section 4 presents the results of the proposed 
study. Finally, Section 5 concludes the proposed approach. 

 

II. METHODS AND MATERIALS 

A. Data Description 

The PRONOSTIA dataset is adopted for the evaluation 
purpose of this study [13]. This dataset consists of 17 run-to-
failure experiments involving bearings under three distinct 
operating conditions, as detailed in Table I. To accelerate the 
degradation of the bearings, a radial force exceeding their 
maximum dynamic load was applied, leading to their failure 
within a few hours. During the tests, the bearing speed was 
kept constant. Data was collected using two accelerometers, 
which ensured precise measurement of bearing vibrations. A 
critical state, indicating bearing failure, is defined by a 
vibration signal exceeding 20 g, beyond which the bearing is 
considered non-operational. 

The vibration data was sampled at a rate of 25,600 samples 
per second, providing high-resolution observations. Each 
sample, covering a duration of 0.1 seconds, consists of 2,560 
data points. Data was recorded at regular 10-second intervals 
to capture consistent and accurate information throughout the 
experiments. 

TABLE I.  CHARACTERISTICS OF THE PRONOSTIA DATASET [13] 

Characteristics 1 2 3 

Load (N) 4000 4200 5000 

Speed (rpm) 1800 1650 1500 

Training B1_1 

B1_2 

B1_3 

B2_1 

B2-_2 

B2_3 

B3_1 

B3_2 

 

Validation/ Testing B1_4 

B1_5 

B1_6 

B1_7 

B2_4 

B2_5 

B2_6 

B2_7 

B3_3 

  

B. Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) can handle input 
sequences of varying lengths by recursively applying a 
transition function to a hidden state vector ℎ𝑡. At each time 
step 𝑡, the hidden state ℎ𝑡 is updated based on the input vector 
𝑥𝑡 at the current step and the hidden state from the previous 
step ℎ𝑡−1. Typically, the transition function in an RNN 
consists of an affine transformation followed by a pointwise 
nonlinearity, such as the hyperbolic tangent function, as 
expressed in Equation 1: 

ℎ𝑡 = tanh⁡(𝑊𝑥𝑡 +𝑈ℎ𝑡−1 + 𝑏) (1) 

However, a significant issue with RNNs using this 
transition function is that, during training, certain components 
of the gradient vector may either explode or vanish over long 
sequences [14]. 

C. Proposed Hierarchical LSTM 

One limitation of the RNN and its variants, such as LSTM 
and GRU architectures, is their reliance on strictly sequential 
information flow. To address this, we introduce the H-LSTM 
structure, which allows for more intricate network topologies. 
In this model, each LSTM unit can incorporate information 
from multiple subordinate units, enabling the system to 
capture richer hierarchical dependencies. Like standard 
LSTM units, each H-LSTM unit (indexed by j) comprises 
input and output gates  𝑖𝑗  and 𝑜𝑗 , along with a memory cell 𝑐𝑗  
and hidden state ℎ𝑗 . The key distinction between conventional 

LSTM and H-LSTM units lies in how the gating vectors and 
memory cell updates depend on the states of potentially 
multiple child units. Unlike standard LSTMs, which have a 
single forget gate, each H-LSTM unit employs a unique forget 
gate 𝑓𝑗𝑘 for each child 𝑘 , allowing selective integration of 

information from different child units. Figure 1 illustrates the 
internal structure of the proposed H-LSTM. 

 

Fig. 1. Internal sturcture of H-LSTM 

As with conventional LSTMs, each H-LSTM unit receives 
an input vector 𝑥𝑗 , which in this context represents a specific 

point in the life cycle of the machinery being modelled. The 
time input 𝑥𝑗  varies depending on the topology of the tree. Let 

(𝐶𝑗) denote the collection of children for node 𝑗 in a given 

tree. The H-LSTM transition equations are formulated as 
follows: 

ℎ̃𝑗 =⁡ ∑ ℎ𝑘
𝑘∈𝐶(𝑗)

 
(2) 

𝑖𝑗 = 𝜎(𝑊(𝑖)𝑥𝑗 +𝑈(𝑖)ℎ̃𝑗 + 𝑏(𝑖)) (3) 

𝑓𝑗𝑘 = 𝜎(𝑊(𝑓)𝑥𝑗 +𝑈(𝑓)ℎ𝑘 + 𝑏(𝑓)) (4) 

𝑜𝑗 = 𝜎(𝑊(𝑜)𝑥𝑗 + 𝑈(𝑜)ℎ̃𝑗 + 𝑏(𝑜)) (5) 

𝑢𝑗 = 𝑡𝑎𝑛ℎ(𝑊(𝑢)𝑥𝑗 + 𝑈(𝑢)ℎ̃𝑗 + 𝑏(𝑢)) (6) 



𝑐𝑗 = 𝑖𝑗 ⁡⨀𝑢𝑗 + ∑ 𝑓𝑗𝑘⨀𝑐𝑘
𝑘∈𝐶(𝑗)

 
(7) 

ℎ𝑗 = 𝑜𝑗 ⁡⨀⁡tanh⁡(𝑐𝑗) (8) 

In these equations, 𝑘 ∈ 𝐶(𝑗) denotes a child of node 𝑗. Each 

parameter matrix encodes relationships between the input 

vector 𝑥𝑗 , the hidden states of the child units ℎ𝑘 , and the 

components of the H-LSTM unit. In the case of a dependency 

tree application, the model can learn parameters such as 𝑊(𝑖) 

that allow the input gate 𝑖𝑗  to open (i.e., approach values close 

to 1) when an important feature is presented, or close (i.e., 

approach values close to 0) when the input is relatively 

insignificant or noisy. 
This flexible gating mechanism enables the model to 

integrate information in a more refinement manner, allowing 
the H-LSTM to better handle complex, hierarchical data 
structures. 

 

III. PROPOSED FRAMEWORK BASED ON H-LSTM 

This section discusses the proposed framework based on 
the H-LSTM, which comprises four interconnected stages: 
data acquisition, data processing, feature learning, and RUL 
estimation. 

Initially, the raw vibration signal from the monitored 
bearings was sampled at a frequency of 25.6 kHz. The raw 
signal was then divided into segments of equal length, with 
each segment containing 2,560 instantaneous accelerometer 
readings. Subsequently, the standard deviation (Std) was 
calculated for each segment, representing each window with a 
single value corresponding to its standard deviation. This 
process not only mitigates the low SNR commonly associated 
with complex machinery signals but also facilitates faster 
model convergence. After segmentation and the extraction of 
Std, the data is normalized using the min-max scaling 
technique. This normalization step is essential for adjusting 
the data range, which enhances the convergence speed of the 
model during training. For this experiment, the first three sets 
from the first and second operational conditions listed in Table 
1 were used for training, while the remaining sets were 
reserved for testing. This approach maintains an 80-20 split 
between training and testing data, ensuring robust evaluation 
of the proposed method. 

The data is subsequently input into the proposed H-LSTM 
model. However, the selection of hyperparameters is a critical 
aspect of the training process. Poorly chosen hyperparameters 
can lead to suboptimal model performance, underscoring the 
importance of their careful tuning during training. In this study 
each H-LSTM cell contains 32 subordinate cells, each has its 
independent memory cell, update gate, and set of weights. 
During backpropagation, the model's weights are adjusted 
after quantifying the error of each training epoch of the 30 
epochs, ensuring that the model parameters are refined 
iteratively. Stochastic Gradient Descent has been selected as 
the optimizer, with a learning rate of 0.01, as this 
configuration demonstrated optimal performance for the 
model.  

On the other hand, since the hardware specifications are 
crucial to ensure efficient handling of large datasets and 
minimize the training time for iterative experiments. This 

experiment is conducted on a workstation with an Intel Core 
i7 and 16GB of RAM.  

Finally, to evaluate the performance of the model, the 
mean squared error (MSE) is applied. 

IV. RESULTS AND DISCUSSION 

This section presents the results of the proposed study. 
Initially, the procedure was repeated nine times, each targeting 
a different bearing set, namely B1_4, B1_5, B1_6, B1_7, 
B2_4, B2_5, B2_6, B2_7, and B3_3. This approach adheres 
to the 80-20 percent training testing procedures discussed in 
the previous section. 

Initially, the H-LSTM is trained, and the error is 
quantified. Table II presents the MSE evaluation results of the 
H-LSTM approach.  

Furthermore, to comprehensively evaluate the proposed 
approach, the experiment was replicated using traditional 
LSTM and GRU models under identical configurations. The 
hyperparameters of the LSTM and GRU networks include 64 
LSTM cells, with a dropout rate of 0.3 applied to mitigate 
overfitting. The training process remained consistent with that 
of the prior experiment. As displayed in Table III, the 
proposed H-LSTM model achieved significantly superior 
results compared to the conventional LSTM and GRU models, 
underscoring its advantages in this application. 

Comparative analysis shows that the proposed model does 
better than traditional LSTM and GRU methods on all test 
bearing sets. However, it can be noticed that the performance 
of the proposed H-LSTM method is more significant on 
bearing sets with very low-SNR bearing sets like B2_4, B2_5, 
B2_6, and B2_7. This highlights the model's capability to 
effectively eliminate the irrelevant temporal characteristics 
depicted in the vibration signal. At the same time, the 
proposed method can be less significant in performance when 
the observed trend has high SNR and obvious failure threshold 
such as the case in test set B3_3.   

TABLE II.  EVALUATION RESULTS OF THE PROPOSED METHOD FOR 

THE FIRST OPERATIONAL CONDITION SETTINGS 

Set B1_4 B1_5 B1_6 B1_7 

MSE 0.025 0.023 0.02 0.019 

TABLE III.  EVALUATION RESULTS OF THE PROPOSED METHOD FOR 

THE SECOND AND THIRD OPERATIONAL CONDITION SETTINGS 

Set B2_4 B2_5 B2_6 B2_7 B3_3 

MSE 8.9 ∗ 10−3 8.7 ∗ 10−3 6 ∗ 10−3 7 ∗ 10−2 0.024 

 

TABLE IV.  RESULTS OF THE PROPOSED METHOD COMPARED TO OTHER 

STUDIES EVALUATED ON THE PRONOSTIA DATASET 

Bearing set LSTM GRU H-LSTM 

B1_4 0.083 0.053 0.025 

B1_5 0.354 0.185 0.023 

B1_6 0.0599 0.076 0.02 

B1_7 0.1 0.08 0.019 

B2_4 0.164 0.119 8.9 ∗ 10−3 

B2_5 0.047 0.0255 8.7 ∗ 10−3 

B2_6 0.719 0.6461 6 ∗ 10−3 

B2_7 0.259 0.26 7 ∗ 10−2 

B3_3 0.222 0.187 0.024 

 

To further demonstrate the effectiveness of the proposed 
method, recent state-of-the-art approaches were reviewed to 



provide a basis for comparison with our results. In [15], a 
CNN-multi-layer perceptron (MLP) approach was introduced, 
combining influential features extracted from both 1D time-
domain and 2D grid structures to enhance RUL prediction. In 
contrast, [16], proposed a multi-scale CNN model specifically 
for bearing RUL prediction, focusing on the impact of spatial 
characteristics in machinery prognostics tasks. Additionally, 
[17] investigated a bearing prognostics method based solely 
on LSTM, alongside a comparative approach utilizing Bi-
LSTM, to illustrate the potential benefits of Bi-LSTM in this 
context, denoted as 27.a and 27.b respectively. Table 4 lists 
the MSE results of the proposed H-LSTM and the results of 
the discussed studies. 

The results clearly indicate that the proposed study 
outperforms existing approaches, underscoring the 
effectiveness of the H-LSTM model in handling machinery 
prognostics tasks. This superior performance suggests that the 
H-LSTM framework offers enhanced capabilities in capturing 
critical features and addressing the complexities associated 
with time-series data in comparison to conventional models. 
Consequently, these findings highlight the potential of the H-
LSTM approach as a robust solution for improving accuracy 
and reliability in machinery condition monitoring and RUL 
prediction applications. 

MSE [15] [16] [17].a [17].b H-LSTM 

Bearing1_4 0.017 0.157 0.18 0.142 0.025 

Bearing1_5 0.035 0.1 0.452 0.44 0.023 

Bearing1_6 0.1 0.1156 0.522 0.42 0.02 

Bearing1_7 0.042 0.127 0.739 0.368 0.1 

Bearing2_4 - - 0.06 0.04 𝟖. 𝟗
∗ 𝟏𝟎−𝟑 

Bearing2_5 - - 0.36 0.426 𝟖. 𝟕
∗ 𝟏𝟎−𝟑 

Bearing2_6 - - 0.0529 0.050 𝟔 ∗ 𝟏𝟎−𝟑 

Bearing2_7 - - 0.1216 0.002 𝟕 ∗ 𝟏𝟎−𝟐 

 

V. CONCLUSION 

In recent years, the critical role of machinery prognostics 
across various applications has garnered the attention of 
research. Nonetheless, existing data-driven methods face 
challenges in capturing influential temporal dynamics over 
extended periods. Moreover, prevalent temporal models such 
as LSTM and GRU often struggle under complex operating 
conditions, especially in environments with low SNR. This 
paper introduced a novel temporal learning approach that 
incorporates gate information from a set number of preceding 
cells into the learning process at each time step 𝑡 . This 
approach effectively mitigated the noise learning while 
significantly improving lifespan estimation accuracy. 
Experiments on a benchmark-bearing dataset under diverse 
operational settings validate the proposed method, 
demonstrating up to four times better results on a signal of low 
SNR. Future research will explore the inclusion of spatial 
features to further advance prognostic capabilities. That’s in 
addition to demonstrating its applicability in other rotating 
machinery applications. 
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