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 A B S T R A C T

Inspired by transformation optics and photonic crystals, this paper presents a computational investigation 
into the interaction between water surface waves and array waveguides of cylinders with multiple previously 
unexplored lattice geometries, including, for the first time, quasiperiodic geometries. Extending beyond conven-
tional square and hexagonal periodic arrays, transformation optics has opened up entirely new opportunities 
to investigate water wave propagation through arrays based on quasiperiodic lattices, and quasiperiodically 
arranged vacancy defects. Using the linear potential flow open-source code Capytaine, missing element and 
𝜏-scaled Fibonacci square lattices, the Penrose lattice, hexagonal 𝐻00 lattice and Ammann–Beenker lattice are 
investigated. The existence of band gaps for all arrays is observed. A hexagonal lattice with vacancy defects 
transmits the least energy. Bragg diffraction consistent with azimuthal rotational symmetry is observed from 
all arrays. Bragg resonance causes reflection from arrays, resulting in multiple Bloch band gaps. Away from 
Bragg resonance, waves will distort significantly to achieve periodic relationships with arrays, supporting 
transformation-based waveguides. The possible uses include adaptation to more versatile waveguides with 
applications such as offshore renewable energy and coastal defence.
1. Introduction

The vast potential of the revolution in optical waveguide engineer-
ing known as ‘transformation optics’ has stimulated optics research for 
the past two decades (Pendry et al., 2006; Chen et al., 2010). Combined 
with contemporary developments in manufacturing capability, partic-
ular success has been found in constructing photonic crystals: meta-
materials with structures on length scales similar to the wavelength of 
the radiation. By modifying the permittivity and the permeability of 
the propagation medium, photonic crystals have been shown to exert 
deep influence on electromagnetic wave propagation (Joannopoulos 
et al., 1997; Dong et al., 2015), leading to the demonstration of 
superlenses and invisibility devices (Pendry et al., 2006). A similar 
field is transformation acoustics, in which the Young’s modulus of the 
propagation medium is modified, with similarly useful results (Chen 
and Chan, 2010).

Inspired by transformation optics and photonic crystals, in this 
article we present an investigation into the interaction of water surface 
waves with ‘metamaterials’ consisting of arrays of vertical cylinders in 
crystalline and other arrangements.

∗ Corresponding author at: School of Engineering and Computing, University of Central Lancashire, Preston, PR1 2HE, United Kingdom.
E-mail address: jsmerdon@uclan.ac.uk (J.A. Smerdon).

Improving our ability to manage and harness the energy in ocean 
waves is a problem of paramount importance, and has been the focus 
of much work over recent years (Zhu et al., 2024; Zhang et al., 
2018, 2012; Wang et al., 2013, 2014; Hu and Chan, 2005; Hu et al., 
2003, 2004; Tang et al., 2006; Yang et al., 2009; Linton and Evans, 
1990). Free-surface water waves (disturbances of water) have been 
comprehensively studied analytically (Longuet-Higgins and Cokelet, 
1976), numerically (Kirby, 2016), and through observations both in 
controlled physical experiments and field measurements (Blenkinsopp 
et al., 2010, 2012). It has been shown that water surface waves share 
many of the same features as waves in other areas of physics (including 
fundamental processes such as reflection, refraction, diffraction, etc.). 
However, water waves also exhibit unique behaviour including shoal-
ing (change of wave height) and breaking (collapse of waves) when 
they propagate into progressively shallower water. While the increasing 
emphasis on extracting energy from ocean waves and coastal protection 
has expanded our knowledge and understanding, new research is still 
needed, particularly to improve our understanding of complex wave 
interactions and the exploitation of wave energy devices.
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There are several approaches to investigating the interaction of 
water waves with structures. In the predominant approach, which 
started before simulation via computation became mainstream, efforts 
are focused on identifying those systems which lend themselves to 
analytical solutions. The majority of these systems are 2-dimensional 
problems, 𝑥 being the propagation dimension and 𝑦 being the depth. 
The obstacles are modelled as variations in the propagation medium 
as functions of 𝑥 and 𝑦, including floating horizontal, vertical or other-
wise mathematically defined bars, plates and 1-dimensional periodic 
structures (Peters, 1950; Zhang et al., 2024; Liu et al., 2019), fixed 
versions of similar structures (Walker and Eatock Taylor, 2005), or 
similar structures applied to the sea bed (Xie et al., 2011; Linton, 2011).

Parallel behaviour in the interactions between water waves and 
periodic structures and between x-rays and crystals was noticed early 
on – in particular, the advantageous Bragg resonance, in which waves 
are reflected from a periodic array and a Bloch frequency band gap is 
formed in which waves cannot propagate (Davies, 1982; Mei, 1985). In 
arrangements which are symmetrical in the propagation direction, zero-
reflection wave modes, in which waves are able to propagate freely 
through the structure, are also possible (Xie et al., 2011; Goyal and 
Martha, 2025). These phenomena in crystals underpin x-ray and elec-
tron diffraction, and the understanding of the behaviour of electrons 
in solids, including the band gap in semiconductors and conduction in 
metals (Bloch, 1929).

Where analytical solutions were possible, they were developed, 
including of 3-dimensional systems of infinite 2-dimensional arrays of 
modulations of the propagation medium such as floating discs, based 
on square (4-fold) and triangular/hexagonal (6-fold) lattices (Chou, 
1998). Arrays of surface-piercing cylinders were also investigated, with 
periodic boundary conditions (PBC) for infinite arrays (McIver, 2000; 
Hu and Chan, 2005; Linton and Evans, 1990) and without PBC for 
finite arrays (Liu et al., 2011; Ha et al., 2002; Ohl et al., 2001). To 
the best of our knowledge, all infinite and finite periodic arrangements 
exhibit Bloch band gaps. The relationship between a 2-dimensional 
array and the propagation direction, however, is no longer implicit; 
waves with different propagation directions experience different lattice 
periodicities and different transmission properties, including band gap. 
The variability in periodicity is a function of the 𝑛-fold rotational 
symmetry of the lattice on which the array is based.

In addition to periodic lattices based on crystalline symmetries,
quasiperiodic lattices may also be constructed that have no translational 
symmetry but higher-order rotational symmetries (higher values of 𝑛), 
such as the pentagonal Penrose tiling (10-fold) (Penrose, 1979) and 
the octagonal Ammann–Beenker tiling (8-fold) (Arnoux et al., 2001). 
Quasicrystals (quasiperiodic crystals) based on these lattices are the 
appropriate analogue of periodic crystals (Shechtman et al., 1984; 
Levine and Steinhardt, 1984). The higher orders of rotational symmetry 
available in quasiperiodic structures are attractive because they offer 
the same behaviours that periodic structures do, such as band gaps, 
but with greater isotropy and hence less angular selectivity (Rechtsman 
et al., 2008), supporting, in principle, manipulation of waves travelling 
in different directions. Quasicrystalline metamaterials have been shown 
to have fractal transmission spectra with several large gaps (Davies 
et al., 2023).

Regarding the comparison with transformation optics (in which the 
relative permittivity and permeability are modified), the analogous 
properties which affect propagation of water waves are gravity and 
depth. Despite the clear analogies between transformation optics and 
water wave propagation, such lattice arrangements of cylinder arrays 
and scatterers are yet to be fully investigated for water waves.

With respect to water surface waves, and in the long-wavelength 
regime (𝜆 ≫ 𝑎, where 𝜆 is the wavelength and 𝑎 is a characteristic 
crystal dimension, defined as the lattice parameter for periodic arrays), 
it has been shown that the presence of an array of vertical cylinders 
alters the refractive index via modification of the effective gravity 
within the array, allowing construction of lenses and prisms (Hu and 
2 
Chan, 2005). This approach has also been shown experimentally to 
result in superlensing (Hu et al., 2004). Moreover, analogous to the 
manipulation of permittivity/permeability in photonic materials, ma-
nipulating the depth via modification of either the floor or the free 
surface can lead to the full range of transformation optics effects (Wu 
and Mei, 2018; Qin et al., 2023; Wang et al., 2015).

Generally, modifying the density of a lattice of elements of given 
permeability/permittivity [Young’s modulus] causes optical [acoustic] 
waves to propagate in the direction of the density modifications. The 
situation for water surface waves is essentially the same.

A water surface waveguide array can modify the effective gravity
and effective depth in the region of the array. This is in contrast to 
modifications of bathymetry, which allow control only over the effec-
tive depth, and which, in the context of coastal defence, are expensive 
and temporary.

Regarding analytical approaches, as mentioned, the application of 
PBC allows the derivation of transmission functions for linear waves 
through arrays (Kakuno and Liu, 1993). If the problem is restricted 
to two dimensions, as is possible for infinite depth or floor-mounted 
cylinders, it is possible to derive transmission functions even for fi-
nite arrays (Linton and Evans, 1990). However, as suggested by the 
name, PBC cannot describe quasiperiodic geometries of any kind. In 
principle PBC may be applied to higher-dimensional space, from which 
a quasiperiodic two- or three-dimensional solution may be obtained 
(using the cut-and-project method De Wolff, 1974; Elser, 1985). Such 
a solution preserves the general behaviour expected from an infinite 
quasiperiodic lattice, but interpreting the implications in real space is 
non-trivial and a source of unwanted complexity.

Regarding computational approaches, any conceivable system may 
be investigated using fully-non-linear potential flow (FNLPF) calcula-
tions, but these calculations are extremely expensive in terms of time 
and computing resources. Alternatively, the popular boundary-element-
method (BEM) may be used to investigate arbitrary three-dimensional 
problems within the fully linear regime (including those that can be 
simplified with PBC, with concomitant increases in efficiency).

Here, we demonstrate the use of the Capytaine (Ancellin and Dias, 
2019) BEM python package to investigate a three-dimensional problem: 
finite arrays of finite-length cylinders in infinite-depth water. This 
problem, despite its apparent simplicity, is intractable via any other 
method except FNLPF calculations, and is thus ideal to demonstrate the 
validity of the BEM method to study arrays with arbitrary properties.

The robustness of the approach with respect to arbitrary arrays is of 
great importance for the development of the field of water wave array 
waveguides. The versatility of the approach enables the study of an 
arbitrary number of optimization parameters and thus, in principle, the 
tailoring of a waveguide to a particular situation.

We explore the interaction between monochromatic water surface 
waves and small (𝑁 < 300) arrays of vertical surface-piercing cylinders. 
These cylinders are arranged in translational and rotational symmetries 
previously uninvestigated and, in particular, we measure their capacity 
to allow or stop wave propagation in the near-Bragg regime (𝜆 ≈ 2𝑎). 
Our focus is on the detailed structure of the arrays, which include peri-
odic, quasiperiodic, and defected periodic geometries with the resulting 
effects on water surface wave propagation.

The paper is structured as follows: first, we introduce the arrays that 
are investigated, and characterize them in terms of their symmetries. 
Then, we describe the wave modelling and numerical setup using the 
open-source software Capytaine (Ancellin and Dias, 2019; Babarit and 
Delhommeau, 2015), before presenting the results from the simula-
tions. We finish with a discussion on future work and conclusions.

2. Lattices

We differentiate between arrays and lattices as follows: an array 
is a realization of a geometric lattice consisting of an arrangement of 
cylindrical free-surface-piercing scatterers.
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Fig. 1. Plan views of the waveguide designs and notation used in this work. Descriptions of the lattice geometries can be found in the text. The waveguides are plotted to scale: 
the lattice parameter of 4fs is 1 m and the diameter of each element is 0.4 m. The arrays vary slightly in size, with the largest, 4fs, measuring 11.4 m × 21.4 m. Each waveguide 
is placed at the centre of a 40 m × 40 m computational domain with waves impinging from the left. The insets show geometric details. For lattices 4fF and 4f𝜏 the Fibonacci 
sequence is indicated via the use of L and S segments.
Our interest lies in exploring the wave propagation properties of 
arrays with varying rotational symmetries and periodic/quasiperiodic 
structures. The designs investigated are shown in Fig.  1, encompassing 
archetypes and simple modifications thereof of 4-, 6-, 8-, and 10-fold 
rotational symmetries, where they are generally referred to by their 
𝑛-fold symmetry as 𝑛f. The finer details of their structure and nomen-
clature are discussed below. In an effort to study the effects of geometry 
independently of other characteristics of the array, where possible, the 
most common nearest neighbour distance is fixed at 𝑁𝑁 = 1 m. A 
cylinder is placed at each lattice point (Section 3.2). The filling fraction 
(𝐹𝐹 ) is defined as the area occupied by cylinders divided by the total 
area of the array (see Fig.  2(b)). Each infinite lattice has a calculable 
FF. However, in keeping with the desire to deal only with properties of 
finite arrays, here 𝐹𝐹  is calculated directly by summing the cylinder 
cross-sectional areas and dividing by the area of the bounding box of 
the array. According to the work of Hu and Chan (2005), the refractive 
index is then 𝑛 =

√

1 + 𝐹𝐹 . Number of elements, 𝐹𝐹  and 𝑛 are given 
for each array in Table  1. For the purposes of comparison both periodic 
and aperiodic arrays are investigated. We note that the derivation of Hu 
et al. contains no reference to the array geometry at any stage, implying 
its validity for both periodic and aperiodic arrays. We also note that it 
is derived in the long wavelength limit; however, the correspondence 
principle implies that long-wavelength-regime phenomena will also 
apply in the Bragg regime we are operating in, although they will be 
dominated by other effects.
3 
2.1. Periodic arrays

The two simplest classes of periodic lattice are 4-fold (square) 
and 6-fold (hexagonal), arrays based on which are shown in Fig.  1 
and labelled as 4fs and 6fs respectively, where the subscript s de-
notes ‘simple’. All continuous lattices in two-dimensional space must 
have even-number 𝑛, due to their indistinguishability under rotational 
inversion (Lifshitz, 1996).

2.2. Quasiperiodic arrays

The remaining arrays are quasiperiodic. Here, we discuss the struc-
ture and characteristics of their underlying lattices.

• Missing-element square Fibonacci lattice
Array 4fF is based on a square lattice with elements missing in 
an quasiperiodic fashion. The missing elements are chosen based 
on the binary Fibonacci sequence (LSLLSLS..), where the individual 
elements of the sequence are either a (S, short) or 2a (L, long). The 
sequence is indicated in the figure.

• 𝜏-scaled square Fibonacci lattice

Array 4f𝜏 is a square lattice of elements placed according to 2 
perpendicular Fibonacci sequences, one of which is indicated in the 
figure, where 𝐿∕𝑆 is equal to the golden ratio 𝜏. As there are 𝜏
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Table 1
Number of elements, filling fraction and refractive indices of the arrays.
 Array 𝑁 elements Filling fraction (FF) Refractive index 𝑛 
 4fs 264 0.136 1.066  
 4fF 199 0.118 1.057  
 4f𝜏 288 0.184 1.088  
 6fs 250 0.150 1.072  
 6fH 202 0.110 1.054  
 6fHc 232 0.138 1.067  
 8f 240 0.153 1.074  
 10f 246 0.154 1.074  

times as many 𝐿 segments as 𝑆 segments in each (infinite) sequence, 
the 𝑁𝑁 in this case is 1∕𝜏 = 0.618.., and the 𝐹𝐹  is accordingly 
high (Lifshitz, 2002).

• Hexagonal lattices based on the 𝐻00 lattice

Array 6fH is based on a periodic hexagonal lattice with elements 
removed to produce a quasiperiodic arrangement, similar to 4fF. The 
lattice points decorate the vertices of the 𝐻00 lattice identified by 
Coates et al. (2023), where the short and long edges of the rhombic 
and hexagonal tiles are both set to 1 m (Coates, 2024). Array 6fHc
is also produced using the 𝐻00 lattice with tile edges set to 1 m, 
but instead uses the centre points of the tiles. In these cases, the 
relationship to the Fibonacci sequence is not trivial, so it is not 
indicated. Further details can be found in Refs. Coates et al. (2023), 
Coates (2024).

• Ammann–Beenker lattice
Array 8f is constructed from the vertices of the octagonal Ammann–
Beenker lattice (Beenker, 1982; Socolar, 1989; Arnoux et al., 2001), 
which consists of squares and rhombi with an internal angle of 
𝜋
2  rad. The edge length of squares and rhombi in the lattice is 1 m, 
but elements are separated by 

√

2 −
√

2 m along the short diagonal 
of the rhombi.

• Penrose lattice
Array 10f is formed from the vertices of a Penrose P3 lattice (Pen-
rose, 1979), which is perhaps the most well-known quasiperiodic 
geometry. The lattice is composed of two types of rhombi, with 
internal angles 𝜋

5  rad (thin) and 
2𝜋
5  rad (fat), arranged according 

to matching rules. Though it is often described as pentagonal, its 
indistinguishability under rotational inversion gives this lattice over-
all 10–fold symmetry (Lifshitz, 1996). The rhombus edge length is 
chosen to be 1 m. This again leads to elements being separated by 
less than 1 m, here, along the short diagonal of the thin rhombi, with 
the separation being equal to 𝜏−1 m.

3. Methods

3.1. Numerical domain

The array is placed at the centre of a 40 m × 40 m square grid, with 
a grid resolution of 512 × 512 and a resultant cell size of 7.8 × 7.8 cm. 
The calculations result in linear solutions to a linear problem. This 
means that the grid resolution of the water surface does not affect 
the calculation or the results, in contrast with the effects of the cell 
size in FNLPF simulations. The linear solution is sampled at each 
point in the grid, and the grid size set as the lowest power of 2 that 
preserves the smallest details observed in the data. Convergence testing 
of the grid resolution for 8 values in the range 64 to 1024 yields a 
4 
constant (L2 error norm vs 𝛥𝑥) gradient of 0.175, where 𝛥𝑥 is equal 
to the computational domain edge length (40 m) divided by the grid 
resolution. For well-converged results, the gradient is not greater than 
1. The gradient in our test is much smaller than 1, so the results are 
converged. The gradient in this case is entirely due to the improvement 
expected from an increase in sampling resolution, and cannot therefore 
decrease further.

The waves are incident from the left hand side. They impinge on 
the array, are scattered, and we observe the steady state response of 
the water waves in the domain. The water is set to infinite depth 
so that the waves can be considered deep water waves. The arrays 
themselves are composed of fixed 0.2 m radius, 10 m long, 13-gon 
prism approximations to cylinders, with 5 m submerged. The number of 
sides is chosen to maximize resolution whilst keeping within memory 
constraints, and also to avoid any rotational symmetries in common 
with the arrays. As noted, the most common separation present in the 
array is set to 1 m. Wave heights are scaled from unity in Capytaine: 
any wave height or motion amplitude can be retrieved by multiplying 
the result by the desired value (Ancellin and Dias, 2019), and the results 
are valid in the linear regime.

3.2. Water wave modelling with capytaine

The interaction between the waves and the arrays is simulated 
herein using the Capytaine open-source software (Ancellin and Dias, 
2019 and Babarit and Delhommeau, 2015). Capytaine is a Python-
based boundary element method (BEM) solver for linear potential 
flow in water waves (Ancellin, 2023). Based on previous code known 
as NEMOH (Babarit and Delhommeau, 2015), the linear potential 
flow approach has been widely used including multi-frequency and 
multi-direction wave loads on wind turbine platforms (Kurnia and 
Ducrozet, 2022). Starting from the assumptions of inviscid, irrotational 
and incompressible flow, the linear potential flow theory solves the 
problem in the frequency domain and is able to predict the radiation 
and diffraction processes. As a potential flow solver, the approach 
can be used to predict waves until they become near nonlinear and 
eventually break, at which point alternative (and computationally more 
expensive) approaches are required, such as full Navier–Stokes solvers 
(OpenFOAM, 2022 and Domínguez et al., 2021). The predictions herein 
are only linear, so as the frequency increases, the maximum wave 
height for which they are applicable decreases. According to the limit 
for strict linearity 𝐻𝜔2∕4𝑔𝜋2 < 0.001, our waves are perfectly modelled 
only for a height 𝐻 between 4.3 cm at 3.0 rad s−1 and 6 mm at 8.0 rad 
s−1.

The calculations were performed on the Jeremiah Horrocks Institute 
High Throughput Cluster, which comprises 13 Dell R650XS nodes each 
with 48 physical cores and 256 GB RAM running Oracle Linux 8.9 and 
Slurm 20.11.9.

The arrays are constructed using Capytaine’s internal routines. One 
cylinder is placed, then duplicated to create the array. Tridecagonal 
prisms are used as they maximize usage of available RAM.

Capytaine can provide many kinds of output. Here we use the 
water free surface, provided as separate grids of the real and imaginary 
components of the solution to the wave equation. We use MATLAB to 
present and perform calculations on these datasets. An example dataset 
is shown in Fig.  3, showing the interaction between waves and the 
6fs array. The two components of the free surface are shown in panels 
(a,c). All data in this manuscript presented with this colourmap are 
normalized to the range of the individual dataset.

We generate a reference wavefield of appropriate frequency and 
phase to represent the incoming waves and subtract it from the real 
component to give panel (b). This treatment aids in identification of 
scattered waves, in particular their direction. However, if there is any 
significant interaction between the waves and the array (i.e., if a phase 
difference is introduced, and/or the amplitude is altered), the area to 
the right of the array is dominated by the subtracted wavefield.
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Fig. 2. (a) Schematic of the simulation setup. Cylinders with a length of 10 m are submerged 5 m into water, which is set to infinite depth. (b) Top-down view of the cylinders 
in the square array, which demonstrates how the filling factor (FF) is calculated.
In panel (d) we add the real and imaginary components squared, 
which gives the intensity of the wave energy. Data presented with this 
colourmap always represent intensity, and are normalized to the range 
0–5, with 1 being the same intensity as the incoming waves.

In panel (e), a polar plot shows the angular distribution function 
(ADF). This function is generated by taking a profile from the centre to 
the periphery of the intensity map, at the denoted angle, and plotting 
the mean value of this profile as a point on the red curve. For profiles 
of either the real or imaginary components, it would be appropriate to 
use the root mean square; as we use profiles of the intensity, there is no 
inherent periodicity and so the mean is appropriate. The influence of 
the varying length of the profiles in the non-circular data is minimized 
by use of the mean rather than the integral. In the example given, 
this shows strong intensity in the directions of scattered waves, and 
zero intensity in the direction of propagation after interaction with the 
array. The ADF calculation includes the area inside the array.

This system has mirror symmetry about the horizontal axis. The 
apparent asymmetry in the results, particularly noticeable in the ADF, 
is due to aliasing between the array and the simulation cell grid, 
and would be reduced for a higher-density grid. Another non-mirror-
symmetric element, shown in Fig.  2, is the 13-gon prism used to 
represent a cylinder, though the effect of this is negligible.

4. Results and discussion

There are several facets to the interaction between the array waveg-
uides and the impinging water surface waves. We begin with a descrip-
tion of the ‘blocking’ behaviour of the waveguides; that is, the capacity 
of a waveguide to prevent wave energy from reaching the leeward side 
of the array. This behaviour depends, to varying degrees according to 
the various waveguides, on the primary Bragg resonance.

We then describe other Bragg diffraction behaviour. As we are 
dealing with three-dimensional simulations of 2-dimensional arrays, 
we have the opportunity to observe non-primary Bragg resonances 
characteristic of the rotational symmetry of the waveguides. These 
cause effective redirection of the wave energy.

We finish with a description of the transmission of wave energy 
through the waveguides, which is accompanied and enabled by the 
establishment of a periodic relationship between wave and waveguide.
5 
4.1. Blocking

The capacity of an array to remove intensity from an area behind 
the array versus the angular frequency of the incoming waves 𝜔, was 
measured to give ‘blocking’ curves, which are presented in Fig.  4 for 
each array. Blocking dips correlate with complete or incomplete band 
gaps. Using the ADF described above to compile this data presents 
two problems: firstly, it is strongly directionally selective; secondly, 
its calculation includes data inside the array. These problems limit its 
applicability to the question of how effective a given array is at blocking 
waves, so we take another approach. In the inset in Fig.  4, we indicate 
a region of interest (ROI) to the right of the array. All datasets in the 
figure are generated using this ROI, with the mean value of intensity 
(as defined above) within the ROI used to represent the capacity of an 
array to remove intensity from the ROI.

A numerical summary of these results is compiled in Table  2, where 
we show the maximum blocking % for any frequency, and the total 
blocking observed over the full frequency range. Earlier work by Ha 
et al. using the multiple-scattering method – in which diffracted waves 
are linked to the incoming wave and represented by Fourier–Bessel 
expansions to derive the band structure of similar arrays – shows the 
existence of complete Bloch band gaps at 𝑘𝑎∕𝜋 = 1.2 for a square array 
and 𝑘𝑎∕𝜋 = 1.6 for a hexagonal array (Ha et al., 2002). Our results show 
almost 100% blocking dips starting at lower frequencies and bounded 
by these values at the upper end.

These results indicate that a specified periodic array can constitute 
an effective strategy for blocking water wave propagation for a given 
range of angular frequencies.

In contrast, arrays 4fF and 6fH, which are identical to 4fs and 6fs, but 
with elements removed in a quasiperiodic fashion, have slightly lower 
blocking in their respective Bloch band gaps. However, they do show 
improved blocking in regions away from the major blocking dips. This 
leads to overall better blocking performance over the entire frequency 
range, as tabulated in Table  2.

Previous analytical approaches to two-dimensional problems have 
shown that the existence of zero-reflection wave modes is expected if 
and only if the scattering potential is symmetrical with respect to the 
wave propagation direction (Xie et al., 2011; Goyal and Martha, 2025). 
The behaviour of two-dimensional wave-obstacle systems cannot be 
meaningfully extrapolated to fully describe three-dimensional interac-
tions between water waves and an array waveguide. However, the 
lifting of symmetry via the addition of vacancy defects will contribute 
to the removal of zero-reflection modes, and therefore the increased 
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Fig. 3. Example output from Capytaine, processed with MATLAB. Hexagonal array, 𝑘𝑎∕𝜋 = 1.288. (a,c): The real and imaginary components of the solution to the wave equation, 
with the array superimposed. (b): The real component with the incoming waves subtracted to aid identification of diffracted waves. The colourbar indicates that each plot is 
normalized to its own maximum and minimum values. (d): intensity, defined as the sum of the squared components. For equal intensity to the incoming waves, this has unit value 
(12 + 02 = 1). (e): the angular distribution function of the intensity, superimposed on the intensity map. Each point on the polar curve is the mean value of a profile plotted from 
the centre to the perimeter of the intensity map.
blocking outside of the band gap. This loss of symmetry also dis-
rupts the primary Bragg resonance, resulting in some transmission of 
frequencies inside the band gap.

A hexagonal lattice is denser than a square lattice of the same lattice 
parameter. Therefore, of the periodic arrays, 6fs has the highest filling 
fraction, which seems a reasonable explanation of the slightly better 
blocking performance of the hexagonal arrays. When this is combined 
with symmetry removal via the addition of vacancy defects, the com-
bination of low filling fraction and optimal blocking performance is 
achieved.

For the quasiperiodic arrays based on 𝜏, or on higher rotational 
symmetries, the blocking curves are characterized by more dips, that 
individually are narrower than those for the periodic arrays. The be-
haviour of 4f𝜏 is strikingly similar to 8f, in terms of the locations of the 
blocking dips. The action of the arrays over a wide frequency range 
indicates that quasiperiodic lattices could contribute to broadband 
blocking strategies in addition to their rotational isotropy (which we do 
not investigate here). The quasiperiodic arrays cannot by definition be 
perfectly periodic, or symmetrical, in the propagation direction, which 
limits the possibilities for both zero-reflection modes and a Bloch band 
gap.

The overall relative behaviour of the arrays according to their 
geometry is analogous to the situation of diffraction from crystals. 
Quasicrystals, due to their quasiperiodicity, have a diffraction pattern 
of infinite density. In practice, most of the diffraction peaks are too dim 
to observe, so a discrete diffraction pattern is observed. This pattern is 
of lower intensity than that from a periodic crystal, in which the scat-
tering planes contributing to a particular low-index peak are far more 
numerous than those for a quasicrystal. Our quasiperiodic arrays 4f𝜏 , 
6fHc, 8f and 10f show analogous behaviour in their multiple blocking 
dips which each are smaller than those for the periodic arrays. This 
behaviour is reminiscent of the fractal transmission structure exhibited 
by quasicrystalline metamaterials (Zolla et al., 1998; Davies et al., 
2023).

The difference between the 6fH and 6fHc blocking curves is notable, 
as they are based on the same underlying lattice but with a different 
basis location. There therefore seem to be at least two independent 
6 
Table 2
Blocking performance of arrays.
 Array Maximum blocking Maximum Total blocking over  
 per frequency (%) 𝜔 (rad s−1) [𝑘𝑎∕𝜋] frequency range (%) 
 4fs 99.2 5.6 [1.02] 31.6  
 4fF 97.6 5.6 [1.02] 32.9  
 4f𝜏 84.2 6.0 23.4  
 6fs 98.8 6.8 [1.50] 33.4  
 6fH 96.4 6.6 [1.41] 36.5  
 6fHc 54.8 6.3 15.6  
 8f 70.1 6.1 15.4  
 10f 68.0 6.3 16.7  

components to the blocking behaviour: one dependent on standing 
waves in a periodic lattice, after the Bloch theorem, and one dependent 
on the underlying quasiperiodic ordering. In the blocking from 6fH the 
curve is dominated by the component from the periodic array, whereas 
in the blocking from 6fHc, this component is entirely absent, revealing a 
blocking curve with the same characteristics as the other quasiperiodic 
arrays.

4.2. Bragg diffraction

In x-ray and electron crystallography, a beam of x-rays or electrons 
is made incident on a crystal. The scatterers (atoms) in a crystal can 
be grouped into families of parallel planes of atoms, where one is 
differentiated from another via its Miller indices. The Miller indices are 
the numbers of unit cells in each direction to define a family of planes 
via its normal. For example, (001) in a cubic crystal involves moving 
0 unit cells in 𝑥, 0 unit cells in 𝑦 and 1 unit cell in 𝑧; this defines 
the normal to, and thus refers to, the 𝑥𝑦-planes [(010) refers to the 
𝑥𝑧-planes, (100) refers to the 𝑦𝑧-planes]. Each unique family of planes 
has a unique set of Miller indices, and produces a family of harmonic 
peaks in the diffraction pattern. The angle at which a peak is located is 
given by the Bragg law 𝑛𝜆 = 2𝑑 sin 𝜃, where 𝑑 is the separation between 
planes.

In a two-dimensional array of scatterers, the planes are now lines 
of scatterers, with particular separations. In general, all of the arrays 
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Fig. 4. Blocking curves for the arrays with monochromatic waves incident from the left, against 𝜔. The curves represent the mean value in the crosshatched area of the intensity 
graph shown in the lower-right corner. The shaded region represents the blocked waves. Each curve is plotted with a unitary 𝑦-scale. The 𝜔 𝑥-scale is for all curves. For curves 
obtained from an essentially periodic array, relevant values of 𝑘𝑎∕𝜋(= 𝜔2∕𝜋𝑔) are provided (blue).
produce strong diffraction when the Bragg condition is satisfied by one 
or more separations in the array. The diffracted beams are directional 
and diffuse, which is consistent with the small number of scatterers in 
the arrays (Liu et al., 2019).

Here, we use the Bragg law to extract the apparent interlinear 
distance 𝑑 of the arrays when the wavefront is normal to the array. For 
infinite periodic arrays 𝑑 is a simple function of 𝑎, the lattice parameter. 
For finite periodic arrays, it is a function of 𝑎 with an error due to the 
finite radius of the scatterers.

For quasiperiodic arrays, there is no single lattice parameter, though 
examination of the arrays reveals that their geometries depend on 
arrangements of two characteristic separations. For example, in the 
Penrose lattice 10f, these separations are 1 m, the rhombus edge 
length, and 𝜏−1 m, the width of narrow rhombi. Diffraction peaks 
then arise from every possible combination of these distances, with 
relative intensities given by the relative density of occurrences of each 
combination. For more discussion on this topic, the reader is referred 
to e.g. Diehl et al. (2003), Lifshitz (2002).

All the arrays have been simulated over the range 3.0 < 𝜔 < 8.0. 
The procedure we have used in Fig.  5 is:

1. Identify the 𝑛-fold symmetry of the array
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2. Select the value of 𝜔 that produces diffraction at the expected 
angle (i.e., through the side of the 𝑛-gon adjacent to the side 
impinged upon by incoming waves)

3. Calculate 𝑑 from known 𝜃 and 𝜔 using the Bragg law.

Close to the Bragg angles for a given lattice, constructive interfer-
ence may occur for a range of frequencies, with the diffracted beam 
sweeping a concomitant range of angles. Therefore, it is appropriate to 
use the Bragg law to extract 𝑑 only when a lattice has one or more easily 
identified directions of symmetry. Fig.  5 shows this analysis for the 4fs, 
6fs, 8f, and 10f arrays, where a black arrow indicates the incoming 
and diffracted wave direction and angle associated with the rotational 
symmetry 𝑛𝑅 of the array (𝜋∕2 − 𝜋∕𝑛𝑅). For the simple square array, the 
2D Miller indices of the line family are (11), and 𝑑 is found to be 
close to the expected value of 

√

2∕2. For the simple hexagonal array, 
the lines are in the 2d hcp (100) family. Adjacent lines in this family 
have 𝑑 =

√

3∕2; we observe close to twice this value, as this is the 
Bragg reflection available in our frequency range. The deviation from 
the expected values is consistent with the finite size of the array and 
the finite radius of the scatterers. For example, for array 4fs, scattering 
is evident from a continuous range of lattices between those defined by 
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Fig. 5. 2-dimensional Bragg diffraction from a subset of the arrays. Overlaid in dotted lines are the high-symmetry 𝑛-gons associated with the rotational symmetries of the arrays. 
Black arrows indicate the incoming wave direction and angle associated with the rotational symmetry 𝑛 of the array (𝜋∕2 − 𝜋∕𝑛). Variables 𝑑 and 𝜃 correspond to those in the 
Bragg law. The white lines are a visual representation of the line family reconstructed from the Bragg law without knowledge of the scattering array. The data presented is the 
real component (see Section) with incoming waves subtracted.
the innermost points and outermost points of the cylinders in the array. 
In any finite periodic array, the number of elements and the dimensions 
of the array lead to a minimum total number of lines (𝑁lines) belonging 
to any set of Miller indices; in array 4fs, at an angle of 𝜋∕4 rad, (Miller 
indices (11)), 𝑁lines is 11. This gives an approximate ±5% error from 
the limits of 𝑑, given by (𝑁lines ± 4𝑅cylinder∕

√

2) ÷𝑁lines, where 𝑅cylinder is 
the cylinder radius.

The 4fF, 6fH, and 6fHc arrays show the same broad behaviour as the 
simple structures with this analysis. The 8f and 10f arrays have well-
defined scattering angles, which permits the extraction of an apparent 
‘interlinear’ distance, shown in the figure as 𝑑.

The 𝜏-scaled 4–fold array 4f𝜏 , not shown here, has ambiguous 
behaviour: although it has 4–fold symmetry, it never strongly diffracts 
from a set of lines at an angle of 𝜋∕4 rad as expected. However, weak 
diffraction at multiple wavelengths yields values for 𝑑 of 1.00 m and 
1.39 m.

4.3. Lattice coherences

In our data, transmission of surface wave energy through an array 
(visualized as intensity downstream of the array) is usually observed 
simultaneously with a periodic variation in intensity inside the array. 
The period is expressed via a simple ratio between the array periodicity 
8 
and the incident surface wavelength. We call this periodic variation in 
intensity a lattice coherence (LC).

Various LCs were observed across the arrays, corresponding with 
effective transmission. In each case, the wavelength is distorted from 
the incident wavelength to fit the LC. The pattern of intensity within 
the array is examined and the period and hence unit cell determined 
via feature correlation. Following this, the number of wave crests in the 
unit cell of the LC is counted. The number of lattice periods is readily 
countable by superimposing the array on the data.

In Fig.  6, we explore the intensity maps for the 4fs array, the 
simplest case, and the structurally similar 4fF array, for certain values 
of 𝜔. The angular frequency 𝜔 is an input variable, and runs from 3.0 
– 8.0 rad s−1 in increments of 0.1. In each panel for the 4fs array, we 
list certain values:

• 𝜔𝑖: the angular frequency of the incident surface wave (rad s−1)
• 𝑘𝑎∕𝜋: a wave-lattice structure interaction parameter, provided for 
comparison to the work of Ha et al. (2002)

• 𝜆𝑖: the incident surface wavelength, calculated from 𝜆𝑖 = 2𝜋𝑔
𝜔2

• 𝜆𝑎: the wavelength of the wave inside the array adjusted for the 
lattice index of refraction, given by 𝜆𝑎 = 𝜆𝑖∕𝑛, where 𝑛 is the 
refractive index calculated from the filling fraction of the array 
𝑛 =

√

1 + 𝐹𝐹  (Ha et al., 2002)
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Fig. 6. Upper half : LCs and reflection in array 4fs. Plots are of intensity, normalized to the range indicated. Further discussion is in text. Lower half : the corresponding intensity 
plots for array 4fF, showing disruption of LCs.
• 𝛥𝜆: the fractional difference between 𝜆𝑎 and the LC ratio, or 
wavelength inside the array, 𝛥𝜆 = 1−𝜆𝑎 ÷𝑁𝑝∕𝑁𝜆; this is a measure 
of the distortion the waves undergo to reach LC

• LC ratio (at the bottom of each relevant panel): the ratio of 
number of lattice periods (𝑁𝑝) to number of wavelengths (𝑁𝜆); 
this is numerically equal to the wavelength of the waves inside 
the array, given that the lattice period is 1 m.

Identifiable LCs are indicated; these follow a notation in which the 
numerator is the number of lattice parameters and the denominator is 
the number of wavelengths. A graphical representation of the LC is also 
shown, showing the relationship between the surface waves (white) and 
the array periodicity (red).

We borrow a phrase from condensed matter physics: higher order 
commensurate (HOC), to describe the situation where a LC is visible via 
a periodic pattern of intensity, but where a complete cycle of the LC 
does not fit inside the array.

For array 4fs, LCs are strongly correlated with transmission, and, 
to achieve LC, the wavelength inside the array may be distorted by 
9 
up to 𝛥𝜆 = 8.2% in our data. A LC results in a rational relationship 
between wave and array: waves at the same position in each unit cell 
of a LC encounter a scatterer at the same angle of phase. Each unit 
cell is therefore symmetrical; the transmission function for each unit 
cell therefore has zero-reflection modes, and the stacking of unit cells 
across the array extends the zero-reflection modes across the array.

The large degree of distortion achieved to gain LC is strongly sug-
gestive that the waves will follow such a LC even if the array undergoes 
a moderate transformation. We leave this possibility for future work.

The corresponding intensity maps for array 4fF, based on a square 
lattice with elements removed in a Fibonacci sequence, are shown in 
the lower half of Fig.  6 for comparison. In analogy to the scattering of 
electron waves by defects in periodic crystals (Bloch, 1929), the LCs 
observed in 4fs are strongly disrupted by the defects in 4fF, resulting in 
reduced transmission. The mechanism for this disruption is the removal 
of symmetry and periodicity, and therefore zero-reflection modes.
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5. Conclusions

We have used the open-source Capytaine software to investigate the 
behaviour of water surface wave array waveguides for a range of array 
geometries, with the number of array elements ranging from 199–288. 
Using this approach, we have successfully replicated an earlier result 
that finds band gaps for some of these array types (Ha et al., 2002), 
and indeed have shown the existence of band gaps for all the arrays, 
strongly indicating that this is a viable strategy for blocking and/or 
reflecting wave energy. Our methodology allows us to directly observe 
many wave phenomena in real space, for example Bragg diffraction, 
refraction and resonance. Significantly, our use of simple archetypes of 
periodic and quasiperiodic lattices demonstrates the potential of this 
approach to investigate any kind of array waveguide within the linear 
water wave regime.

A particularly striking result is the degree of reflection that is 
achieved by many of these geometries. Nearly 100% reflection is 
observed in several cases, strongly supporting the adoption of such 
arrangements in coastal defence strategies.

Of the arrays tested, the periodic arrays and two quasiperiodic 
arrays are characterized by a single lattice parameter. The blocking 
curves of these arrays are characterized by two large blocking dips 
caused by the primary Bragg resonance and formation of a Bloch band 
gap.

The quasiperiodic arrays based on the golden ratio 𝜏 or on higher-
order rotational symmetries generated blocking curves characterized by 
several blocking dips that are smaller than those for periodic arrays.

The array with the most effective blocking over the frequency range 
is hexagonal with quasiperiodically located vacancy defects. This array 
also has the lowest filling fraction of those studied.

Transmission through the waveguides is heavily influenced by re-
lationships between the wavelength and the array geometry, here 
called lattice coherences (LC). These LCs can be easily disrupted by, 
e.g., removing array elements, further enhancing the ability of array 
waveguides to block wave propagation. Here, we have placed vacancy 
defects in a systematic quasiperiodic fashion. Future work could explore 
different geometries of vacancies, for example, periodic or random.

Beyond this, the observation, from simple inspection of Fig.  6, that 
the waves are in some kind of LC for a greater range of frequencies than 
is blocked by band gaps, strongly suggests that it may be more effective 
to control waves by using the transformation-optics-inspired approach 
of modifying the arrays to aid propagation in preferred directions.

In this work, we have normalized the arrays by using the same array 
element dimensions. To extract the detailed behaviour of geometry in 
isolation from such confounding factors as array density, it may be 
instructive to perform the study normalized to other factors, such as 
the array refractive index, which can be modified by changing element 
radius and thus filling fraction.

The use of full non-linear potential flow calculations in future appli-
cations of this approach would allow investigations of energy transfer 
between different modes.

Finally, the results highlight the need for experimental investiga-
tions of array waveguides. Here, we probe only the linear regime, 
and find significant opportunities. When the full range of water sur-
face wave phenomena are allowed to interact with array waveguides, 
additional avenues for research may become apparent.
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