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Abstract 

Artificial intelligence (AI) and machine learning (ML) systems depend heavily on large datasets to function 

effectively. These datasets contain details of people and can be names, addresses, account numbers, credit 

card numbers, health data, and behaviour data, among others. Such enormous amounts of data are typically 

collected, stored, and analysed. This could lead to privacy violations if not sensitively done. Privacy 

violations are caused by causes such as inadequate security, illegal access, or hacking, all of which have 

negative repercussions for the individuals and businesses involved. This study aims to identify the privacy 

concerns unique to AI and ML applications and assess the efficacy of different privacy-preserving 

approaches. Specifically, the study seeks to identify the privacy challenges to AI and ML applications and 

evaluate the effectiveness of various privacy-preserving techniques that apply to AI and ML applications. 

This study used a qualitative research approach based on case studies, and data was acquired from secondary 

sources such as published papers, websites, and publications. It has been found that recent advances in 
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artificial intelligence (AI) and machine learning (ML) have shown a new dawn in corporate functions, guiding 

efficiency, innovations, and insights across several industries. Although the use of personal data by these 

technologies has been extensively adopted, it has raised several privacy issues. The research identified certain 

privacy issues specific to AI and ML applications, such as overfitting, data leakage, illegal access, model 

inversion attacks, re-identification, and Privacy audits. It can be concluded that, despite the continuous 

development of AI and ML technologies and their successful deployment in all fields of human activity, 

privacy remains one of the most pressing concerns that are yet to be adequately addressed. Designing AI and 

ML applications to achieve superior levels of performance while maintaining individual privacy is a complex 

task that will require a combination of technical, normative, and ethical approaches, as well as the 

collaborative efforts of technical experts, ethicists, legislators, and users. Techniques such as Data 

Anonymisation and Pseudonymisation, differential privacy, federated learning, homomorphic encryption and 

secure multi-party computation should be used to improve privacy in AI and ML applications. 

Keywords: Privacy, AI, Machine Learning, Privacy-Preserving techniques 

 

1. Introduction 

Artificial intelligence (AI) and machine learning (ML) systems depend heavily on large datasets to function 

effectively [1]. Such datasets contain details of people and can be names, addresses, account numbers, credit 

card numbers, health data, and behaviour data, among others. Such enormous amounts of data are typically 

collected, stored, and analysed. This could lead to privacy violations if not sensitively done. Sharma and 

Oriaku [2] opined that privacy violations result from factors such as poor security measures, access of 

unauthorised persons or hacking, and these have undesirable consequences for the individuals and firms 

concerned. The historical point of view on privacy is considered as a representative that evolves by relying 

on technologies. At the initial stage, the privacy concerns focused on securing physical access to information 

in order to enable any unauthorised personalities to access it. However, with the advent of digital technologies 

and the internet, privacy concerns have changed dramatically [3] In the early part of the twentieth century, 

privacy was described as the 'right to be let alone'; it meant that privacy equals the justified avoidance of any 

prior documented infringement on the subject. This notion paved the way for drafting many of today's privacy 

laws and statutes. 

The Ribeiro-Navarrete et al [4] research found that the changes in methods of handling technology in today's 

world and an individual right to privacy have become the major set-up. In the present-day context, it is 

differentiated by the application of refined technologies such as AI and ML; however, the advancement of 

comparatively protected regulations has been steadily slow. This lag sometimes results in either miscreants 

or tech companies incorporating new technologies that are contrary to the rights of persons' privacy and 

liberty. AI and ML systems can be described effectively in terms of this dynamic because the creation and 

use of these technologies have progressed and multiplied, engendering novel privacy threats that are not 

promptly addressed by regulations. The purpose of this study was to identify the privacy concerns unique to 

AI and ML applications and assess the efficacy of different privacy-preserving approaches. Specifically, the 

study seeks to identify the privacy challenges that are specific to AI and ML applications. Furthermore, the 

study seeks to evaluate the effectiveness of various privacy-preserving techniques that are applicable to AI 

and ML applications. 

2. Privacy Challenges in AI and ML 

2.1. Data Collection 

Gathering data is the most crucial stage of introducing AI and ML systems into practice and creating AI- 

associated applications [5]. This phase entails assembling a massive amount of data from various sources to 

train the models to identify patterns and structures and to deploy algorithms to predict the outcomes of certain 

processes and make decisions. However, some concerns are raised: the violation of people’s rights to Privacy 

and ensuring ethical use of their data. Major issues in the data collection phase include the consent process, 

data minimisation and Transparency. 
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2.1.1. Informed Consent 

In the collection of data, probably the most significant privacy issue is inadequate consent from the data 

subjects. Informed consent entails the knowledge that an individual requires when data is being collected, 

where it is being used, who is going to use it, and what the dangers of participating in data sharing are [6]. 

This process should not be an empty ritual; it has to be clear, understandable and exhaustive to provide 

necessary information for a person or group on their data. However, Privacy has proved to be hard to maintain 

in the utilisation of AI and ML, especially when data is used in complex and sometimes obscure ways; thus, 

the issue of informed consent proves to be a major problem [7]. As a result, users must be educated about the 

ramifications of their data being used to train models that would impact decisions in a number of fields, 

including medical, financial, and policing. 

2.1.2. Data Minimisation 

Data minimisation is one of the data protection principles that is crucial for the intended purpose. This is 

important in mitigating the privacy risks, as excessive data collection not only increases the misuse potential 

but also amplifies the data breach consequences. In the context of AI and ML, the tendency to improve the 

model’s accuracy must be linked to the need to protect the Privacy of individuals [8]. Data minimisation 

could be viewed as an activity that is based on significant planning and a clear understanding of specific data 

needs for AI/ML tasks. This involves aggregating and anonymising data to reduce the amount of personal 

information that is collected and stored. 

2.1.3. Transparency 

According to Androniceanu [9], in the data collection process, transparency is considered an important aspect 

to build trust and ensure accountability. Regarding personal rights, users should be in a position to know how 

specifically their data will be utilised, who will use it or for what purpose the data is collected. This should 

be a full cycle of transparency covering the entire data collection process and the method of using the data. 

For instance, should inform the affected individuals when it is realised that the intended use of the data has 

changed or when the identity of the third parties to whom the data will be transferred changes. Transparent 

practices not only strongly contribute to the user’s control over the personal information necessary for further 

consent but also help to avoid situations when the user does not really know who is using their information 

and for what purposes [6]. 

2.2. Data Storage and Processing 

Data storage and processing phases in artificial intelligence (AI) and machine learning come out as the most 

significant phases that raise massive privacy risks and must be handled discreetly to protect sensitive 

information [10]. These phases include safeguarding big data and computation essential for the training and 

deployment of AI solutions. The key security concerns include ensuring robust security, integrating strict 

access control, forming clear data retention policies, and maintaining integrity [11]. These issues must be 

resolved to safeguard personal information, reconstruct the clients’ trust, and conform to the legal 

requirements. 

2.2.1. Security 

Security is considered a crucial aspect of the storage and processing of data. Data security, therefore, involves 

the application of good security standards to protect the data from breaches, unauthorised access, and other 

cyber-attacks. Integrating encryption is considered an important strategy to enhance data security [12]. Where 

the data is stored and when the data needs to be transferred from one place to another, it should be encrypted. 

However, to ensure that data remains confidential, advanced encryption standards (AES) and secure 

communication protocols such as Transport Layer Security (TLS) can be integrated. Moreover, Al-Matari et 

al. [13] highlighted that potential safety risks can be mitigated by implementing regular security audits, 

vulnerability assessments, and penetration testing. To monitor and respond to security incidents promptly, 

implementing intrusion detection systems (IDS) and intrusion prevention systems (IPS) plays an essential 

role. Strict measures are considered crucial to ensure that only authorised personnel can access data [14] 

Implementation of role-based access control (RBAC) in organisations makes it possible to operate under the 

principle known as least privilege, where clients get access only to data that is relevant to their job. It assists 
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in providing permitted access to the data based on the duties of the people in a particular group/department. 

However, multi-factor authentication (MFA) provides a sense of security by requiring users to prove at least 

two aspects before accessing the system [15]. 

2.2.2. Data Retention 

Data retention policies are considered crucial for managing how long data is stored and ensuring its deletion 

when no longer needed. According to Silva et al [16], retaining data poses a significant privacy risk, as the 

longer data is stored, the greater the chance of it being exposed in a breach or becoming inaccurate. However, 

to mitigate such risk, it is important to establish clear data retention policies [17]. To cope with this situation, 

organisations must determine the period for retaining data that is demanded by the law, regulations, and 

business discretion. For the data deletion when the retention time has elapsed, an automated mechanism must 

be implemented. This not only saves the users’ data privacy but also follows rules such as the General Data 

Protection Regulation (GDPR), which lets data be stored only for a certain time frame. 

2.2.3. Data Integrity 

According to Fizur [18], data integrity is considered important to ensure that data remains consistent, 

accurate, and unfiltered during the process of processing and storage. However, when changes are affected 

by the wrong personnel, data is corrupted, or when systems break down, the integrity of the data is 

compromised. With this, the checksums, together with the cryptographic hash, can be of main help when it 

comes to making someone realise that a given data has changed. Moreover, regular activities like data checks, 

data auditing, and other consistency-checking methods can also be conducted to avoid data corruption [19]. 

On the same note, version control and copying the data can also help in enhancing the possibility of data 

recovery in transit or any time that it gets corrupted. Data reliability must be addressed when using AI and 

ML, where the reliability and accuracy of the data directly impact the trustworthiness and performance of the 

models. 

2.3. Model Training and Inference 

Model training and inference are vital in the artificial intelligence (AI) and machine learning (ML) system 

development phases [20]. In these stages, models learn from data and make predictions on new input data. 

However, these processes can pose serious problems with respect to Privacy, as the information is disclosed 

and can be misused. There are typical challenges that are as follows; overfitting, membership inference 

attacks, model inversion attacks, and differential Privacy. 

2.3.1. Overfitting 

Overfitting usually happens when the model memorises information that is not only present in the training 

set but also the noise information included in the training dataset [21]. This can result in a model that is well- 

suited to classified data but performs poorly in new data sets. Far more seriously, overfitting leads to the 

disclosure of information that is included in the training set. For instance, if a model gets trained on specific 

data points of certain people when probed, it is likely to bring out details about such people. To reduce 

overfitting, some of the methods that can be used are regularisation, cross-validation, and dropout [22]. These 

methods facilitate the ability of the model to perform better when exposed to unseen data while avoiding 

aspects of memorising data that violate Privacy. 

2.3.2. Membership Inference Attacks 

Membership inference attacks target to find out whether the specific data point was used in the training of a 

model [23]. This type of attack can be very dangerous in terms of Privacy, especially if some data included 

in the training set is sensitive. For example, information about an individual provided for training in a medical 

diagnosis model can be used to suggest that the individual had a given medical condition. To counter such 

attacks, methods include adding noise to the training process, simplifying the models, and applying 

differential privacy work [24]. As a result, these approaches reduce the difference between the training and 

non-training data sets, thereby minimising the exposure of individuals’ data. 

2.3.3. Model Inversion Attacks 

The model inversion assaults look to construct the normal structure of a trained model to examine the input 

data [25]. It involves the use of the model-learned parameters to calculate some of the attributes of the input 
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data that should otherwise not be disclosed. For example, a new attacker can utilise a facial identification 

model to estimate the image of an individual’s face based on the result of the model. However, to prevent 

model inversion attacks, the former has to make sure that the number of information bits in the model output 

is held to a minimum. Some of the approaches are output perturbation, where some noise can be introduced 

to the model, and restricting information input to the model [26]. Moreover, it is also possible to train the 

model and make it simply invisible to the attacker even if they try to perform the inversion attack. This will 

increase the privacy aspect of the model. 

2.4. Identifiable Information and Re-identification Risks 

According to Liu et al[27], in most cases, all artificial intelligence (AI) and machine learning (ML) handle 

different types of identifiable information; therefore, Privacy becomes a significant factor. Identifiable 

information includes information that, one way or another, will inform an intruder about the owner of the 

data. The number of risks linked with handling such kind of data involve potential re-identification threats, 

linkage attacks, and other similar violations. However, as per Di Minin et al [28], the discussed risks may be 

prevented through the reduction of data identifiers, maintaining a database that does not generate links to 

specific users, non-combination of the particular databases, and the regular check for Privacy. 

2.4.1. Re-identification 

Martinez and Herrera [29] highlighted that despite the efforts to anonymise data, difficulties like the 

possibility of re-identification persist. Re-identification usually occurs when certain data is de-identified and 

then reprocessed together with another data set. It may be even refined in a way to get to the identity of the 

individuals. This risk is rather high in the era of big data that enables the merging of several sets of data that 

can be easily accessed. Therefore, to eliminate the risks of re-identification, it is important to implement 

accurate anonymisation methods and evaluate their effectiveness [30]. The use of specific techniques like k- 

anonymity, l-diversity, and t-closeness play an important role in solving privacy problems by ensuring that 

individuals cannot be identified from the anonymised data [31]. For example, if k-anonymity provides that 

for each record in the database, one could not differentiate it from at least k-1 other records in the same 

database. 

2.4.2. Linkage Attacks 

One other enormous threat type is the linkage attacks, where the attackers compile numerous sets to learn 

about particular persons [32]. These attacks exploit correlation with other databases, for instance, a health 

record of a patient is linked to the social account of the patient with a view of accessing their health records. 

Some of the general standards of data management provide defence or protection that counterpoints linkage 

attacks. This involves limiting data access to a few individuals, applying differential analysis and computation 

measures, and updating anonymisation techniques. However, organisations should conduct a thorough risk 

assessment to understand the potential linkages and establish adequate measures [33]. For instance, in 

differential Privacy, some randomness is added to the data so that the attacker will not be able to link the 

datasets. 

2.4.3. Privacy Audits 

Ferra et al [34] opined that regular privacy audits are important in meeting the set expectations in the privacy 

standards and identifying some threats. Privacy audits are the processes of assessing the treatment of the 

information, security measures, and compliance with the legislation and norms. They may be applied to 

identify areas in an organisation’s privacy program that must be addressed. Privacy impact assessments 

(PIAs) are considered a proactive approach that enables the evaluation of risks that accompany data 

processing to individual’s rights to Privacy and, where possible, mitigation of such risks [35]. However, La 

Torre et al[36] argued that privacy audits should be conducted in such a way that they are frequent processes, 

ensuring that the practice of Privacy is in response to new risks and regulatory changes. 

Therefore, Murakami and Takahashi [37] concluded that when managing identifiable information in the AI 

and ML systems, one has to secure the information in ways that eliminate the risks characteristic of re- 

identification. This implies that data anonymisation and pseudonymisation provide basic protection while 

preventing linkage attacks, and re-identification requires efficient and progressive measures. In addition, 

http://www.jetir.org/


© 2025 JETIR May 2025, Volume 12, Issue 5                                                                  www.jetir.org (ISSN-2349-5162) 

JETIR2505B23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org k347 
 

 

privacy audits also play a crucial role in maintaining the levels of Privacy and reveal the emergence of new 

threats [36]. Thus, by adapting these methods, organisations can effectively protect individual Privacy, 

maintain dependability, and observe compliance with regulatory requirements. 

3. Techniques for Ensuring Privacy in AI and ML 

3.1. Data Anonymization and Pseudonymization: 

Data anonymisation and pseudonymisation are considered crucial techniques to ensure privacy in AI and 

machine learning [38]. Majeed and Hwang [37] defined data anonymisation as the process of transforming 

the data in order to obscure the identity of persons involved in the data either directly or indirectly. Some of 

the most frequently used methods are generalising, which consists of replacing original data with more 

general data, and suppression, which involves leading out data from a set of data. Another method is masking. 

For instance, the substitution of the exact birth dates with the age can be a method of data masking applied 

for anonymisation [39]. The main goal is to achieve the outcome where even if data is stripped of identifiers 

and merged with other databases, identifiers can never be worked backwards to reveal people. In 

pseudonymisation, personal identifiers are replaced by artificial names or codes. While pseudonymised data 

can be re-identified if other information is obtained, it is advantageous in that it does not contain actual 

identifiers in the dataset. 

Techniques like data masking, randomisation, and k-anonymity make sure that within the dataset, no one 

record can be differentiated from at least ‘k-1’ other records. However, pseudonymisation is presented as the 

opposite of anonymisation, as it enables reversible changes with necessary control, especially in cases of 

regulations that require the identification of the specific individual. 

In addition, Zuo et al [40] highlighted that data anonymisation is significant in the context of pervasive 

healthcare, where techniques such as differential privacy and noise addition play a crucial role in ensuring 

that patient data is protected while still making sense of it. Thus, the proposed work highlights the challenges 

of maintaining utility while privacy is still a concern. However, pseudonymisation in the healthcare sector 

allows one to keep the link between the data and patients’ records without compromising their identities. This 

method helps track outcomes over some time and patient management besides guarding and entrusting 

personal details. Moreover, Majeed et al [38] study concentrated on the clustering-based anonymisation 

techniques, where data points are first clustered and then anonymised in their clusters in order to prevent re- 

identification. This method assists in preserving the functionality of the data used for analysis to enhance the 

protection of individuals’ privacy. Pseudonymisation is carried as one of the ways through which privacy 

may be attained in datasets that require some level of linkability. Majeed et al [38] insisted on the need for 

secure key management practices to reduce unauthorised re-identification risks. 

3.2. Differential Privacy 

Differential privacy constitutes one of the foundations in the quest for the technique to reconcile the immense 

utility of value from the analysis of large datasets without intruding on the rights of data subjects. It is based 

on the concept of adding noise to the data or query results, thereby obscuring the individual contributions 

while enabling meaningful statistical analysis. The In particular, in the case of federated learning, there are 

privacy issues, so applying some of the methods, such as differential privacy, becomes essential. Therefore, 

if these measures are used, one can proceed with the process of federated learning without violating the 

subject’s rights to privacy of data. Similarly, according to Silva et al [16], even under the umbrella of other 

AI, differential privacy can be used to enhance privacy. It involves delving into numerous strategies and 

methodologies for implementing differential privacy, considering the intricacies of diverse AI techniques. 

According to the use of differential Privacy in the training of the model, it is possible to safeguard against 

three different genres of attacks, such as membership inference and model inversion [41]. It also provides a 

reasonable guarantee of users’ Privacy, and it allows the necessary information to be extracted from the data 

without the loss of overall applicability of the model. 

Additionally, Padmanaban [42] contributed by exploring privacy-preserving architectures, advocating for 

differential privacy as a fundamental concept. The purpose of such architectures is to provide the highest 

level of confidentiality regarding the data and make the information quite useful for the intended analysis. 
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3.3. Federated Learning 

Federated learning appears as one of the first solutions to the complex problem of dealing with both the 

usefulness of the data and privacy concerns in the context of ML and AI. In its essence, this revolutionary 

approach, explained by [43] embodies a revolution in the model training process through the use of 

interconnected devices or servers. This way, federated learning reduces the need to bring sensitive data to a 

central place, which means a tremendous decrease in potential risks connected to the violation of privacy 

rights. Possibilities of privacy leakage make the federated learning protection concept highly effective due to 

the decentralisation of computation and model updates [44]. 

Like other research works, Li et al [45] also stress data privacy preservation is a paramount issue where 

federated learning emerges as an implemental and viable solution. Since, by its inherent mechanisms, the 

federated learning approaches do not share the individual data with which the model is trained, with a central 

server or any other external authority. This effectively mitigates the issues of privacy linked with centralized 

data processing architectures. Moreover, Jagarlamudi et al [74] explored the subtle aspects of privacy 

quantification in the context of federated learning. They emphasised that the methodology’s enhancement 

and development are ongoing in order to strengthen privacy protection in different ecosystems. However, 

due to the strict privacy measurement frameworks, the federated learning methodologies are constantly 

evaluating and enhancing the privacy-preserving measures, which make the methods more stable protectors 

of the individual’s privacy rights. 

3.4. Homomorphic Encryption 

Homomorphic encryption emerges as one of the modern cryptographic techniques that is considered 

promising for revolutionising confidentiality protection in the data processing field. Asante et al [46] 

indicated that, with homomorphic encryption, you can perform computations on the encrypted data without 

the need for the decryption of the information first. This particular characteristic implies that data to be 

safeguarded when computation is underway remains protected from the time the data is input to the time it 

is output. By using homomorphic encryption technology as an AI algorithm improvement, Wang et al [47] 

were able to uncover the alliance between homomorphic encryption technology and AI in the advancement 

of privacy in AI, such as IoT. Thus, homomorphic encryption prevents leakage of deep learning data by 

computing on homomorphic encrypted data framework within the AI. 

In addition, Rahman et al [48] reemphasised the significance of heteromorphic and homomorphic encryption 

with regard to the edge networks for the execution of privacy-preserving AI composition frameworks. The 

homomorphic encryption techniques resulted in empowering edge devices to implement efficient AI 

operations on the encrypted data at the periphery, preserving data confidentiality. Moreover, Yaji et al [49] 

proposed that integrating homomorphic encryption with other emerging technologies, such as blockchain, 

further improves the versatility and applicability across the different AI applications. 

3.5. Secure Multi-Party Computation (SMPC): 

The next promising concept regarding the attainment of privacy and cooperative computation by several 

parties is the Secure Multi-Party Computation (SMPC). According to Skarkala et al [50], SMPC is a solution 

that facilitates function computation through the cooperation of several parties without revealing other 

parties’ inputs. Most importantly, participants in an SMPC protocol receive only the result of the operation 

performed but not the inputs provided by other users. This confidentiality of inputs is particularly useful 

where inputs are in areas that require keen anonymity, especially when the inputs are to be gathered or pooled 

by different entities, as noted by Schaller [51]. To reduce the chances of exposing the inputs provided by the 

members and maintain the privacy of all members involved, SMPC conceals the inputs of every member 

throughout the computation process. 

Zhou et al [52] initially proposed secure computation protocols; this paved the way for the refinement and 

development of the SMPC techniques. These protocols allow two distinct parties to cooperatively compute 

the given data of two different datasets simultaneously without revealing the original data to each other, this 

helps in overcoming privacy issues and carrying out effective data processing and collaboration. Moreover, 

Pilton et al [53] highlighted that it is especially useful in cases where information is collected from various 

sources, and summative and comparative analyses need to be done without violating individuals’ rights to 
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privacy. Secure Multi-Party Computation (SMPC) is, therefore, the first stepping stone for data privacy in 

data mining, including collaborative analysis. It offers a solid and mathematically credible workbench for 

efficient, secure computation in distributed environments. With the future developments of the field, SMPC 

is very promising for creating better privacy protections in sectors such as health, finance, and distributed 

computing systems where confidentiality must be maintained, but large-scale computation must also occur. 

3.6. Adversarial Training 

Adversarial Training is a fundamental strategy to enhance the robustness of machine learning models against 

adversarial threats and consequently maximise the assurance of information privacy. Adversarial examples, 

as mentioned by Goodfellow et al [54] are original images designed to exploit the vulnerabilities in particular 

types of learning models, potentially giving out specific information from the outputs. These attacks directly 

endanger the confidentiality of data, especially in cases where the data is processed with the use of machine 

learning algorithms, emphasising the need for robust defence mechanisms to protect it. 

As per Madry et al [55]adversarial training can be defined as a form of accurate planning that helps to 

strengthen the model’s immunity to these attacks. By adding adversarial examples to the perturbed inputs 

during the learning process, machine learning gives a defence against targets of adversarial attacks. However, 

due to the iterative optimisation method, the adversarial training reduces vulnerability to adversarial attacks 

and stops the leakage of information by the members. Furthermore, Papernot et al [56] noted that adversarial 

training is useful in protecting from black-box attacks, whereby the opponents attempt to get information 

from the output of the model without knowing the various parameters of the model. As a result, adversarial 

training shields machine learning models from such attacks hence preserving the confidentiality of data and 

improving the privacy of the same. 

 

4. Regulatory and Ethical Considerations 

4.1. Ethical Principles in AI and ML 

AI and ML systems' design and implementation are subject to several ethical principles that govern their use. 

These principles include fairness and anti-discrimination [52], transparency and explainability [57], 

accountability [58], and privacy and data protection [52]. All these ethical principles fundamentally play a 

crucial role in guiding the leadership in the right deployment and application of AI & ML systems. Therefore, 

by addressing the fairness, transparency, accountability, and privacy issues, companies can ensure that their 

AI technologies positively contribute to society and mitigate the potential challenges. 

4.2. Impact of Regulations on AI/ML Development 

The regulatory frameworks significantly impact the AI/ML technologies development and deployment in 

multiple ways. These include compliance costs [59], Innovation Constraints [60], enhanced Trust [61],[62], 

[57] and Global variability [61], [63]. 

5. Future directions and Emerging trends 

5.1. Privacy-Preserving AI/ML Algorithms 

According to [64], AI and machine learning domains are progressing rapidly, necessitating the importance 

of robust privacy-preserving algorithms to take care of data security. However, among these advancements, 

differential privacy and federated learning are viewed as key technologies in these innovations. Differential 

privacy is a mathematical approach that can protect the individual entries of a database by adding calibrated 

noise distortion [65]. This noise is useful to prevent leakage of information of any specific user. In federated 

learning, the model is trained at several devices or servers that possess small subsets of local data samples 

[66]. This reduces the multiple copy problem and significantly lowers the threat of getting the data breached 

since raw data is found on local computers. Federated learning best fits sectors like healthcare and finance, 

where data sensitivity is important. Thus, it makes it easy for organisations to harness the machine learning 

benefits, while complying with the legal requirements on privacy rights. Aside from differential privacy and 
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federated learning, other approaches like homomorphic encryption and secure multi-party computation are 

also employed in AI/ML with the aim of achieving privacy preservation [67]. 

5.2. Advances in Cryptographic Techniques 

Padmanaban [42] highlighted that the improvements in the cryptographic procedures are crucial for the 

protection of data processing in AI and ML. Among these innovations, homomorphic encryption and secure 

multi-party computation (SMPC) are the prominent ones. Homomorphic encryption enables computations to 

be done straight on the encrypted data without the use of decryption to be made prior to this process [46]. 

This capability is revolutionary in the aspect of guaranteeing the security of information secret up to the time 

when the computation is complete. For instance, in medical research, patient records can be encrypted and 

later used for analysis without revealing the raw data, thereby maintaining patient privacy. Secure 

multi-party computation, on the other hand, allows multiple parties to collaboratively compute a function on 

their inputs where the inputs of the other parties remain unknown to them [68]. No information is shared with 

another party; the information is kept encrypted in each of the parties’ databases. This technique is very useful 

when the various data collected from different sources need to be integrated and analysed while observing 

data privacy. For instance, the banks can apply SMPC to jointly identify the fraud patterns in their collective 

database even without sharing their client’s details. The continuous advancement of such techniques is driven 

by the progressive need to enhance data security and privacy in AI and ML applications. 

5.3. Decentralised AI/ML Models 

As per Wylde et al [69], the shift towards decentralisation of the AI/ML models marks a significant attempt 

to achieve better data privacy and security. Unlike the traditional centralised model that relies only on one 

server to solve the problem, in the decentralised models such tasks are solved by several nodes. This structural 

design eliminates the problem of the data breach and solves the issues that come with single centralisation 

points. By keeping the data localised on individual nodes, decentralised models reduce the need to transfer 

sensitive data to the central repository. 

Similar to centralised AI/ML models, decentralised models also present protection from cyber-attacks [70]. 

In centralised systems, a successful invasion of the central server will lead to the corruption of the entire data 

set and model. However, in a decentralised system, if an attacker gains access to a single node, they cannot 

access all the information, thereby enhancing the security. In addition, they are more effective and reduce 

latency by processing data near the source, which is crucial in real-time applications such as autonomous cars 

and smart cities. 

5.4. Policy Developments and Global Cooperation 

Future advancement of AI & ML heavily depends on the new policy trends and corresponding cooperation 

platforms. Thus, with the help of AI & ML tools in constant evolution, the need for robust regulatory 

measures to ensure data security and privacy to the data appears to be a necessity. Regulatory measures such 

as the General Data Protection Regulation (GDPR) in the European Union and the California Consumer 

Privacy Act (CCPA) in the United States have tremendously described data protection laws in terms of 

legislation and rules [71]. These regulations mandate strict rules on the processing of personal data, like how 

it is to be collected and stored, thus increasing pressure on organisations to apply firmer modes of privacy. 

For instance, GDPR sets out several rigorous measures for acquiring consent for controlling an individual’s 

data, limited data collection, and getting individual data together with erasing it [72]. Similarly, 

the CCPA also grants California Residents other additional rights concerning their personal information, 

including the right to know what data is being collected and the right to opt out, among others [72]. 

Regulation of AI and ML cannot be accomplished separately. Privacy issues are universal today, and different 

laws in various countries can cause myriad problems for global corporations. Hence, there is a need for 

international collaboration in terms of synchronising rules and enabling the exchange of data across borders 

efficiently. As a result, countries working together can result in the formulation of standard approaches and 
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practices since it reduces the variability of regulation [73]. 

 

 

6. Conclusion 

Recent developments in artificial intelligence (AI) and machine learning (ML) have ushered in a new era of 

business functions, guiding efficiency, innovation, and insights. Although these technologies' use of personal 

data has been widely embraced, it has led to numerous privacy concerns. The studies have revealed some 

generic privacy threats unique to AI and ML applications, including Overfitting, data leakage, unauthorised 

access, re-identification, model inversion attacks, privacy audits and membership inference attacks. 

Such challenges and various privacy-preserving solutions have emerged, with their strengths and weaknesses. 

Differential privacy is one of the most well-known approaches, grounded on mathematical distribution, noise, 

or information randomness. As for its use, data protection generated by this method refers to personal 

information and can be used for large populations of people. The other is a secure federated learning 

approach, a decentralised methodology employed during ML training. This enables local algorithms to be 

trained using local data without exchanging raw data, which ensures data privacy in the best interests of 

distributed datasets. 

Moreover, homomorphic encryption also introduces another new type of solution since computations on 

specific information are possible. At the same time, they are encrypted, and therefore, there is no need for 

the actual data to be decrypted in some physical way [46]. These are fundamental approaches in ensuring 

privacy in AI and ML as the use of data rises. 
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