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New Insights into Serbian Cave Bear (Ursus spelaeus) Diet and Ecology Using 
Bone Collagen δ13C and δ15N Analysis in the Context of European Cave Bear 
Extinction
Jennifer R. Jones a,b, Rhiannon E. Stevens c, Dušan Mihailović d, Bojana Mihailoviće and Ana B. Marίn- 
Arroyo b

aCentre for Field Archaeology and Forensic Taphonomy, University of Central Lancashire, Preston, UK; bGrupo de I+D+i EVOADAPTA 
(Evolución Humana y Adaptaciones durante la Prehistoria), Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, 
Spain; cInstitute of Archaeology, University College London, London, UK; dDepartment of Archaeology, University of Belgrade Faculty of 
Philosophy, Belgrade, Serbia; eDepartment of Archaeology, National Museum of Belgrade, Belgrade, Serbia

ABSTRACT  
The extinction of the cave bears (Ursus spelaeus) and the factors leading to their demise have 
been widely discussed. Environmental change, dietary inflexibility, human predation, and 
resource competition all potentially contributed to their decline. Determining the ecological 
and dietary behaviour of cave bears is crucial in contextualising their extinction. Here, bone 
collagen δ13C and δ15N evidence from the site of Šalitrena Pecína (Serbia), from a cave bear 
population dating to 40.2–37.9 kyr cal. BP is used to explore their dietary behaviour. Large 
ranges in δ13C and δ15N values suggest consumption of varied plants across an isotopically 
diverse landscape. Pan-European comparisons of cave bear δ13C and δ15N values are 
indicative of local adaptions to the landscape with flexibility in plant types consumed across 
different ecological zones.  A mosaic pattern of extinction, influenced by habitat and 
environmental pressures associated with cooling conditions likely impacted on extinction of 
the species. Reflecting on the ecology of cave bears, can help to support conservation 
efforts for species under threat today.  European brown bears (Ursus arctos), mirror past 
cave bear population distributions. Supporting habitat creation and connectivity between 
populations may help to minimise the impact of environmental change and anthropogenic 
activity on European brown bears. 
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Introduction

The Late Pleistocene was characterised by megafauna 
extinctions (Koch and Barnosky 2006; Lister and Stuart 
2008). Cave bears (Ursus spelaeus Rosenmüller, 1794), 
once widespread across continental Europe, became 
extinct around 28–25 kyr BP, with late populations 
spread across the countries of Spain (Grandal-D’An-
glade et al. 2006), Italy (Terlato et al. 2019), Poland 
(Baca et al. 2016; Nadachowski 2009), Hungary (Len-
gyel and Mester 2002), Germany (Bocherens et al. 
2014; Münzel et al. 2011), and Slovakia (Sabol et al. 
2014) indicating a simultaneous extinction across 
their spatial range. The latest cave bear specimens 
found to date are from the NE Italian sites of Paina 
Cave from units 5 and 6, which date to 19,686 ± 54 
(ETH-79366) and Trene Cave, macro unit B, dating 
to 19,948 ± 55 BP (ETH-79368) (Terlato et al. 2019). 
The extinction of cave bears has become the subject 
of academic debate, with climate change (Lister and 
Stuart 2008; Pacher and Stuart 2009), human predation 

(Gretzinger 2019; Terlato et al. 2019; Wojtal et al. 2020), 
predation by carnivores (Bocherens 2015; Diedrich 
2012; 2014b) and dietary inflexibility (Naito 2020) all 
being proposed as contributing to their demise. Several 
of the aforementioned factors threaten a host of species 
today, which is of great concern given the global biodi-
versity crisis. Research into the palaeoecology (habitats, 
diets, and behaviour) of past species using stable iso-
tope and multi-proxy methods can provide insights 
into the factors that contributed to the extinction of 
past species (Jones and Britton 2019), which in turn 
can aid with developing conservation strategies for cur-
rent day fauna that are at threat of disappearing. Today, 
brown bears (Ursus arctos Linnaeus, 1758) are threa-
tened in Europe, with only four isolated populations 
remaining from a once-thriving species (Zedrosser 
et al. 2001). Anthropogenic factors, including hunting, 
deforestation, and loss of habitats through agriculture 
have been identified as threats to existing populations 
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(Swenson et al. 2000), affecting their diet and hiber-
nation patterns. Understanding the palaeoecology of 
extinct bear populations can help develop successful 
conservation strategies to protect the declining bear 
populations in Europe today.

Exploring Potential Drivers Behind Cave 
Bear (Ursus spelaeus) Extinction

Initial theories have suggested that humans played an 
important role in cave bear extinction through both 
competition with the species, and predation (Kurtén 
1958). Archaeological evidence has shown that Nean-
derthals and cave bears (sensu lato) often interacted in 
similar niches. Cut marks and carnivore tooth punc-
ture marks on cave bear and brown bear bones associ-
ated with Neanderthal-made Mousterian technology 
were found at Grotta Rio Secco and Grotta Fumane 
in Italy (Romandini et al. 2018), and these taphonomic 
alterations show that bear species were at times preyed 
on by humans, and that all three species competed for 
resources, putting pressure on habitat niches. Nean-
derthals also used cave bear bones as part of their 
toolkit as evidenced by the bone retouchers at Sclandia 
Cave (Belgium) (Abrams et al. 2014). Cave bears also 
appear to have had a symbolic role, as suggested by the 
Mousterian incised cave bear vertebra from Pešturina 
cave in Serbia (Majkić et al. 2018). With the arrival of 
modern humans, such interactions continued, for 
example at Gargas cave (France) where a cut and 
sawn cave bear fibula and a modified incisor showed 
that the species was also being used as a raw material 
(Vercoutere, Juan-Foucher, and Foucher 2006). 
Archaeologically, predation of cave bears by humans 
has been observed at sites such as Hohle Fels, where 
a Gravettian cave bear vertebra was found with a 
flint projectile embedded (Münzel and Conard 
2004). Wider archaeological evidence indicates a com-
plex relationship between humans and cave bears, 
with populations occupying the same caves, such as 
Chauvet, at different times (Pettitt and Bahn 2015). 
It is possible that increased periods of cave occupation 
linked to a larger human population and bigger group 
sizes may have contributed to the extinction of cave 
bear populations, as suggested from studies at Grotte 
XVI in the Dordogne (France) (Grayson and Delpech 
2003). DNA analysis of cave bear specimens has 
implied that there was a drastic decline in its popu-
lations starting at about 50 kyr BP with a loss of gen-
etic diversity (Stiller 2010), coinciding with the arrival 
of modern humans in Europe. More recent mtDNA 
evidence has further strengthened this hypothesis, 
showing a decreasing female cave bear population 
size at around 40 kyr BP, which corresponds with 
the onset of the Aurignacian, supporting the hypoth-
esis that modern humans were a contributing factor 

to the extinction of the species (Gretzinger 2019). 
The arrival of modern humans appears to have accel-
erated the extinction process of the cave bear.

Predation by carnivores may also have had an 
impact on cave bear populations (Diedrich 2012; Die-
drich 2014a). A decline in mammoth steppe fauna is 
thought to have pushed carnivores such as wolves, leo-
pards, steppe lions and hyenas towards preying on 
hibernating cave bears (Diedrich 2012). The presence 
of hyena tooth marks and perforations on cave bear 
cub femora from sites in Central Europe suggests 
that spotted hyenas were scavenging cub remains 
from dens (Diedrich 2014a). However, the extent to 
which this occurred is not fully known. Cave bears 
were alternating space use with humans and carni-
vores, which may have resulted in resource compe-
tition, contributing to their extinction.

Undoubtedly, the highly variable climatic through-
out MIS 3 and the harsh conditions of MIS 2 provided 
the backdrop to the extinction of various megafauna 
(Barnosky et al. 2004; Koch and Barnosky 2006), and 
this, in combination with factors such as predation 
may have resulted in cave bear extinction (Mondanaro 
2019). Specifically, climatic cooling, affecting veg-
etation productivity, may have been at least partly 
responsible in some regions for cave bear decline (Lis-
ter and Stuart 2008; Pacher and Stuart 2009), although 
Western cave bear lineages have been found in cold 
locations as far east as the Altai Mountains (Knapp 
2009), suggesting an ability to cope with more extreme 
conditions. Climatic change, in combination with a 
degree of human predation, may explain the demise 
of this species, showing the interrelated nature of 
these possible agents of extinction. Humans, cave 
bears and other species would all have had to adapt 
and cope with changing conditions, potentially caus-
ing niche overlaps and behavioural shifts. Under-
standing the diet and ecology of cave bears is central 
to the debate surrounding the extinction of the species 
and the extent to which environmental change and 
niche competition may have affected their survival.

Cave Bear Diet and Ecology

Cave bear cranial morphology alongside tooth wear 
patterns suggested that this species was predominantly 
herbivorous (Kurtén 1958; Kurtén 1976; Pacher and 
Stuart 2009), although geometric morphometrical 
studies (Figueirido, Palmqvist, and Pérez-Claros 
2009), and dental microwear analysis, which reflects 
dietary behaviour during the last few days-weeks 
prior to death indicate some omnivorous behaviour, 
particularly during the predormancy period (Peigné 
et al. 2009; Ramírez-Pedraza 2019). Research into 
cave bear diet has applied bone collagen δ13C and 
δ15N analysis of individuals found in Late Pleistocene 
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sites across Europe, which has supported a hypothesis 
of a predominantly herbivorous diet (Bocherens 2019; 
Nelson et al. 1998; Van Heteren and Figueirido 2018). 
At the Romanian site of Peştera cu Oase a negative 
shift in δ13C values (mean value −21.5‰ from 21 
specimens) is consistent with other European cave 
bear populations, whereas the elevated δ15N values 
(between 5.7 and 9.8‰) observed in all but one speci-
men has suggested omnivorous diets for some individ-
uals (Richards 2008; Trinkaus and Richards 2013). 
Counter-arguments infer that elevated δ15N values 
may be reflecting a hibernation effect (D’Anglade 
and Mosquera 2008). Consumption of plants with 
elevated δ15N values including fungi, forbs, and gra-
minoids may also be partially responsible for some 
of the stable isotope values observed in European 
cave bears (Bocherens 2019).

In recent years compound-specific isotopic analysis 
of Late Pleistocene cave bears from Romania has con-
tributed to the debate surrounding the diet of the 
species, as it can differentiate between trophic levels 
(i.e. omnivorous or carnivorous feeding patterns) 
and dietary sources (i.e. consumption of plants with 
high δ15N values) (Naito 2016; Naito 2020). Results 
from the phenylalanine δ15N values indicate that the 
elevated values in Romanian cave bear specimens are 
likely due to either a baseline shift in δ15N values, or 
consumption of plants with high δ15N values, or 
indeed a combination of these two, leading to the 
hypothesis that dietary inflexibility may have been 
linked to their extinction (Naito 2020). Such studies 
have highlighted the value of understanding the diet 
of local cave bear populations. Indeed, the presence 
of mosaic landscapes across Europe during MIS 3 
and MIS 2 (Jones et al. 2020; Jones et al. 2021; Peder-
zani et al. 2023; Reade 2020; Wong et al. 2020) demon-
strates the importance of characterising the ecology 
and behaviour of species on a local scale. The large 
variations in stable isotope results from cave bears 
analysed to date have indicated that local geography, 
climate, and environment were key factors influencing 
cave bear diet and ecology.

Within Europe there has been a range of cave bear 
isotope studies in Romania (Naito 2020; Richards 
2008), Belgium (Bocherens et al. 1997), Spain 
(Pérez-Rama, Fernández-Mosquera, and Grandal- 
d’Anglade 2011b), Germany (Münzel et al. 2011; 
Münzel et al. 2013), France (Bocherens et al. 2006), 
Italy (Terlato et al. 2019), and the Ural Mountains 
(Gimranov et al. 2023; Kosintsev et al. 2023) amongst 
other places. There is a lack of information on the diet-
ary behaviour of cave bears in Serbia (Borić 2022) 
despite remains of the species being identified in 36 
archaeological sites and karstic features within the Bal-
kan Peninsula (Cvetković and Dimitrijević 2014). 
Only in recent years have larger-scale and multidisci-
plinary investigations into Palaeolithic archaeology in 

Serbia been undertaken (Borić 2022; Mihailović 2014; 
Mihailović and Mihailović 2023), allowing archaeo-
zoological and biomolecular investigations into 
species such as cave bears in the region. Given the 
heavy debate surrounding the meaning behind the 
elevated δ15N values of bears at the Romanian sites 
(Bocherens 2019; D’Anglade and Mosquera 2008; 
Naito 2020; Richards 2008; Trinkaus and Richards 
2013), it is surprising that to date little is understood 
about the diet of cave bears in the adjacent country 
of Serbia.

This paper uses newly generated bulk collagen δ13C 
and δ15N stable isotope analysis of cave bear speci-
mens from the site of Šalitrena Pecína (Serbia) to 
explore their diet, hibernation behaviour and species 
ecology. To date, there are no bone collagen δ13C 
and δ15N values from cave bears in Serbia, meaning 
that the results from Šalitrena Pecína provide essential 
information on this species in a new region. Compari-
sons to existing isotopic results of cave bears analysed 
from other European Late Pleistocene sites will help to 
understand geographical variations in cave bear diet 
and ecologies and how the population sampled from 
Šalitrena Pecína relates to other contemporary Late 
Pleistocene cave bears.

Cave Bears at Šalitrena Pecína

Šalitrena Pecína cave is located in the Republic of Ser-
bia, around 100 km south-west of Belgrade near Mio-
nica (Figure 1). The site is situated in the canyon of the 
Ribnica River, facing west to overlook the river. Šali-
trena Pecína cave is currently 20 m above the current 
river level, lying 277 masl (Marín-Arroyo and Mihai-
lović 2017). Excavations at the site in 2004, and 
2006–2008 revealed a series of archaeologically impor-
tant deposits spanning from the Middle and Upper 
Palaeolithic, with rich assemblages of archaeozoologi-
cal and technological material (Marín-Arroyo et al. 
2023; Marín-Arroyo and Mihailović 2017). Previous 
publications have predominantly focussed on the 
anthropogenically derived deposits in the entrance to 
the cave and have established the chronology for the 
site (Marín-Arroyo et al. 2023; Marín-Arroyo and 
Mihailović 2017).

The cave bear remains studied here derived from 
Level 3 at Šalitrena Pecína located in the interior exca-
vation area of the cave and to date have not been the 
subject of previous research at the site. A dating cam-
paign to understand the chronology of the site pro-
vided a radiocarbon date of 36,150 ± 750 (OxA- 
27948) for Level 3, which was taken from a Megalo-
ceros tooth (Marín-Arroyo and Mihailović 2017). 
The full faunal spectrum of archaeozoological remains 
recovered from Level 3 can be seen in Table 1. Cave 
bear remains were the most commonly identified 
species within the deposit (Table 1).
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Taphonomic analysis of archaeozoological remains 
from Level 3, noted by A.B. Marín-Arroyo during 
analysis, revealed extensive carnivore activity observed 
through gnaw marks, with occasional episodes of 
human activity seen through the presence of fracture 

patterns and cut marks. The zooarchaeological assem-
blage from Trench F, which forms the corridor to the 
interior part of the cave exhibited a high proportion of 
bone polishing (19% of the specimens), which is con-
sistent with cave bear trampling (Marín-Arroyo and 
Mihailović 2017) (Figure 2). The cave’s interior sec-
tion, where the Level 3 material derives from, appears 
to have been a den for cave bears, as well as a place 
where secondary carnivore scavenging activities took 
place, with humans and bears alternating their occu-
pation patterns in this space (Marín-Arroyo and 
Mihailović 2017).

Materials and Methods

The Level 3 cave bear remains were identified by A.B 
Marín-Arroyo during archaeozoological analysis of 
the wider faunal assemblage from Šalitrena Pecína. 
Cave bear remains were identified using reference col-
lections held at the Department of Archaeology at the 
University of Belgrade to determine taxa and skeletal 
element, in addition to consultation of fossil collec-
tions from the Natural History Museum in London. 
Skeletal reference guides including Pales and Lambert 
(1976) and Torres Pérez-Hidalgo (1984) were also 
used.

For the bone collagen δ13C and δ15N analysis 11 
cave bear specimens from 10 different bones were 
sampled, with the material deriving from Level 3 
within squares W20, W21, X22, V20, V21 and U21 
(Figure 2). All bones selected for analysis were fully 

Table 1.  The full faunal spectrum recorded from Level 3, 
within the interior of Šalitrena Pecína cave, showing the 
dominance in the representation of cave bears within this 
level.
Species NISP

Mammuthus primigenius 10
Equus ferus 13
Bos primigenius 1
Bos/Bison sp. 37
Capra ibex 24
Rupicapra rupicapra 6
Megaloceros sp. 3
Cervus elaphus 44
Capreolus capreolus 1
Sus scrofa 2
Ursus spelaeus 185
Crocuta spelaea 41
Canis lupus 15
Vulves vulpes 6
Panthera pardus 3
Panthera spelaea 1
Lynx lynx 1
Felis silvestris 1
Mustela sp. 1
Leporidae 5
Rodentia 1
Bird 8
Large mammal 134
Medium mammal 361
Small mammal 62
Indeterminate 2612
Total 3578

Figure 1. Location of Šalitrena Pecína cave within the Republic of Serbia (A), the exterior of the cave (B) and some of the post-
cranial cave bear remains found in Level 3 from the interior of the cave (C).

4 J. R. JONES ET AL.



fused and specimens are all thought to have been at 
least 2–3 years old (based on the earliest fusing 
bones represented in the assemblage) at the time of 
death. Age estimates follow Ursus arctos fusion ages, 
which are considered an appropriate analogy for 
extinct cave bears (Weinstock 2009). The exact num-
ber of individuals represented in the samples is 
unknown, due to the challenges of using NISP and 
MNI quantification when studying disarticulated 
bone assemblages, which can respectively over- and 
under-estimate the number of individuals represented 
(Grayson 1979; Lyman 2008). Sampling of the cave 
bear specimens aimed to target individuals from 
different squares and sub-squares within the cave to 
try and ensure that different individuals were rep-
resented. Two samples were taken from specimen 
424 (sample numbers SAL62 and SAL63) to explore 
the scale of intra-individual variation. A complete 
list of specimens studied, locations, and results 
achieved is presented in Table 3.

Samples were prepared at the Dorothy Garrod lab-
oratory at the McDonald Institute (University of Cam-
bridge), following the methodology outlined in 
(Stevens et al. 2013). Collagen was extracted and 
then weighed prior to analysis using a Costech 
elemental analyser coupled to a Finnigan MAT253 
mass spectrometer. The carbon and nitrogen results 
achieved are reported using the delta scale in units 
‘per mil’ (‰) relative to internationally accepted 

standards VPDB and AIR, respectively (Hoefs 1997). 
All specimens were analysed in duplicate to ensure 
reproducibility, and an average of these values was 
used. Based on replicate analyses of international 
(IAEA: caffeine and glutamic acid-USGS-40) and in- 
house laboratory standards (nylon, alanine, and 
bovine liver) analytical precision of quality-control 
standard replicates was ≤ 0.09 for δ13C and δ15N (see 
Supplementary Table 1 for replicate results achieved). 
Comparative ungulate remains discussed in this paper, 
taken from Marín-Arroyo et al. (2023) were also pre-
pared and analysed at the same facility using an iden-
tical methodology.

Bone collagen δ13C and δ15N data from Late Pleis-
tocene European cave bear assemblages was used as a 
comparison for the Šalitrena Pecína cave bears, and 
the full comparative dataset, with bibliographic refer-
ences is available in Supplementary Table 2.

Results and Discussion

The Cave Bear Remains from Level 3 at 
Šalitrena Pecína

Regarding the archaeozoological remains of the cave 
bears from Level 3 at Šalitrena Pecína, the assemblage 
comprised of a NISP of 185, of which 137 were dental 
remains (Table 2). Of the teeth studied 35 of these 
were deciduous teeth from cubs within their first 1– 

Figure 2. A site plan of the interior of Šalitrena Pecína cave (A), with a focus on the squares within the interior section of the cave 
where the cave bear remains were found (B), and the stratigraphic section showing geological Level 3 (shaded in grey), where the 
cave bear remains were derived from (C). Larger versions of panels A, B and C can be seen in Supplementary Figures 1–3.
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2 months of life and the remaining 48 fragments of 
postcranial remains were from the lower limb, includ-
ing 23 carpal, tarsal and phalanges, five long bones, 
eight axial elements (vertebrae and ribs) and 12 mand-
ible and skull pieces (Table 2). Regarding the MNI of 
the population, the assemblage represents at least 
three senile individuals, five adults, two juveniles and 
nine infants based on repeated teeth of different 
ages, in addition to wider consideration of tooth 
dimensions and toothwear that enable different indi-
viduals to be distinguished (Table 2). Due to the frag-
mentation of the dental remains it was only possible to 
estimate the sex of four individuals using canine 
measurements, with three canines (two left and one 
right) being from males, and one likely being a female 
(See Supplementary Table 3).

Šalitrena Pecína Cave Bear Diet and Ecology 
inferred from δ13C and δ15N analysis

Collagen was successfully extracted and analysed from 
10 of the 11 bone specimens, which all had a collagen 
yield of >3% indicative of well-preserved collagen 
(Ambrose 1990; Van Klinken 1999). Only one speci-
men (SAL67) yielded insufficient collagen for analysis 
(Table 2). Standard quality control criteria were used 
to assess the δ13C, and δ15N data. All analysed samples 

had C: N atomic ratios between 3.1 and 3.2 indicating 
of good bone collagen preservation (Ambrose 1990; 
DeNiro 1985). The %C values for the samples ranged 
between 21.0% to 43.0%, with %N ranging between 7.7 
and 16.1%, with most specimens falling at the upper 
end of this range (Table 3). The δ13C values ranged 
from −22.4‰ to −18.8‰ (mean = −21.0‰, 1σ =  
0.96), with δ15N values ranging from 2.5‰ to 7.8‰ 
(mean = 5.8‰, 1σ =  1.71) (Figure 3).

The cave bear δ13C and δ15N values observed from 
Šalitrena Pecína are mostly consistent with the bears 
consuming a diet based on C3 resources, as would be 
expected for this period in Europe. The δ13C and δ15N 
values fall mainly within the range for the hunted ungu-
lates from the site, except for one individual that has a 
δ13C value higher than the herbivores of −18.8‰ 
(Figure 3, Table 3). The range of 3.6‰ of the cave 
bear δ13C values is larger than that of any other species 
analysed (Figure 3, Table 3). The cave bears show a gen-
eral trend towards lower δ13C values in comparison to 
the other herbivores, which could be due to these indi-
viduals foraging in wooded environments, a phenom-
enon observed in other European cave bears (Krajcarz 
2016), and has been noted in bone collagen δ13C values 
at sites including Toll cave (Moià, Catalonia, NE Iberia) 
(Ramírez-Pedraza 2019), and Scladina in Belgium 
(Bocherens et al. 1997). The lower δ13C red deer value 

Table 3.  Cave bear bone collagen δ13C and δ15N results with quality indicators, taken from inside Level 3 in the inside of the cave 
at Šalitrena Pecína. Fusion age estimation follows Weinstock (2009).
Sample 
number Square

Sub 
Square

Bone ID 
Number Element

Min. Fusion 
age (years)

% 
collagen

δ13C 
‰ δ15N ‰ %C %N C: N

SAL62 W20 C 424 Metapodial 4–6 3.9 −22.4 7.8 39.3 14.7 3.1
SAL63 W20 C 424 Metapodial 4–6 3.9 −21.4 5.2 39.6 14.8 3.1
SAL69 W20 D 735 Phalanx 1 2–3 4.1 −20.5 2.5 40.0 14.9 3.1
SAL64 W20 D 734 Carpal n/a 3.3 −21.2 5.9 21.0 7.7 3.2
SAL66 W21 A 651 Phalanx 3 2–3 3.3 −18.8 6.7 37.9 14.3 3.1
SAL71 W21 B 693 Phalanx 2 2–3 4.5 −21.1 5.0 30.2 11.2 3.2
SAL68 X22 D 700 Radial carpal n/a 3.8 −21.3 4.3 36.1 13.5 3.1
SAL70 V20 A 524 Ulna 5–7 3.6 −21.2 5.7 37.5 14.2 3.1
SAL61 V20 B 661 Phalanx 1 2–3 3.7 −21.3 7.8 43.0 16.1 3.1
SAL67 V21 D 599 Metapodial 4–6 0 No collagen preserved
SAL65 U21 D 641 Ulna 5–7 5.4 −21.6 6.7 38.3 14.3 3.1

Table 2.  NISP counts of cave bear skeletal elements found within Level 3 inside of Šalitrena Pecína cave (columns 1 and 2), with 
further detail on the fragments of teeth that could be identified (columns 3–9).
Summary of the skeletal elements identified Summary of the isolated teeth remains

Lower isolated teeth Upper isolated teeth

Skeletal element NISP (total =185) Tooth Side R L unsided R L unsided

Skull 9 I indet. 0 0 0 0 1 0
Mandible 3 I1/I2 1 2 0 0 0 0
Teeth 137 I1 1 1 0 1 0 1
Cervical vertebra 2 12 4 2 1 0 1 1
Lumbar vertebra 1 I3 4 4 0 5 5 2
Ribs 5 I4 0 0 0 0 0 0
Ulna 1 C lacteal 9 8 1 5 8 2
Carpal 3 C 2 2 0 3 2 0
Tarsal 1 P4 4 3 0 0 0 0
Metapodial 3 M1 3 1 0 1 2 0
Phalanx 1 7 M2 2 1 0 2 2 0
Phalanx 2 7 M3 1 1 0 0 0 0
Phalanx 3 5 M indet. 0 0 2 0 0 0
Long bone 1 Total 31 25 4 17 21 6
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from Šalitrena Pecína (Figure 3) also suggests a poten-
tial canopy effect, indicating that wooded environments 
were present within the locality of the site (Marín- 
Arroyo et al. 2023). This supports the possibility of 
cave bears at the site foraging in woodland locations. 
Whilst the cave bear and red deer δ13C values are low, 
they are not so low as to suggest a dense forests, more 
an open woodland context.

Lower δ13C values have also been associated with 
a hibernation effect, where fat stores are used as an 
energy source throughout the winter months, 
meaning that there is no excretion of urine or 
faeces (Nelson et al. 1975). The lack of bodily 
secretions during the winter months has direct 
implications on fractionation within bodily tissues, 
resulting in a depletion in 13C and enrichment in 
15N (Bocherens et al. 1997; Fernández-Mosquera, 
Vila-Taboada, and Grandal-d’Anglade 2001; Hilder-
brand et al. 1996), and may have contributed to the 
cave bear δ13C and δ15N values observed at Šali-
trena Pecína.

One individual (SAL66) has a δ13C value of 
−18.8‰ (δ15N value of 6.7‰), which is higher than 
any other cave bear specimen in Europe to date 
(Table 3). This value is also outside the range of con-
temporary ungulates at the site (Figure 3). The authors 
considered the possibility that this specimen may have 
been a brown bear, especially given that the third pha-
lanx can be challenging to differentiate morphologi-
cally (Torres Pérez-Hidalgo 1984). It is not possible 
to confirm the identification using ZooMS as this 
method cannot currently distinguish between differ-
ent bear species (García-Vázquez et al. 2023). No 
brown bear remains have been found in the wider fau-
nal assemblage from the site (Marín-Arroyo et al. 
2023; Marín-Arroyo and Mihailović 2017), and 
brown bear remains are rare in cave deposits prior 

to the extinction of the cave bears (Münzel et al. 
2011), which supports the morphological identifi-
cation of this specimen as a cave bear, although 
DNA analysis would be needed to confirm this 
identification. The site is located 400 km from the 
sea, meaning that elevated δ13C values associated 
with marine plant consumption (Schoeninger and 
DeNiro 1984) can be excluded. Freshwater aquatic 
plant consumption could potentially explain the elev-
ated cave bear δ13C value as aquatic plant δ13C values 
are influenced by the isotopic composition, concen-
tration, and source of dissolved inorganic carbon 
(Clementz, Holroyd, and Koch 2008). However, evi-
dence for cave bears consuming aquatic plants has 
not been noted to date when reviewing published evi-
dence (Bocherens 2019). Consuming specific terres-
trial plant types which have distinct δ13C values 
could also explain the elevated bear δ13C result (Hea-
ton 1999). The consumption of lichen is associated 
with elevated δ13C values. This is typically seen in 
the archaeological bone collagen δ13C and δ15N values 
of species such as caribou and reindeer, which rely 
heavily on this food source (Britton 2023a; Salmi 
et al. 2020; Stevens et al. 2008), but has been suggested 
as a contributor to the diet of muskoxen on the mam-
moth steppe (Schwartz-Narbonne 2019), suggesting 
that this is not a trait unique to deer. Evidence for 
cave bears and lichen consumption is rare, 
likely occuring during times when other resources 
were not available, and consumption of plants such 
as lichens have been proposed for some cave bears 
in Europe (Vila Taboada, Mosquera, and Grandal 
d’Anglade 2001). Limited consumption of lichens, or 
similar species may have influenced the δ13C value 
of the individual from Šalitrena Pecína and could indi-
cate wide-ranging resource exploitation within the 
cave bears found at the site.

Figure 3. Cave bear δ13C and δ15N values from Šalitrena Pecína generated in this study plotted with the faunal baseline values 
from herbivores previously analysed from the site (see Marín-Arroyo et al. 2023).
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Similar δ13C values of below −19‰ have been 
observed in herbivorous Late Pleistocene brown 
bears found at Neue Laubenstein-Bärenhöhle 
(−18.7‰) and Schlüssellochhöhle (−18.7‰) in 
Germany (Döppes et al. 2008), Sclandia (−18.6‰) 
and Spy (−18.4‰) in Belgium (Bocherens et al. 
1999; Bocherens et al. 2013), and Goats Hole Cave 
in the UK (−17.3‰, −17.9% and a further two indi-
viduals with values of −18.6%) (Jacobi and Higham 
2008; Richards 2000). The lower δ13C value of the Šal-
itrena Pecína individual SAL66, which is consistent 
with values observed in wider European brown bear 
populations suggests that on occasion the niches of 
these two species may have overlapped, potentially 
during periods of habitat pressure linked to environ-
mental change, although further research is needed 
to explore this hypothesis.

The δ15N values of the bears from Šalitrena Pecína 
range from 2.5 to 7.8‰ (Table 1, Figure 2). This 
range is within those seen for the Bos/Bison sp. at the 
site, reflecting an isotopically variable landscape due 
to different environmental zones being present 
(Marín-Arroyo et al. 2023). The Šalitrena Pecína cave 
bear results typically map within the local faunal base-
line from the site, indicating a predominantly plant- 
based diet, which is consistent with the interpretations 
of cave bear stable isotope results from many sites 
across Europe (Bocherens 2019). The relatively large 
range in δ15N values of cave bears at Šalitrena Pecína 
could suggest diversity in the diet between individuals, 
reflecting either varying foraging zones, or preference 
by some individuals for nitrogen-fixing plants, such 
as those from the Fabaceae family as suggested by 
other authors (Vila Taboada, Mosquera, and Grandal 
d’Anglade 2001).

Some of the inter-individual variation in the δ15N 
values may be due to younger sub-adult bear collagen 
having a long-term isotopic signature reflecting a 
combination of both feeding on maternal milk as 
well as reflecting their mother’s hibernation metab-
olism (Bocherens et al. 2004a; Pérez-Rama, Fernán-
dez-Mosquera, and Grandal-d’Anglade 2011b). 
Newborn bears are expected to have δ15N values two 
trophic levels above their mothers, estimated to be 
around 6‰ (Lidén and Angerbjörn 1999) due to 
metabolic cycling of the mother’s proteinaceous tis-
sues during the hibernation process, which drops to 
1 trophic level (∼3‰) as the cub ages and consumes 
maternal milk (Lidén and Angerbjörn 1999; Nelson 
et al. 1998). Bears have a particularly long lactation 
period (Oftedal and Gittleman 1989), with the nursing 
effect gradually becoming more muted as bones grow 
and turnover occurs (Lidén and Angerbjörn 1999). 
Bulk collagen values in younger individuals represent 
a shorter time period than in mature adults, meaning 
that they maintain some of the isotopic signatures 
from infancy. Although all sampled elements from 

Šalitrena Pecína were fused it is not possible to 
know the exact age of the individuals analysed. The 
earliest fusing skeletal elements within the assemblage 
(phalanges) are estimated to fuse between 2 and 3 
years (Stiner 1998; Weinstock 2009), which could 
potentially still reflect a residual nursing signature if 
the animals died around that age. As the age at 
death of these individuals is not known alternative 
explanations must be considered.

Hibernation can cause organic tissues to be 
depleted in13C and enriched in 15N (Bocherens 
et al. 1997; Fernández-Mosquera, Vila-Taboada, 
and Grandal-d’Anglade 2001; Hilderbrand et al. 
1996). The higher variability in the δ15N values of 
the bear bones analysed may be linked to differ-
ences in the hibernation patterns between the indi-
viduals analysed. The hibernation effect on δ15N is 
thought to be about 1‰, based on black bears 
(Lohuis, Harlow, and Beck 2007), and further 
elevations in δ15N values may reflect longer hiber-
nation periods, resulting from prolonged winters 
arising from typically cooler climatic conditions 
(D’Anglade and Mosquera 2008; Fernández-Mos-
quera, Vila-Taboada, and Grandal-d’Anglade 2001). 
The inter-individual (and intra-individual within 
specimen 424) differences in δ15N values observed 
within the Šalitrena Pecína specimens may be 
reflecting differences in hibernation periods between 
individuals sampled in this study, linked to climatic 
change affecting food availability. To explore this 
further, the analysis of δ18Ophos of ungulate teeth 
from Šalitrena Pecína would help with understand-
ing seasonal temperatures and amplitudes at the 
site, which have been successfully applied to 
MIS 3 sites such as Axlor in Spain (Pederzani 
et al. 2023) and Abri du Maras in France (Britton 
2023b).

Bone specimen 424 (samples SAL62 and SAL63) 
showed intra-individual variability, with the two 
samples having a 2.6‰ difference in δ15N values and 
a 1‰ difference in δ13C values (Table 3). It is 
known that bone turnover in cortical bone can differ 
between the inner and outer surface, which has been 
observed in Ursus arctos femoral collagen, with the 
shaft of the bone representing isotopic values during 
adolescence when bone growth was rapid (Matsubaya-
shi and Tayasu 2019). Specimen 424 was a fused meta-
podial with a minimum fusion age of between 4 and 6 
years. Bone turnover has not been as clearly modelled 
experimentally for metapodials, but individual differ-
ences in the δ13C and δ15N values observed may be 
linked to the bone representing formation periods 
potentially with longer periods of hibernation being 
more strongly represented in one of the samples. 
Further studies of analogous modern-day hibernating 
bear species to explore changing δ13C and δ15N values 
between skeletal elements within an individual, as well 
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as throughout different skeletal elements, would be 
valuable to examine the impact of hibernation in 
bone tissues of varying turnover rates.

Šalitrena Pecína Cave Bear Diet and Ecology in 
a European Context

To understand the Šalitrena Pecína cave bear results in 
context, they have been compared to findings from 
other European cave bear populations in Europe 
from the Late Pleistocene. Table 3 shows the bone col-
lagen δ13C and δ15N value summary statistics for cave 
bears analysed across Europe, excluding sites where 

fewer than four individuals were present. This 
means that the sites of Herdengel, Hartelsgraben, 
Lieglloch, Drachenloch, Bärenloch, Conturines, 
Camiac, Tito Bustillo, Arcoia, and Pala de Rebolal 
were excluded from this table. Cave bears from Tayn 
Cave (Middle Urals) and Medvezhiya Cave (Northern 
Urals) (Kosintsev et al. 2023) have been studied but 
could not be included here as raw values and quality 
indicators were not available.

Figure 4 displays mean cave bear values from study 
sites and error bars showing 1σ from the mean, with 
individual δ13C and δ15N values shown in Figure 5
to show the spread of data across the population. 

Figure 4. Cave bear δ13C and δ15N values from across Europe are presented as their mean value with error bars showing one 
standard deviation from the men. The Šalitrena Pecína data are shown as a diamond compared with other European sites 
shown as circles and squares.

Figure 5. A bivariate plot showing cave bear δ13C and δ15N values across Europe. The Šalitrena Pecína specimens are displayed as 
large diamonds. Please see the supplementary file-Table 2 for the references for the data.
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Recent chrono-spatial modelling, based predomi-
nantly on herbivores has shown baseline differences 
in δ15N values within isoscapes of Europe during 
MIS 3 and MIS 2, which may be partly responsible 
for some inter-site differences (Reade et al. 2023), 
and an increase in altitude has been noted to produce 
decreased δ15N values of cave bears (Krajcarz 2016). 
Here, the discussion of the results focuses on compari-
sons of population ranges and standard deviations 
rather than absolute value differences between sites, 
which may be reflecting geographical, altitudinal and 
temporal variations in baseline values. This approach 
will allow for meaningful population level insights 
into the dietary behaviour of cave bears between 
different sites. Interpretations of the results by the 
original authors are also taken into account (Table 4).

The large intra-site range in δ13C values at Šalitrena 
Pecína is mirrored in sites such as Goyet, Cioclovina, 
Cova Eirós all of which have a range >3‰ (Figure 5, 
Table 3). The largest ranges in δ15N values (>7‰) 
are observed at Urşilor, Goyet, Cova Eirós and Oase 
(Table 3, Figure 5). The Šalitrena Pecína range in 
δ15N values (5.3‰) is consistent with the ranges 
seen at Cioclovina, and Paina cave (Table 3, Figure 
5). Some of the intra-population variation in the 
δ13C and δ15N values analysed at these sites may be 
due to differing ages of bears being selected for 
study, with some nursing signatures potentially 
being recognised, although the publications do not 
note that these individuals sampled were particularly 
young.

A degree of the inter-individual variation between 
the cave bear δ13C and δ15N values may be linked to 
differences in hibernation locations, or temporal vari-
ations reflecting the intensity of the winters experi-
enced (D’Anglade and Mosquera 2008; Pérez-Rama, 
Fernández-Mosquera, and Grandal-D’anglade 
2011a). Changing hibernation patterns resulting 
from climatic change has been cited as an important 
factor in cave bear extinction (Vila Taboada, Mos-
quera, and Grandal d’Anglade 2001), and insufficient 
resources in the crucial pre-dormancy period during 
times of longer hibernation could have dire conse-
quences. Incremental δ13C and δ18O analysis, as con-
ducted on bears at Biśnik cave (Krajcarz, Krajcarz, and 
Marciszak 2014), could help to explore changing sea-
sonal conditions experienced by cave bears directly, 
although as a highly destructive method this has 
understandably not been widely applied. Overall, 
the intra-population variability in the δ13C and δ15N 
values observed within wider European populations 
suggests that even when factoring in metabolic 
effects relating to environmental conditions, and geo-
graphical baseline variations, cave bear diet was not 
homogenous, reflecting a varying landscape with 
different resources available, as suggested by other 
authors such as (Robu et al. 2013).

The European cave bear δ13C and δ15N values indi-
cate a predominantly herbivorous diet, of wide-ran-
ging plant resources based on what was locally 
available, with some exceptions such as the omnivor-
ous behaviour as suggested by the δ13C and δ15N 
values of cave bears from Peştera cu Oase (Richards 
2008). Dental microwear evidence has provided a 
more nuanced understanding of dietary behaviour. 
Comparisons of cave bear dental microwear patterns 
with modern bear species of known diets has 
suggested that the species was predominantly herbi-
vorous with periods of omnivorous behaviour (Brent 
Jones and Desantis 2016). At Toll Cave (Moià, Catalo-
nia, NE Iberia) specimens dating to >49 kyr BP had 
δ13C and δ15N values indicating a herbivorous diet, 
although dental microwear indicated omnivorous 
activity occurred, suggesting plasticity in cave bear 
diet at least in Southern latitudes (Ramírez-Pedraza 
2019). Microwear evidence from 43 individuals at 
Goyet cave (Belgium) suggested omnivory prior to 
hibernation (Peigné et al. 2009), and pitting of cave 
bear teeth observed at Spanish sites indicates that 
cave bears occasionally consumed bones (Pinto- 
Llona 2013). In summary, current evidence indicates 
some flexibility in the dietary behaviour of cave 
bears. The long-term bone collagen record suggests a 
predominantly plant-based diet, whereas indicators 
from teeth suggest that occasional exploitation of 
non-plant resources occurred. Ultimately, cave bears 
appeared to have adapted to the localised environ-
ments where they were feeding, resulting in dietary 
differences between groups, as suggested at sites in 
the Swabian Jura (Bocherens et al. 2011b; Münzel 
et al. 2013). The results from Šalitrena Pecína, com-
bined with the pan-European comparisons presented 
within this paper support the hypothesis that cave 
bears had relatively flexible herbivorous diets linked 
to localised food sources available.

Implications for Understanding Cave Bear 
Ecology and Extinction

Regarding hypotheses surrounding the extinction of 
cave bears, one current theory is that cave bear diet 
was highly specialised, with a heavy reliance on plants 
and little flexibility (Naito 2020), suggesting that when 
changes in the climate and environment happened 
during the Late Pleistocene, they were not able to 
adapt. The studies from Šalitrena Pecína indicate diet-
ary plasticity of the cave bears studied, albeit within an 
herbivorous spectrum, suggesting an ability to exploit 
diverse environmental zones in the landscape. Studies 
of δ13C and δ15N values from cave bear populations on 
a pan-European scale indicate that the diet of this 
species was varied, even within populations, exploiting 
an isotopically diverse range of plant-based foods 
(Table 3, Figures 4 and 5). Although the diet of cave 
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bears was predominantly herbivorous, it was not hom-
ogenous throughout time and space and shows that 
they had the flexibility to adapt to the localised con-
ditions and resources that were available.

When we consider models of extinction of other 
species, for example, the Neanderthals, which hap-
pened in a mosaic pattern across Europe (Higham 
2014; Vidal-Cordasco et al. 2023), it appears that 
cave bear extinction may have followed a similar 
mode, with cave bears adapting to changing environ-
ments through plasticity in their dietary behaviour. As 
the colder conditions of MIS 2 approached, the associ-
ated changing vegetation suggested by (Pacher and 
Stuart 2009) may have partly been responsible for 
cave bear extinction, limiting the carrying capacity 
of the land, and causing competition for already press-
ured resources with other agents that were also occu-
pying these landscapes. Human predation or niche 
competition may have also played a role, as genetic 
evidence shows that cave bear populations were 
already in decline from 50 kyr to 40 kyr BP (Gretzin-
ger 2019; Stiller 2010), coinciding with the arrival of 
modern humans. Together, current evidence suggests 
that a reduction in available resources combined with 
factors such as longer winter hibernations (D’Anglade 
and Mosquera 2008; Pérez-Rama, Fernández-Mos-
quera, and Grandal-D’anglade 2011a), and compe-
tition for resources during a climatically turbulent 
time may all have influenced the extinction of the 
species.

Reflecting on Past Extinctions to Support 
Threatened Species Today

The findings from this research raise important con-
siderations for facilitating the survival of species cur-
rently under threat today. Brown bears, once 
common across Europe, now survive in pockets of 
occupation across the mountainous regions across 
Eurasia (Zedrosser et al. 2001), paralleling the mosaic 
patterns of late cave bear survival. Factors that con-
tributed to the extinction of the cave bears including 
competition for resources and habitats, as well as pre-
dation by humans, are major threats to brown bears in 
Europe today (Lavadinović et al. 2013). A changing 
climate affecting vegetation diversity and availability, 
is impacting on brown bear distribution (Penteriani 
et al. 2019), as seen during the later phases of cave 
bear extinction. Reflecting on the scenarios that facili-
tated brown bear survival, when their cave bear 
counterparts became extinct, can be valuable in 
informing on current conservation efforts.

Archaeologically brown bears have shown resili-
ence and adaptability when facing pressures. They sur-
vived when cave bears did not, and this may be partly 
due to them exhibiting dietary partitioning to avoid 
potential competition for resources with other species 

(Bocherens 2015; Rey-Iglesia 2019). For example, 
brown bears from Yukon and Alaska had lower δ13C 
and δ15N values, indicative of an herbivorous diet, 
when co-existing with the carnivorous giant short- 
faced bears. However, following the extirpation of 
the short-faced bear, brown bears exhibited elevated 
δ13C and δ15N values, interpreted as an increase in 
meat consumption (Bocherens 2015). In Europe the 
extinction of the cave bears likely provided space in 
the herbivore niche for brown bears to occupy (Ers-
mark 2019; Münzel et al. 2011), and their adaptability 
in changing conditions even if faced with competitors 
contributed to their survival during the late Pleisto-
cene. The ability to adapt to competition relies on hav-
ing appropriate resources available in alternative 
niches. Today, the loss of environments, and compe-
tition with humans through intensification of land 
use means that opportunities to adapt by shifting 
niches are limited. Modelling of current day habitat 
suitability for brown bears to maintain appropriate 
varied ecosystems is one way to help with conserva-
tion efforts (Scharf and Fernández 2018). Active cre-
ation and maintenance of habitats that offer a variety 
of food sources for brown bears is also a crucial con-
servation strategy (Cisneros-Araujo et al. 2021). Such 
approaches would provide bears with a greater oppor-
tunity to diversify their resource base and would ulti-
mately facilitate their survival.

As with the cave bears, a major challenge facing 
brown bears today is anthropogenic activity limiting 
access to resources and habitats. The impact of agri-
cultural activity on brown bears have been observed 
since at least the twentieth Century at Mont Ventoux 
(France), where Holocene specimens had lower δ15N 
values than their omnivorous twentieth century 
counterparts in the region, interpreted as the ancient 
specimens being denied access to livestock as a protein 
source due to careful husbandry strategies barring 
access to domestic animals (Bocherens et al. 2004b). 
Determining the extent to which anthropogenic 
activity impacts on existing brown bear populations 
is a crucial aspect of conservation of the species. 
Managing human modifications to habitats to ensure 
that a range of food sources are available would help 
to buffer the impact of environmental change and 
human activity on bear populations. Maintaining 
pathways and connections between habitats (Cis-
neros-Araujo et al. 2021) is crucial in facilitating access 
to resources and reducing competition for land result-
ing from intense anthropogenic activity.

Human pressure on environments is happening on 
an unprecedented scale today. When modern humans 
and cave bears started occupying the same spheres the 
former subsequently became extinct. With careful 
management, we can try to prevent European brown 
bears from suffering the same fate. As briefly explored 
here, a key aspect of this is drawing links between bear 
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ecologies in the past with present-day bear popu-
lations and learning from these lessons. Understand-
ing the adaptive behaviours practised by fauna in the 
past is an important aspect of developing successful 
management strategies for species under threat today.

Conclusions

This paper has explored the diet of cave bears at the 
site of Šalitrena Pecína, dating to 36,150 ± 750 BP 
(OxA-27948) (Marín-Arroyo and Mihailović 2017), 
representing the first results from morphologically 
identified cave bears published from Serbia and prov-
ing a unique insight into the diet and ecology of the 
species. The inter-individual ranges of the δ13C and 
δ15N observed indicate that whilst being predomi-
nantly herbivorous and generally within the baseline 
stable isotope ranges for local herbivores at the site, 
their observed values reflect a variety of plant-based 
food sources and ecological habitats. Some of the 
inter-individual variability appears to be linked to 
dietary differences, indicating flexibility in diet likely 
related to wide-ranging isotopic zones in the site’s 
locality. The high intra-individual variability within 
samples taken from specimen 424 suggests that further 
research into bear bone turnover would be beneficial 
in understanding the timescales represented within 
different skeletal elements and the factors that may 
influence values on an intra-element basis, such as 
residual nursing effects and hibernation patterns. 
When compared to Late Pleistocene cave bears from 
across Europe, the Šalitrena Pecína specimens show 
some of the largest ranges in δ13C and δ15N values, 
which might reflect diversity in the environments in 
the locality of the cave, as suggested through existing 
ungulate δ13C and δ15N evidence (Marín-Arroyo 
et al. 2023).

Understanding variability in cave bear behaviour is 
crucial in helping to reconstruct their ecology and can 
contribute to the debate surrounding their extinction. 
It seems that cave bears were relatively adaptable, 
demonstrating flexibility in diet within the herbivor-
ous food spectrum. The onset of MIS 2 and the associ-
ated cooling that occurred at that time may have 
affected many facets of cave bear life, including hiber-
nation duration, plant availability, and may have put 
pressure on ecosystems, especially when competing 
with humans and other species in similar ecological 
niches. Understanding factors that may have contrib-
uted to cave bear extinction can help contribute 
towards productive conservation management strat-
egies for bear species currently under threat. By char-
acterising past bear behaviour, we can help devise 
nature-based solutions that will help support the sur-
vival of other bear populations in the world today. 
Active habitat creation with a diverse range of 
resources and connecting habitat zones, as well as 

limiting the impact of anthropogenic activity in 
areas inhabited by brown bears, will all help to support 
the species.
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