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Abstract— Machinery prognostics facilitates predictive 

maintenance, minimizing downtime and operational expenses. 

Nonetheless, challenges persist due to low signal-to-noise ratio 

and non-stationary signals. Spatiotemporal feature extraction 

through recurrent and convolutional neural networks has 

shown promise in addressing these challenges. Nevertheless, the 

traditional convolutional learning algorithm, which is based on 

Euclidean distances between the learned features, can increase 

the model uncertainty. Moreover, traditional feature fusion 

techniques can weaken the model's performance. This study 

proposes a novel inferential spatiotemporal approach. Two 

independent networks based on long short-term memory and a 

graph convolutional network are designed to extract the 

influential spatiotemporal features. Then an adaptive neuro-

fuzzy inferential network is introduced to calculate the 

remaining useful life based on the extracted spatiotemporal 

features. Experimental validation using a benchmark bearing 

dataset under various operational conditions demonstrates that 

the proposed approach outperforms existing state-of-the-art 

methods by 59.34%. 

Keywords— predictive maintenance; machinery prognostics; 

graph convolutional networks; remaining useful life prediction 

I. INTRODUCTION

The accurate prediction of the Remaining Useful Life 
(RUL) of rotating machinery is critical for optimizing 
operational efficiency and mitigating unexpected failures 
across various applications, including manufacturing systems, 
wind turbines, and vehicles [1], [2]. Prognostic approaches to 
RUL estimation are generally classified into model-based and 
data-driven methods. Model-based approaches that are based 
on techniques such as particle filters, Kalman filters, and 
unscented filters, utilize mathematical models to characterize 
equipment degradation. Nevertheless, these methods often 
demand substantial expert knowledge and face challenges 
when addressing nonlinear and complex degradation 
dynamics [3]. Conversely, data-driven approaches, which 
leverage machine learning and deep learning algorithms, have 
received significant attention due to their capability 
to 

autonomously predict equipment lifespan with greater 
reliability while reducing reliance on domain expertise [4], [5]. 

Recurrent neural networks (RNN) and convolutional 
neural networks (CNN) have proven their effectiveness in 
machinery prognostics applications. However, the progressive 
degradation of machinery during operation necessitates the 
evaluation of temporal interdependencies which is more suited 
to RNN. Nevertheless, their performance is often constrained 
by issues such as vanishing and exploding gradients during 
backpropagation [6]. Advanced RNN architectures, including 
Long Short-Term Memory (LSTM) and Gated Recurrent Unit 
(GRU), address these limitations by employing gating 
mechanisms to preserve important information. For instance, 
studies by Mao et al. [7] have demonstrated the effectiveness 
of LSTMs in extracting temporal features for RUL prediction 
of bearings. While Chen et al. [8] incorporated Empirical 
Mode Decomposition (EMD) as a preprocessing step to 
further enhance the ability of LSTMs to learn with 
characteristics of low signal-to-noise ratio (SNR). Additional 
advancements include the application of adversarial learning 
for noise suppression and Bidirectional LSTMs (Bi-LSTMs) 
for capturing both forward and backward dependencies [9]. In 
[10], a GRU-based architecture integrated as a machinery 
health indicator is proposed. Despite the effectiveness of 
advanced RNN techniques, false sensory readings and poor 
SNR can mislead the model during training, potentially 
resulting in the loss of critical features.  

CNN on the other hand, learns the sensory data based on 
the grid structure of the influential spatial features in the 
feature space. Ren et al. [11] employed a CNN architecture to 
predict the RUL of bearings under specific operational 
conditions. While to expedite the learning process of CNN 
models, Majali et al. [6] introduced a signal preprocessing 
stage prior to training, where the vibration signals were 
statistically analyzed across time domain and frequency 
spectrum. A similar preprocessing stage was adopted in [12], 
though employing LeNet-5 convolutional network to increase 
the robustness of the CNN model in learning the relevant 
effective characteristics [13]. Despite the achieved results, 



 

 

relying on a limited set of statistical features can lead to less 
accurate predictions and the omission of vital information. To 
address this limitation, the authors of [4] utilized an 
autoencoder (AE) to identify and focus on the most critical 
features during training. 

The integration of global and local features from lower-
level layers known as multi-scale CNN (CNN) has been 
demonstrated effective in overcoming limitations of signal 
preprocessing stage and enhance the feature extraction 
process. In this context, the authors of [14] proposed a 
MSCNN in which the features of both convolutional and 
pooling layers are leveraged for the prognostic process. The 
authors of [15] introduced a dilated MSCNN to incorporate 
features from various time steps. From the analysis of the 
previous studies, two key observations can be listed: (1) 
Convolutional networks primarily excel at extracting the 
spatial features of acquired machinery signals but may 
overlook temporal dependencies. (2) In spatial learning, 
convolutional mechanisms rely on Euclidean distances 
between spatial instances, which are particularly effective in 
grid-structured data applications such as images and computer 
vision.  

Consequently, spatiotemporal analysis has proven to 
alleviate the performance of either temporal or spatial 
approaches. For instance, Zhao et al. [16] proposed a temporal 
convolutional approach for spatiotemporal feature learning. 
The authors demonstrated that spatiotemporal feature 
extraction can alleviate the accuracy of estimated RUL values 
by 10-20%. Qiao et al. [17] proposed another spatiotemporal 
approach based on Conv-LSTM. It aims to learn both temporal 
and spatial features concurrently by employing convolution 
operations to replace matrix multiplication within the LSTM 
unit, focusing on data changes over time steps. However, such 
an approach is computationally expensive. Moreover, the 
limitation of traditional convolutional operations which relies 
on Euclidean distances still persist.  

Thus [18] proposed a spatiotemporal prognostic approach 
based on a multi-scale graph convolutional network 
(MSGCN). The aim of the GCN is to avoid reliance on 
Euclidean distances while preserving the reliability of spatial 
characteristics. The temporal dependencies and fault 
observations are detected using the sliding windowing 
technique, while the spatial relations are learned by the GCN. 
A similar graph structure approach but based on TCN for 
temporal learning is introduced in [19].  On the other hand, 
Hua et al. [20]  proposed another spatiotemporal approach 
based on GCN for spatial learning followed by GRU for 
temporal learning. While in [21], a Bi-LSTM model is 
employed to extract temporal features, followed by GCN to 
predict the RUL of the bearing. While these methods 
demonstrate notable effectiveness, the sequential topology of 
the network introduces a critical dependency on the 
performance of the initial network rather than the achieved 
RUL values. As during backpropagation, the weights and 
parameters of the initial network remain unaffected by the 
optimization processes of the subsequent network.  

In the context of the above, this paper proposes a 
spatiotemporal approach based on LSTM and GCN. However, 
to avoid the influence of the performance of one network on 
the other, each network is trained independently and in a 
parallel manner. While a novel adaptive neuro-fuzzy inference 
system (ANFIS) is proposed to estimate the final RUL based 
on the inference of the learned temporal and spatial features at 

each time step. The proposed approach is evaluated using the 
PRONOSTIA public dataset [22], which comprises 17 full 
bearings’ lifecycle datasets under varying operational 
conditions.  

The structure of this paper is as follows: Section II describe 
the experimental setup of the employed dataset. Section 3 
describes the detailed methodology. Section 4 presents the 
experimental results and analysis. Finally, Section 5 concludes 
the study 

II. METHODS AND MATERIALS 

A. Data Description 

The PRONOSTIA dataset [22] serves as a benchmark in 
the field of machinery prognostics and is frequently used in 
the state-of-the-art for evaluation. This dataset comprises 17 
run-to-failure experiments involving bearings subjected to 
three distinct operating conditions, as outlined in Table I. To 
expedite the degradation process, a radial force exceeding the 
maximum dynamic load capacity of the bearings was applied, 
leading to failure within a few hours. Throughout the tests, the 
rotational speed of the bearings was maintained at a constant 
value. Data acquisition was performed using two 
accelerometers, enabling precise measurement of bearing 
vibrations. A critical failure state was defined as the point 
where the vibration signal exceeded 20 g, beyond which the 
bearing was classified as non-operational. 

The vibration data was sampled at a frequency of 25,600 
samples per second, ensuring high-resolution observations. 
Each sample covered a duration of 0.1 seconds, consisting of 
2,560 data points. Data recording occurred at regular 10-
second intervals, ensuring consistent and accurate monitoring 
of the degradation process throughout the experiments. 

TABLE I.  CHARACTERISTICS OF THE PRONOSTIA DATASET [22]  

Characteristics 1 2 3 

Load (N) 4000 4200 5000 

Speed (rpm) 1800 1650 1500 

Training B1_1 
B1_2 
B1_3 

B2_1 
B2-_2 
B2_3 

B3_1 
B3_2 

 

Validation/ Testing B1_4 
B1_5 
B1_6 
B1_7 

B2_4 
B2_5 
B2_6 
B2_7 

B3_3 

III. PROPOSED FRAMEWORK 

This section outlines the proposed framework which is 
structured into four interconnected stages: data processing, 
feature learning, feature mapping, and RUL prediction. In the 
initial stage, raw vibration signals from the monitored bearings 
were sampled at a frequency of 25.6 kHz. The raw signals 
were segmented into equal-length windows, with each 
segment comprising 2,560 instantaneous accelerometer 
readings. The standard deviation (Std) of each segment was 
then computed, resulting in a single representative value for 
each window. This approach not only addresses the SNR but 
also facilitates the model training process and enhance the 
convergence rate. Following segmentation and feature 
extraction, the data was normalized using the min-max scaling 
technique. 

Next, for the feature learning stage, the LSTM network 
architecture is utilized to learn the temporal patterns of the 
acquired vibration signal of the test bearings. During this 
stage, the LSTM is designed to encounter the influential 



 

 

features at different time steps using the internal memory cell 
and output gates. The proposed temporal network is 
configured as a one layer, however, with 32 LSTM cells in a 
sequential manner. In which the input time sample is trained 
using 32 LSTM cells, each has its independent memory cell, 
update gate, and set of weights, before being encountered as 
an extracted features. This has proven to effectively eliminate 
the depicted noise in the signal and achieve higher 
performance. During backpropagation, the model's weights 
are adjusted after quantifying the error of each training epoch 
of the 100 epochs, ensuring that the model parameters are 
refined iteratively. Adam has been selected as the optimizer, 
with a learning rate of 0.01.  

On the other hand, the spatial features are being learned 
using the proposed GCN. At first, the bearing signal is 
segmented according to the calculated Std value. Afterwards, 
each window value is considered as a node feature within the 
designed graph structure. While the edges of the graph capture 
the interconnections among the graph nodes. Formally, in this 
study, the proposed graph can be characterized as an 
undirected graph and it can mathematically be expressed as:  

G=(V,E,A) (1) 

V represents the set of nodes, where �� ∈ �, and similarly 

E represents the set of edges, where ��� � ��� , ��
 ∈ � which 

imply the connectivity of nodes ��  and �� . Afterwards, the 

adjacency matrix of the graph is introduced to represent the 
connection structure of the nodes in which: 

��� �  �1, ���  ∈ �
0, ���  ∉ �  (2) 

Afterwards, each node ��  integrates its own feature �� 
with the features of its neighbouring nodes �� to compute a 

new representation. The aggregated features are then passed 
through a nonlinear activation function to generate the final 
output. The process can be entirely be expressed as follows: 

������ �  ���� ��/����� ��/����� ���� (3) 

��  is equal to � ! ", where A is the adjacency matrix A 

with self-loops (identity matrix I). Also, ��  is the degree 

matrix with corresponding to �� . For this graph structured 
network, 16 channels are configured to process the data of 
each node and aggregate it to the neighboring nodes. 

Moreover, in this study, the ��#�  and  �#� are randomly 
initiated and they are get optimized during the network 
training as it is conducted over 100 epochs, allowing the 
network to converge to an optimal global minimum. 

Afterwards, the extracted spatial and temporal features of 
both networks are then fed to the configured ANFIS, defined 
as the feature mapping stage. By leveraging the IF-THEN 
rules of the fuzzy logic system in conjunction with the 
backpropagation mechanism of the neural network, the system 
effectively calculates the RUL based on multi-dimensional 
feature representations at each time step. In this scenario, the 
input matrix of the ANFIS model is of 2 dimensions and the 
employed membership functions is selected to be Gaussian to 
facilitate the representation of intricate and non-linear 
relationships. The inference process utilizes the Sugeno 
model, enabling the efficient generation of accurate output 
functions through weighted average computations.  

Finally, the overall accuracy of the proposed model is 
quantified using the root mean square error which is described 
as: 

$%&� �  '∑ �)�*+���,+� �-.+/0
1  (4) 

Where 2���� is the output of the model for the 345 sample, 
6�  represents the matching label, and 7 represents the length 
of the entire data vector. 

IV. RESULTS AND DISCUSSION 

This section discusses the findings of the proposed study. 
For this study, the first three bearing sets from the first and 
second operational conditions, as specified in Table I, were 
used for training, while the remaining sets were reserved for 
testing. This dataset allocation ensured an 80-20 split between 
training and testing data, providing a robust evaluation 
framework for the proposed method. Thus, the procedure was 
conducted nine times, each focusing on a distinct bearing set: 
B1_4, B1_5, B1_6, B1_7, B2_4, B2_5, B2_6, B2_7, and 
B3_3.  

Initially, the extracted Std values for each window were 
input into the GCN to enable spatial learning while preserving 
temporal mapping. The network weights were initialized 
randomly and updated iteratively based on the calculated 
mean squared error (MSE). Figure 1 is a box plot that 
illustrates the MSE values over 100 epochs for all test bearing 
sets used in this study. Similarly, the temporal network was 
trained using the same procedure, with Figure 2 depicting the 
MSE values recorded after each epoch.  

 

Fig. 1. MSE values of the proposed spatial network  



 

 

 

Fig. 2. MSE values of the proposed temporal network 

It can be noted that in Figure 1, the MSE values stay almost 
constant across all of the operational sets. This shows that this 
method works well for capturing the spatial characteristics, 
which can be very similar for the same experimental setup and 
bearing manufacturing. The MSE values in Figure 2 change 
noticeably between operational conditions and slightly within 
the same operational condition. This shows the temporal 
dynamics that happened and how well the system learned to 
capture and learn these dynamics until they reached a global 
minimum. This emphasizes the critical importance of 
spatiotemporal analysis, which encounters both characteristics 
of the extracted features in the estimation of the RUL values. 

Finally, the ANFIS network was trained to estimate the 
RUL by leveraging the inferential relationships derived from 
the extracted spatial and temporal features. Table II 
summarizes the RMSE results obtained by the ANFIS network 
for the first operational condition, while Table III presents the 
corresponding RMSE results for the second and third 
operational conditions. 

TABLE II.  EVALUATION RESULTS OF THE PROPOSED METHOD FOR THE 

FIRST OPERATIONAL CONDITION SETTINGS 

Test set B1_4 B1_5 B1_6 B1_7 

RMSE 0.0394 0.0571 0.025 0.015 

TABLE III.  EVALUATION RESULTS OF THE PROPOSED METHOD FOR THE 

SECOND AND THIRD OPERATIONAL CONDITION SETTINGS 

Test set B2_4 B2_5 B2_6 B2_7 B3_3 

RMSE 0.022 0.046 0.01 0.020 0.022 

 

To further evaluate the effectiveness of the proposed 
method, recent state-of-the-art techniques were reviewed to 
establish a comparative benchmark for the obtained results. 
Zhu et al.  [14] employed an MSCNN-based approach to 
predict the RUL of bearings in the PRONOSTIA dataset. This 
study transformed the one-dimensional signal array into a two-
dimensional matrix to leverage the grid structure of spatial 
features during MSCNN training. Similarly, Huang et al. [23] 
integrated spatial and temporal features using a multi-layer 
perceptron (MLP) to estimate bearing lifespan values. 
Furthermore, Rathore et al. [24] proposed a prognostic 
framework utilizing LSTM combined with an attention 

mechanism to identify the most critical features and address 
the low SNR of the monitored signals.  

TABLE IV.  EVALUATION RESULTS OF THE PROPOSED AND STATE-OF-
THE-ART METHODS 

Set/ 

RMSE 
[14] [23] [24] Proposed 

method 

B1_4 0.515 0.39 0.0969 0.0394 

B1_5 0.366 0.32 0.2499 0.0571 

B1_6 0.480 0.34 0.2414 0.025 

B1_7 0.170 0.35 0.2636 0.015 

B2_4 - - 0.0799 0.022 

B2_5 - - 0.1678 0.046 

B2_6 - - 0.0761 0.01 

B2_7 - - 0.0224 0.020 

B3_3 - - 0.0209 0.022 

 

Table IV presents the RMSE values of all reviewed studies 
alongside those of the proposed method. The results 
demonstrate that the proposed method significantly 
outperforms the existing approaches, underscoring the 
effectiveness of the multi-scenario feature space designed with 
graph neural networks and temporal networks. This advantage 
is attributed to the inference capabilities across multi-scenario 
data, which surpass traditional fusion strategies such as MLP. 

V. CONCLUSION 

Recent advancements have demonstrated the efficacy of 
deep learning techniques in machinery prognostics. However, 
conventional approaches, such as CNNs, may constrain the 
accuracy of RUL predictions due to their reliance on 
Euclidean distances between features in the latent space. 
Additionally, the low SNR and non-stationary nature of 
machinery signals can hinder the ability of deep learning 
models to effectively capture critical features. To address 
these challenges, this paper introduced a multi-scenery 
spatiotemporal method that employed a graph-based structure 
for spatial feature representation, circumventing the 
limitations of grid-based learning, and utilized LSTM 
networks for temporal feature extraction. Subsequently, an 
ANFIS was applied to infer the lifespan of the target 
machinery at each time step within the multi-scenery space. 
Experimental results on a real benchmark bearing dataset 
demonstrated that the proposed approach effectively mitigated 
the impact of low SNR, resolved the challenges associated 
with spatial feature learning in traditional CNNs, and achieved 
superior accuracy in RUL estimation. 
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