
Central Lancashire Online Knowledge (CLoK)

Title ROS-Based Autonomous Driving System with Enhanced Path Planning Node
Validated in Chicane Scenarios

Type Article
URL https://clok.uclan.ac.uk/id/eprint/56362/
DOI https://doi.org/10.3390/act14080375
Date 2025
Citation Reda, Mohamed, Onsy, Ahmed, Haikal, Amira Y. and Ghanbari, Ali (2025)

ROS-Based Autonomous Driving System with Enhanced Path Planning Node
Validated in Chicane Scenarios. Actuators, 14 (8). p. 375.

Creators Reda, Mohamed, Onsy, Ahmed, Haikal, Amira Y. and Ghanbari, Ali

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.3390/act14080375

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

Academic Editor: Xiaozheng Jin

Received: 8 March 2025

Revised: 9 July 2025

Accepted: 23 July 2025

Published: 27 July 2025

Citation: Reda, M.; Onsy, A.; Haikal,

A.Y.; Ghanbari, A. ROS-Based

Autonomous Driving System with

Enhanced Path Planning Node

Validated in Chicane Scenarios.

Actuators 2025, 14, 375. https://

doi.org/10.3390/act14080375

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

ROS-Based Autonomous Driving System with Enhanced Path
Planning Node Validated in Chicane Scenarios
Mohamed Reda 1,2,* , Ahmed Onsy 1 , Amira Y. Haikal 2 and Ali Ghanbari 1

1 School of Engineering, University of Central Lancashire, Preston PR1 2HE, UK
2 Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University,

Mansoura 35516, Egypt
* Correspondence: mohamed.reda.mu@gmail.com or mohamed.reda@mans.edu.eg

Abstract

In modern vehicles, Autonomous Driving Systems (ADSs) are designed to operate partially
or fully without human intervention. The ADS pipeline comprises multiple layers, in-
cluding sensors, perception, localization, mapping, path planning, and control. The Robot
Operating System (ROS) is a widely adopted framework that supports the modular devel-
opment and integration of these layers. Among them, the path-planning and control layers
remain particularly challenging due to several limitations. Classical path planners often
struggle with non-smooth trajectories and high computational demands. Meta-heuristic
optimization algorithms have demonstrated strong theoretical potential in path planning;
however, they are rarely implemented in real-time ROS-based systems due to integration
challenges. Similarly, traditional PID controllers require manual tuning and are unable to
adapt to system disturbances. This paper proposes a ROS-based ADS architecture com-
posed of eight integrated nodes, designed to address these limitations. The path-planning
node leverages a meta-heuristic optimization framework with a cost function that evaluates
path feasibility using occupancy grids from the Hector SLAM and obstacle clusters detected
through the DBSCAN algorithm. A dynamic goal-allocation strategy is introduced based
on the LiDAR range and spatial boundaries to enhance planning flexibility. In the control
layer, a modified Pure Pursuit algorithm is employed to translate target positions into
velocity commands based on the drift angle. Additionally, an adaptive PID controller is
tuned in real time using the Differential Evolution (DE) algorithm, ensuring robust speed
regulation in the presence of external disturbances. The proposed system is practically
validated on a four-wheel differential drive robot across six scenarios. Experimental results
demonstrate that the proposed planner significantly outperforms state-of-the-art methods,
ranking first in the Friedman test with a significance level less than 0.05, confirming the
effectiveness of the proposed architecture.

Keywords: path planning; autonomous driving system; Robotic Operating System (ROS);
differential evolution; LiDAR sensor; Hector SLAM mapping; four-wheel differential
drive robot

1. Introduction
Autonomous Driving Systems (ADSs) are vehicles equipped with advanced technol-

ogy that can partially or fully operate without human intervention. The early vision of
autonomous driving can be traced to the early 20th century by Norman Bel Geddes in 1939
at the New York World’s Fair [1]. In 2004, DARPA Challenges introduced a competition for

Actuators 2025, 14, 375 https://doi.org/10.3390/act14080375

https://doi.org/10.3390/act14080375
https://doi.org/10.3390/act14080375
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0002-6865-1315
https://orcid.org/0000-0003-0803-5374
https://orcid.org/0000-0002-3097-8814
https://orcid.org/0000-0003-1087-8426
https://doi.org/10.3390/act14080375
https://www.mdpi.com/article/10.3390/act14080375?type=check_update&version=1

Actuators 2025, 14, 375 2 of 46

the design of ADSs. These competitions encourage teams worldwide to design self-driving
cars [2]. The evolving technologies in control systems, sensors, and artificial intelligence
self-driving improved the design and implementation of the ADS and shaped the modern
ADS industry.

1.1. Autonomous Driving System (ADS)

The pipeline of the ADS consists of five stages, as seen in Figure 1. It starts with sensors
that collect data about the vehicle and its surroundings, such as LiDAR, cameras, encoders,
and IMU sensors. In the perception stage, the data from cameras are used by computer
vision algorithms to recognize the objects around the car, such as traffic lights, road signs,
and lanes [3]. In the localization and mapping stage, the data from sensors such as LiDARs,
encoders, GPS, and IMU sensors are used to locate the current position and orientation of
the vehicle and create a map of the surrounding environment [4]. The information from the
perception and mapping layers is fed to the path-planning and decision-making stage to
determine the next position that the car should take, avoiding obstacles and obeying traffic
rules [5].

Figure 1. Phases of autonomous driving system.

Finally, the location generated by the path-planning stage is converted to motor
control action based on the car’s mechanism. Different car architectures are based on
steering mechanisms, such as two-wheel differential drive, four-wheel differential drive,
and Ackerman steering [6]. In the final layer, the kinematics equations are implemented to
convert the desired position into the corresponding speed and steering angles that should
be applied to the motors to reach the goal [7].

1.2. Overview of the State-of-the-Art and Research Gap

The Robot Operating System (ROS) is widely adopted as a core development frame-
work for autonomous driving systems. Most ADS prototypes utilize ROS for managing
sensor data, localization, path planning, and actuator control, providing a practical founda-
tion for developing and testing autonomous navigation systems [8].

The perception and mapping layers in autonomous driving systems are well estab-
lished and have been extensively studied. In the perception layer, cameras are commonly
used to capture visual data. These data are then processed using deep learning tech-
niques, such as Convolutional Neural Networks (CNNs), for object detection and scene
understanding [9].

For mapping and localization, various sensors are integrated with SLAM (Simultane-
ous Localization and Mapping) algorithms to construct maps and estimate the vehicle’s
position. Among SLAM variants, camera-based SLAM offers rich semantic information but
lacks depth accuracy and is computationally intensive [10]. Radar-based SLAM performs
well in adverse weather conditions but suffers from lower resolution [11]. LiDAR-based
SLAM provides high spatial accuracy and reliable depth information, making it a balanced
and widely adopted solution [12]. Accordingly, this work employs LiDAR-SLAM as the
mapping framework.

Actuators 2025, 14, 375 3 of 46

The control layer in the ADS ensures the vehicle accurately follows planned trajec-
tories by minimizing the error between the desired and actual states. The most widely
used method is the Proportional–Integral–Derivative (PID) controller due to its simplicity,
robustness, and low computational cost [13]. However, PID performance heavily depends
on proper gain tuning, which is traditionally performed using offline methods such as the
Ziegler–Nichols (ZN) technique [14]. These static gains are platform-specific and often
require manual re-tuning when system dynamics change or external disturbances occur.
While ROS provides packages for PID integration, they require predefined gains and do not
support real-time adaptation [15]. This limitation highlights a significant gap in the existing
ROS ecosystem, where there is no built-in mechanism for adaptive, feedback-driven PID
tuning that can adjust gains dynamically during runtime in response to changing condi-
tions.

Path planning remains one of the most challenging components of the ADS, as it
must generate collision-free, dynamically feasible trajectories in real time [16]. Classical
algorithms offer varied trade-offs. The A* algorithm, a grid-based method, guarantees
optimality in structured environments but suffers from slow execution and sharp paths
in dense maps [17]. Rapidly Exploring Random Tree (RRT), a sampling-based method,
improves speed compared to A* but generates non-optimal, sharp trajectories [18]. The Dy-
namic Window Approach (DWA), a trajectory-based method, considers vehicle dynamics
and produces smooth local paths. However, it incurs a high computational cost and may
become stuck in local minima [19]. The Timed Elastic Band (TEB), an optimization-based
trajectory planner, achieves smoother paths; however, it remains sensitive to tuning and is
computationally expensive in complex environments.

In contrast, meta-heuristic algorithms such as Particle Swarm Optimization (PSO) and
Differential Evolution (DE) offer flexible, gradient-free search capabilities that perform
well in global path-optimization problems [20,21]. However, these techniques are typically
applied in simulation, often with MATLAB or Python (any version), and are not integrated
into practical ROS-based frameworks. This gap highlights the absence of a unified, ROS-
based path planner that can adopt meta-heuristic optimization and real-time feedback.

1.3. Contributions

To address the identified limitations in control and planning layers, this study proposes
a modular and extensible ROS-based framework designed for practical deployment on ADS
platforms. The proposed approach enhances the system’s adaptability and performance
in complex environments by embedding a feedback-driven PID tuning mechanism and a
meta-heuristic-based path planner within a modular architecture. The key contributions of
this research are summarized below.

• A modular ROS-based autonomous driving system is proposed, consisting of eight
integrated nodes, including two novel nodes: an RDE-based path-planning node and
an adaptive control node.

• The path-planning node employs a Differential Evolution (RDE) optimizer with dy-
namic goal allocation based on LiDAR range and search space boundaries. Moreover,
a custom cost function evaluates path feasibility by incorporating penalties based on
Hector-SLAM occupancy grids and DBSCAN-identified obstacle clusters.

• The control node integrates a DE-based adaptive PID controller for speed regulation
and a modified Pure Pursuit algorithm with drift compensation to convert planned
paths into motor commands.

• Experimental validation on a 4WD robot across six navigation scenarios demonstrates
that the proposed system outperforms A*, RRT, DWA, and A*TEB, ranking first in the
Friedman test with a significance level of p < 0.05.

Actuators 2025, 14, 375 4 of 46

1.4. Paper Organization

The rest of the paper is organized as follows: Section 2 reviews the state-of-the-art
in ADSs and path planning. Section 3 presents a comparative study of 15 meta-heuristic
algorithms to select the optimal optimizer. Section 4 details the proposed ROS-based ADS
architecture and its eight integrated nodes. Section 5 describes the hardware implementa-
tion of the 4WD robot used for validation. Section 6 evaluates the PID control performance
using DE-based tuning. Section 7 validates the whole system across six navigation scenarios.
Section 8 provides a statistical analysis of the results. Section 9 discusses the computational
complexity of the system. Section 10 outlines deployment considerations for outdoor and
dynamic environments. Finally, Section 11 concludes the study and suggests directions for
future work.

2. Related Work
Autonomous navigation systems rely on multiple interdependent modules includ-

ing path planning and control. Numerous studies have proposed classical and modern
techniques for path planning and trajectory optimization. In this section, we review the
most relevant literature on classical path-planning algorithms, meta-heuristic optimization
techniques, and control approaches in autonomous driving, with a focus on the limitations
of existing solutions in practical ROS-based systems.

2.1. Control Algorithms and PID Tuning

The control algorithm manages how an autonomous system minimizes the error
between the desired and actual output in a closed-loop system. Classic PID controllers
are the most widely used approach in industry and robotics, covering more than 95% of
control systems. It is used due to its simplicity, low computational cost, and effective
performance [13].

A PID controller includes three components: proportional, integral, and derivative
terms, which must be tuned appropriately for each platform. The most popular tuning
approach is the Ziegler–Nichols (ZN) method [14]. However, ZN provides platform-
dependent static gains, which often require manual re-tuning if system conditions change
or disturbances occur.

In ROS, although there is no native universal PID node, PID functionality is available
through the ’control_toolbox::Pid’ library, which is used by controllers like ’ros_control’ [15].
However, these require static, YAML-defined gains and lack real-time tuning or auto-
adaptive capabilities. This issue presents a clear gap in ROS for online PID tuning mecha-
nisms that can adjust gains in response to sensor feedback or platform changes, especially
in systems such as autonomous driving platforms.

2.2. Path-Planning Algorithms

Path planning enables autonomous systems to compute safe and efficient trajectories
from start to goal positions while avoiding obstacles. This section reviews key algorithms
applied in recent literature.

2.2.1. A* Algorithm

A* is a widely used graph-based algorithm that converts the environment into a grid
and uses a heuristic cost function to determine the shortest path. Its deterministic nature
make it attractive for structured static environments. Several studies have deployed A* in
diverse applications.

Yijing et al. [22] implemented A* for local path planning, but it lacks statistical bench-
marking. Udomsil et al. [23] integrated A* with collision-detection mechanisms for static

Actuators 2025, 14, 375 5 of 46

motion planning. However, their work did not include comparisons with alternative algo-
rithms. Zhong et al. [24] employed A* for real-time trajectory planning, but relied heavily
on unoptimized parameter settings, which limited generalizability.

Li et al. [25] applied A* to guide automated guided vehicles (AGVs), while
Zhang et al. [26] introduced adaptive cost functions to improve AGV pathfinding. Thore-
sen et al. [27] validated A* on real terrain with unmanned ground vehicles (UGVs) using
traversability analysis. Liu and Zhang [28] further applied A* in idle traffic to optimize fuel
consumption, though their method lacked real-world testing.

Despite these varied applications, A* is limited in scalability and flexibility. It per-
forms well in simple environments but suffers from computational inefficiency in dense
maps. It often produces jagged or abrupt trajectories that require post-processing [29].
In ROS-based implementations, A* is used as a global planner [30]. This usage necessitates
integration with a local planner (e.g., DWA or TEB) to generate feasible paths suitable for
real-world navigation. This dependency introduces further complexity, particularly in
unknown environments.

2.2.2. Rapidly Exploring Random Tree (RRT)

RRT is a sampling-based algorithm that incrementally builds a tree by randomly
sampling points in the search space and connecting them to the nearest nodes, expanding
the tree towards unexplored areas. Wang et al. [31] applied RRT to autonomous vehi-
cles and reported smoother and faster paths than A*, but their work lacked thorough
statistical analysis.

Chen et al. [32] employed RRT* for obstacle-dense environments, achieving collision-
free paths, but at a high computational cost, and without comparison to competing methods.
Hu et al. applied an RRT-based framework for motion planning in a wheeled robot under
kinodynamic constraints [33]. Niu et al. [34] implemented RRT in a ROS-based platform for
intelligent vehicles. Shi et al. [35] applied B-spline interpolation to smooth RRT-generated
paths for unmanned vehicles.

Further extensions include Chen et al. [36], who reduced the search space using con-
strained sampling. Yang and Yao focused on path pruning and smoothing [37]. Zhang
et al. [38] introduced adaptive directional sampling but found the algorithm computation-
ally intensive. Mao et al. [39] improved RRT with an elliptical sampling domain to lower
path costs.

RRT offers faster solutions than A* without requiring an explicit map. However, it
also generates sharp paths, making them less suitable for practical applications without the
use of interpolation techniques. It cannot guarantee the shortest path, and its performance
deteriorates as obstacle density increases. Therefore, real-time ROS implementations remain
limited due to the computational overhead and the lack of general-purpose path planning
without coupling with another method.

2.2.3. Dynamic Window Approach (DWA)

The Dynamic Window Approach (DWA) is a trajectory-based path-planning algorithm
that generates motion commands by sampling velocity pairs within the robot’s dynamic
constraints. It is one of the most widely adopted local planners in ROS-based systems [40].
Zhang et al. [41] applied the DWA to mobile robots, validating it in a two-wheel differential
drive simulation environment on ROS. Liu et al. [42] implemented DWA for a smart four-
wheel robot, while Hua et al. [43] enhanced DWA with an adaptive objective function.
Kobayashi et al. [19] demonstrated a basic DWA planner in a simple obstacle setting with a
differential robot.

Actuators 2025, 14, 375 6 of 46

Although DWA considers vehicle kinematics and produces smooth short-term plans,
DWA suffers from a high computational cost. Its computational complexity grows cubically
with the number of velocity samples (O(n3)), making it inefficient in cluttered or complex
environments [44]. Moreover, DWA-generated paths tend to include an excessive number
of waypoints, which increases execution time and degrades responsiveness. In ROS, DWA
is typically used in conjunction with a global planner, such as A*, which limits its standalone
applicability and generalizability.

2.2.4. Timed Elastic Band (TEB)

The Timed Elastic Band (TEB) algorithm formulates local planning as a trajectory-
optimization problem over a time-parameterized sequence of poses (elastic band). It is
widely adopted in ROS as a standard local planner within the ’move_base’ framework [45].

Wu et al. demonstrated its integration and visualization in a ROS environment for
local navigation tasks [46]. Dang et al. applied A*-TEB in a 4WD robotic platform for static
map navigation [47], while Kulathunga et al. validated a similar architecture on an Agilex
Hunter 2.0 platform within ROS [48]. Xi et al. extended TEB for unstructured terrains
using a 4-wheel robot [49], and Turnip et al. employed it for medical robotic applications,
reporting improved performance over DWA in a ROS setup [50].

TEB offers advantages over the DWA by optimizing complete trajectories rather
than sampling velocity pairs, resulting in smoother paths. However, it suffers from high
computational overhead in complex environments. Additionally, TEB’s performance is
highly sensitive to parameter tuning, which must be manually adjusted for each robot
platform or scenario.

2.3. Meta-Heuristic Optimization Algorithms in Path Planning

Meta-heuristic optimization algorithms are high-level search techniques inspired by
natural and biological processes. They have proven particularly effective in solving complex
and NP-hard problems due to their flexibility and ability to escape local optima without
requiring gradient information. In the context of robotics and autonomous navigation,
these algorithms have been widely applied to the path-planning problem, where the goal is
to compute collision-free paths in environments with multiple obstacles [51].

Evolutionary-based algorithms include Genetic Algorithm (GA) [52], which evolves
solutions through selection, crossover, and mutation. Differential Evolution (DE) [21] is
recognized for its simple and efficient mutation and crossover schemes. Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [53] is also a robust evolutionary algorithm that
adapts the covariance matrix of its search distribution to guide the optimization process.

Swarm-based algorithms are inspired by the collective behavior of animals. Particle
Swarm Optimization (PSO) [20,21] is based on the movement of bird flocks. The Artificial
Bee Colony (ABC) [52] simulates the foraging behavior of bees, while the Grey Wolf Opti-
mizer (GWO) [54] models the social hierarchy and hunting mechanism of wolves. The Arti-
ficial Hummingbird Algorithm (AHA) [55] and Moth Flame Optimization (MFO) [56] also
fall into this category.

Nature-inspired algorithms imitate physical or ecological phenomena. Thermal Ex-
change Optimization (TEO) [57] is based on thermodynamic heat transfer. The Generalized
Normal Distribution Optimization (GNDO) [58] uses statistical properties of normal distri-
butions. The Firefly Algorithm (FA) [52] models firefly attraction behavior, while Beetle
Antennae Search (BAS) [59,60] is based on beetle foraging. The Liver Cancer Algorithm
(LCA) [61] is inspired by the mutation behavior of liver cancer cells.

Despite the promising performance of these algorithms in path planning compared to
traditional methods, they remain limited to simulation environments and lack direct inte-

Actuators 2025, 14, 375 7 of 46

gration within the ROS ecosystem. They are often implemented using MATLAB or Python
and evaluated on simulated benchmarks or predefined obstacle maps. Moreover, current
ROS planning frameworks, including ’move_base’, are not natively designed to support
general-purpose meta-heuristic optimization in dynamic, SLAM-based environments. This
lack of practical integration highlights a critical research gap, motivating the development
of a ROS-based path-planning node that supports meta-heuristic optimization and enables
real-time operation in dynamic environments, as detailed in the following sections.

3. Benchmark-Driven Meta-Heuristic Optimizer Selection
Before explaining the ROS system design, this section focuses on selecting the most

suitable optimization algorithm for the forthcoming Path-Planning and Control nodes.
This section, therefore, benchmarks fifteen widely used meta-heuristic algorithms on
the CEC2020 test suite, evaluating each in terms of solution quality and execution time.
By combining statistical accuracy metrics with normalized run-time scores, we isolate the
single optimizer that delivers the best accuracy–speed trade-off; this data-driven choice is
then adopted throughout the remainder of the paper.

3.1. Experimental Setup

The following 15 algorithms are included in the comparison: GA, PSO, TEO, GNDO,
SA, ABC, GWO, AHA, BAS, FA, MFO, LCA, HHO, CMAES, and DE. The parameter settings
for these algorithms are set as recommended by their original work and are summarized in
Table 1. Each algorithm is executed independently for 30 runs per benchmark function to
ensure statistically reliable results.

The CEC2020 benchmark suite is employed, consisting of 10 functions: one unimodal
(F1), three multimodal (F2–F4), three hybrid (F5–F7), and three composition functions
(F8–F10). Each function is evaluated in two dimensions (10D and 20D), resulting in a total
of 20 distinct test cases [62]. All functions use a fixed search range of [−100, 100], and each
algorithm is terminated either upon reaching a solution with an error below 10−8 or the
maximum number of function evaluations (MaxFEs) (200,000 for 10D, 500,000 for 20D),
whichever came first.

Table 1. Parameter settings for all the meta-heuristic optimization algorithms.

Algorithm Parameters

GA [52] NP = 30, Pc = 0.8, tournament size = 3
Pm = 0.3, µ = 0.02

PSO [20,21] NP = 30, c1 = 1, c2 = 1, w = 0.3

TEO [57] NP = 30, p = 0.3, STO = 5

GNDO [58] NP = 30

SA [63,64] max No. of sub-iteration = 20, No. of neighbors per individual = 5 ,
NP = 30, α = 0.99, T0 = 0.1, mutation rate µ = 0.5

ABC [52] NP = 30, abandon limit = 0.6 * D * NP,
No. of onlooker bees = NP, a = 1

GWO [54] NP = 30, a: linearly decreases from 2 to 0

AHA [55] NP = 30, Migration Coef. = 2 ∗ NP

BAS [59] NP = 30, d1 = 2, ηd = 0.95, d0 = 0.01
δ1 = 0.5, ηδ = 0.95, δ0 = 0.00

FA [52] m = 2, mutation range = 0.05 * (ub − lb), γ = 1,
NP = 30, β0 = 2, α = 0.2, damping ratio = 0.98

MFO [56] NP = 30, a: linearly decreases from −2 to −1 , b = 1

LCA [61] NP = 30

Actuators 2025, 14, 375 8 of 46

Table 1. Cont.

Algorithm Parameters

HHO [20] NP = 30, escaping energy: randomly varies between [−2, 2]

CMAES [53] Cc = 4
D+4 , ccov = 2

(D+
√

2)
2

NP = 30, µ = NP/2, dσ = c−1
σ + 1

DE [21] NP = 30, F = 0.5, CR = 0.5

3.2. Statistical Evaluation Framework

The following performance metrics are recorded across all runs: median, mean, standard
deviation (SD), best, and worst fitness values. Friedman test is applied to statistically evaluate
the comparative performance of all algorithms across multiple benchmark functions (or
scenarios). It is a non-parametric statistical test suitable for analyzing repeated measures or
matched groups when parametric assumptions (e.g., normality) cannot be guaranteed.

Specifically, it ranks each algorithm based on its median error for every function (with
rank 1 assigned to the best performance). The total rank for each algorithm Rm is computed,
where a lower rank indicates better overall performance. Then, the total rank Rm is used to
calculate the Friedman statistic Fr as in Equation (1). Here, n is the number of functions (or
scenarios), k is the number of algorithms, and Rm is the sum of ranks for algorithm m.

Fr =
12

nk(k + 1)

k

∑
m=1

R2
m − 3n(k + 1), (1)

The resulting Fr is then used to compute the p-value via the chi-square distribution
with k− 1 degrees of freedom. If p < 0.05, we reject the null hypothesis, confirming that at
least one algorithm performs significantly better than others. Detailed methodology and
justification for using the Friedman test in multi-algorithm benchmarking are provided
in [65,66].

In addition, the Wilcoxon Signed-Rank test is applied to perform pairwise comparisons
between the DE algorithm and each of the other algorithms. This test evaluates whether
the differences in performance are statistically significant. For each comparison, a ‘+’
indicates the number of functions in which the DE performed better (lower median error),
‘=’ indicates no significant difference, and ‘−’ indicates the competitor performed better.
These analyses enable a rigorous selection of the most effective optimization algorithm for
the proposed ROS-based autonomous driving system [65,67].

3.3. Statistical Analysis Results

The error metrics for all algorithms are presented in Appendix A (Table A1). Violin plots
are used to visualize the performance distribution across 30 runs. Figure 2 illustrates the
distribution of the best fitness values for a representative function (F6) in both 10D and 20D.
The DE algorithm shows a more compact distribution, indicating consistent performance.
LCA and BAS are excluded from the plot due to their significantly high error values. Complete
violin plots for all functions are provided in Appendix B (Figures A1 and A2).

Table 2 presents the Friedman and Wilcoxon Signed-Rank test results for the com-
parative analysis of the meta-heuristic algorithms on the CEC2020 benchmark functions
across 10D and 20D. The Friedman test reveals a highly significant difference among the
algorithms with a p-value of 5.21× 10−33, indicating that the null hypothesis of equal
performance is strongly rejected. The DE algorithm significantly ranked first, achieving
the lowest average rank of 2.775, followed by FA (3.650), AHA (3.850), and SA (4.950).
In contrast, BAS and LCA recorded the highest average ranks (14.9 and 13.9), reflecting
their relatively poor optimization performance.

Actuators 2025, 14, 375 9 of 46

Figure 2. Violin plots showing the distribution of best fitness values across 30 runs for all algorithms
on benchmark function F6.

Table 2. Statistical analysis of the median error metric for all the algorithms on CEC2020 (10D and
20D). DE is the reference algorithm in all comparisons.

Alg. Wilcoxon Friedman Test

Name Test SumRanks MeanRanks Rank

GA +16/=0/−4 139 6.950 7

PSO +20/=0/−0 226 11.300 13

TEO +15/=0/−5 127 6.350 6

GNDO +20/=0/−0 144 7.200 8

SA +13/=0/−7 99 4.950 4

ABC +18/=0/−2 161 8.050 9

GWO +17/=0/−3 125 6.250 5

AHA +14/=0/−6 77 3.850 3

BAS +20/=0/−0 298 14.900 15

FA +14/=0/−6 73 3.650 2

MFO +20/=0/−0 162 8.100 10

LCA +20/=0/−0 278 13.900 14

HHO +20/=0/−0 216 10.800 11

CMAES +17/=1/−2 219.5 10.975 12

DE NA 55.5 2.775 1

p-value = 5.20953× 10−33

The Wilcoxon Signed-Rank test results in the same table provide a pairwise comparison
against DE. DE outperformed every algorithm in at least 13 out of 20 functions, achieving
perfect wins (+20, =0, −0) against multiple competitors such as PSO, GNDO, BAS, MFO,
LCA, and HHO. Notably, SA, FA, and AHA represent the strongest challengers to DE,
securing 7, 6, and 6 wins, respectively. Figure 3 visualizes the Wilcoxon test results from
the algorithmic perspective. Figure 4 breaks down the analysis by dimension. Results
in 10D and 20D are relatively consistent, highlighting the stability of DE across different
problem sizes. However, a slight advantage is observed in 10D, where DE records more
dominant wins.

Actuators 2025, 14, 375 10 of 46

Figure 3. Detailed Wilcoxon Signed-Rank test results distributions for all the function of CEC2020
benchmark functions, where the DE is the reference. (Algorithm perspective.)

Figure 5 presents a function-category-wise view. DE achieved complete dominance in
Unimodal functions, winning all comparisons. In the Multimodal group, DE demonstrated
competitive performance but showed relative weakness compared to some algorithms. It
lost multiple comparisons against FA, TEO, and SA, each of which outperformed DE in
4 out of the 6 functions. GA and AHA showed comparable performance, each securing
3 wins against DE. Conversely, DE achieved a perfect win (6 out of 6) compared to PSO,
GNDO, ABC, GWO, BAS, MFO, LCA, and HHO, reflecting its consistent superiority over
these methods within this category.

For Hybrid functions, DE achieved consistent wins in 5 or 6 functions against most
algorithms, losing only one comparison each to AHA, TEO, and GA. In the Composition
functions, DE exhibited clear superiority, winning 6 out of 6 cases against GNDO, BAS,
MFO, LCA, HHO, and CMAES. DE also achieved more wins than losses against ABC,
AHA, and FA. It had a balanced performance (3 wins, 3 losses) against GWO and SA. These
findings confirm that the DE algorithm not only performs well in unimodal functions but
also maintains superior performance in complex hybrid landscapes, making it a suitable
choice for integration into the ROS-based path-planning framework.

3.4. Time Complexity Analysis

Time complexity is a critical consideration for real-time robotic applications. This
section analyzes the computational complexity of the DE algorithm and compares it against
meta-heuristic optimization algorithms in both theoretical and practical contexts.

3.4.1. Asymptotic Time Complexity of the DE

The DE algorithm adopts the classical DE/rand/1/bin strategy with fixed control
parameters (F = 0.5, CR = 0.5). It does not rely on memory-intensive components such as
external archives, adaptation schemes, or historical tracking. This simple design minimizes
computational overhead and simplifies the implementation, reducing execution delays.
In each generation, the algorithm performs mutation and crossover operations followed by
a fitness evaluation for each individual in the population.

Actuators 2025, 14, 375 11 of 46

Figure 4. Detailed Wilcoxon Signed-Rank test results distributions for all the 10D and 20D CEC2020
benchmark functions, where the DE is the reference. (Dimensions perspective.)

For a population of size Np, problem dimension D, and maximum number of genera-
tions G, the total time complexity can be approximated asO(G · Np ·D). This linear scaling
in D and Np is one of the most efficient among evolutionary algorithms, especially when
compared to adaptive or hybrid methods, which require additional memory or model
computations. Therefore, the selected DE algorithm represents a time-optimal solution for
ROS-based real-time path planning and control applications.

Actuators 2025, 14, 375 12 of 46

Figure 5. Detailed Wilcoxon Signed-Rank test results distributions for all the 10D and 20D of CEC2020
benchmark functions, where the DE is the reference. (Categories perspective.)

3.4.2. Practical Time Complexity Analysis

To assess the practical computational performance of the evaluated algorithms, we
adopt four established time metrics: T0, T1, T2, and T3, as proposed in optimization bench-
marking studies [62,68].

The metric T0 measures the raw computational speed of the hardware by executing
a standardized code snippet. All algorithms were executed on a machine with an Intel
Core i7-6500U CPU (2.50–2.60 GHz), 8.00 GB RAM, Windows 11 Pro, and MATLAB R2024a.
T1 quantifies the inherent complexity of each benchmark function, independent of any
algorithm, and is computed by averaging the time for 2000 function evaluations on CEC2020
test functions (10D and 20D).

Actuators 2025, 14, 375 13 of 46

In contrast, T2 captures the time taken by each algorithm to perform the same number
of function evaluations, thereby reflecting both algorithmic and problem-related complexity.
The final metric, T3, integrates all three previous metrics and is defined as shown in
Equation (2). It represents the normalized algorithmic overhead beyond the inherent
function cost, adjusted for hardware capability.

T3 =
T2 − T1

T0
(2)

Table 3 presents the average time complexity metrics for all algorithms across the
CEC2020 functions. Notably, the DE algorithm achieves the lowest T3 value in both 10D and
20D scenarios, indicating the most efficient computation per unit hardware performance.
Specifically, DE scores T3 = 1.008 in 10D and T3 = 0.273 in 20D, significantly lower than
competing algorithms. These results confirm that DE not only leads in optimization accu-
racy but also in execution efficiency, making it an ideal candidate for real-time deployment
in robotic systems.

Table 3. Time complexity results for all algorithms across all CEC2020 functions.

Dim. Algorithm T0 T1 T2 T3 Rank

10D

TEO 0.003873 0.027558 0.068143 10.478112 14
GNDO 0.003873 0.027558 0.066113 9.954199 13
AHA 0.003873 0.027558 0.060139 8.411786 11
LCA 0.003873 0.027558 0.033791 1.609279 3
GA 0.003873 0.027558 0.076754 12.701505 15
SA 0.003873 0.027558 0.036201 2.231425 4

PSO 0.003873 0.027558 0.046468 4.882279 10
ABC 0.003873 0.027558 0.038284 2.769383 5
GWO 0.003873 0.027558 0.045135 4.538192 9
BAS 0.003873 0.027558 0.032749 1.340379 2
FA 0.003873 0.027558 0.038518 2.829714 6

MFO 0.003873 0.027558 0.043759 4.182754 8
HHO 0.003873 0.027558 0.042279 3.800826 7

CMAES 0.003873 0.027558 0.064992 9.664697 12
DE 0.003873 0.027558 0.031462 1.008027 1

20D

TEO 0.003873 0.040130 0.052442 3.178742 11
GNDO 0.003873 0.040130 0.049290 2.364859 8
AHA 0.003873 0.040130 0.048204 2.084605 6
LCA 0.003873 0.040130 0.031033 2.348605 7
GA 0.003873 0.040130 0.074024 8.750716 15
SA 0.003873 0.040130 0.030905 2.381669 9

PSO 0.003873 0.040130 0.042173 0.527367 2
ABC 0.003873 0.040130 0.035524 1.189035 3
GWO 0.003873 0.040130 0.051319 2.888839 10
BAS 0.003873 0.040130 0.025127 3.873428 12
FA 0.003873 0.040130 0.034626 1.421036 4

MFO 0.003873 0.040130 0.059170 4.915718 13
HHO 0.003873 0.040130 0.032817 1.888033 5

CMAES 0.003873 0.040130 0.073541 8.625960 14
DE 0.003873 0.040130 0.039071 0.273529 1

4. The Proposed ROS Architecture for the Full ADS
This section details the implementation of the autonomous driving system (ADS), built

entirely within the Robot Operating System (ROS) framework and deployed on a Rasp-
berry Pi 4 in a 4WD prototype. The system integrates perception, localization, mapping,
path planning, and control through a modular set of ROS nodes. The optimization core,
Differential Evolution (DE), is fully embedded within both the path-planning and control
nodes to enable real-time path generation and adaptive PID tuning. This deep integration
motivates naming the algorithm “ROS-based Differential Evolution” (RDE), reflecting

Actuators 2025, 14, 375 14 of 46

its customized deployment and execution within the ROS environment. The following
subsections describe how DE is adapted and interfaced with the ROS components.

4.1. Overall View of the ROS System Architecture

Figure 6 illustrates the proposed ROS system’s architecture, comprising eight intercon-
nected nodes in a closed-loop system. The Arduino node acts as the firmware, receiving
PID controller parameters and desired velocities from the control node while publishing the
motors’ current velocities, RPM values, and raw IMU readings. The Madgwick filter node
processes raw IMU values to merge the accelerometer and gyroscope frames, providing a
filtered IMU signal. The dead reckoning node calculates the car’s position using encoder
data and publishes raw odometry.

The LiDAR node generates laser scan data, indicating distances to surrounding objects.
These data are used by the Hector SLAM node to create a map and determine the car’s
current location on it. The Extended Kalman Filter (EKF) node fuses the filtered IMU signal,
Hector SLAM position, and raw odometry to produce refined odometry. The path-planning
node uses the map and car pose as inputs, with the goal point aligned on the car’s heading
at the maximum LiDAR range. If obstacles are detected, the proposed planner generates a
collision-free path to maneuver around them.

Two control nodes are designed to perform two main tasks: the first is converting
waypoint coordinates into velocities for the Arduino node, and the second is tuning PID
gains for speed control. This implementation ensures continuous closed-loop operation,
with DE integrated into the path-planning node and the control node. The following
sections detail the functions and implementation of each node.

Figure 6. The overall ROS block diagram of the nodes and the related topics.

4.2. The Proposed Path-Planning Node

The path-planning node is the core component responsible for generating a collision-
free path from the current pose to a dynamically selected goal. It relies on the real-time
occupancy grid map published by the Hector-SLAM node. The node processes multiple
steps as follows.

4.2.1. Search Space Boundaries

The search space boundaries are defined using the metadata provided by the Hector-
SLAM node through the ‘map/metadata’ topic. This topic includes the origin (xorg, yorg),

Actuators 2025, 14, 375 15 of 46

map width Mwidth, height Mheight in cells, and the resolution Mres in meters per cell.
The boundaries xmin, xmax, ymin, ymax are computed using Equation (3).

xmin = xorg,

ymin = yorg,

xmax = xorg + (Mwidth ×Mres),

ymax = yorg + (Mheight ×Mres)

(3)

4.2.2. Start and Dynamic Goal Calculation

The start point (xs, ys) is obtained from the car’s current pose (xcurr, ycurr) in the
‘Filtered/odom’ topic published by the EKF node. At the same time, the heading of the
start point θs is derived from the current orientation θcurr in the same topic.

The goal point (xg, yg) is the destination to which the planned path is directed.
The core idea is to maintain the car’s motion along a straight line as long as no obstacles
are present. When the road ahead is free, the goal is dynamically set along the car’s current
heading at the farthest detectable point within the LiDAR’s sensing range (LDmax = 30 m
for Hokuyo UTM-30LX), as defined in Equation (4).

xg = xs + LDmax · cos(θs),

yg = ys + LDmax · sin(θs).
(4)

However, if obstacles are detected ahead, such as parked vehicles, roadworks, or chi-
canes, the dynamic goal update is temporarily paused, and the planner generates inter-
mediate waypoints to overtake the obstruction safely. Once the road is clear, the system
resumes goal projection along the original heading to re-align with the initial path direction.

The computed goal point (xg, yg) must lie within the valid bounds of the occupancy
grid. If xg exceeds the grid limits, it is clamped based on the conditions in Equation (5).
Then, the corresponding yg is updated to maintain alignment with the vehicle’s heading
using Equation (6). Similarly, if yg violates the vertical boundaries, it is adjusted according
to Equation (7), and xg is recalculated as per Equation (8).

xg =


xmax, if xs > xmax,

xmin, if xs < xmin,

xg, otherwise.

(5)

yg = ys + (xg − xs) tan(θs) If xg is adjusted (6)

yg =


ymax, if ys > ymax,

ymin, if ys < ymin,

yg, otherwise.

(7)

xg = xs +
(yg − ys)

tan(θs)
If yg is adjusted. (8)

4.2.3. Path Cost Calculation

The cost function used by the planner includes two components: the total Euclidean
distance L and the cumulative obstacle penalty pT . The total path length L is computed
using Equation (9), where (xi, yi) and (xi+1, yi+1) are consecutive waypoints.

L =
n−1

∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 (9)

Actuators 2025, 14, 375 16 of 46

For each path point, the corresponding cell index (ri, ci) in the occupancy grid is
computed using Equation (10). The penalty pi is calculated from the cell’s occupancy value
as shown in Equation (11). The total penalty pT is then computed by summing all point
penalties according to Equation (12).

ri = round
(

xi − xorg

Mres

)
ci = round

(
yi − yorg

Mres

) (10)

pi =
Costri ,ci

100
(11)

pT =
n

∑
i=1

(pi) (12)

The final cost is calculated by combining the path length and penalty using Equation (13),
where β is set to 100 to strongly discourage paths that intersect with obstacles and n is the
number of path points.

cost = L ∗ (1 + βpT) (13)

4.2.4. Obstacle Clustering

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is applied to
the occupancy grid to estimate the number of obstacles in the environment. This algorithm
identifies dense regions of high occupancy values and groups them into clusters, each
representing a distinct obstacle [69]. The total number of obstacles nobst is defined as the
number of such valid clusters. This value directly determines the number of waypoints used
in the Differential Evolution optimization process. Figure 7 illustrates how the occupancy
map and clustering are used during path evaluation.

Figure 7. Illustrative Figure shows metadata for the grid map and clusters.

4.2.5. Differential Evolution Optimization

The waypoint optimization is performed using the Differential Evolution (DE) algo-
rithm, formulated to minimize the path cost defined in Equation (13). Each agent in the DE
population represents a candidate path composed of nobst waypoints, where each waypoint
pt

j,i = (xt
j,i, yt

j,i) belongs to the j-th path at iteration t. The population size npop is set to 30.
The DE process starts with a random initialization of all paths. Each path pt

j is
evaluated using the fitness function in Equation (13). Mutation is performed using the
DE/rand/1 strategy in Equation (14), where three distinct paths pt

r1, pt
r2, and pt

r3 are
selected randomly, and the scaling factor F is set to 0.5 [70].

mt
j,i = pt

r1,i + F.(pt
r2,i − pt

r3,i) (14)

Actuators 2025, 14, 375 17 of 46

The crossover step, defined in Equation (15), generates the child solution ut
j,i using

the crossover probability CR = 0.5. The child path ut
j is then evaluated. In the selection

phase, the better path based on cost is retained, as shown in Equation (16). This process is
repeated until the algorithm reaches a maximum number of iterations T = 10,000× nobst

or converges when no improvement is observed below a tolerance of 10−8.

ut
j,i =

{
mt

j,i if rand(0, 1) ≤ CR
pt

j,i otherwise
(15)

pt+1
j =

{
ut

j if f (ut
j) < f (pt

j)

pt
j otherwise

(16)

4.2.6. Failsafe Triggering Based on Path Validity

The path-planning node incorporates a built-in mechanism to assess the validity of the
computed path in real time. The planner determines whether a collision-free path can be
found within a fixed decision window. If no feasible path is found within (ttimeout = 250 ms),
the node publishes a Boolean flag ‘Path/valid’ = false.

The timeout value of 250 ms is chosen based on empirical profiling of the RDE plan-
ner’s runtime on the target hardware (Raspberry Pi 4B), where each complete optimization
cycle averages 39.07 ms. This threshold enables multiple full planning attempts per cycle.
This logic enhances the system’s safety, allowing fast failure detection while maintaining
the system’s real-time performance.

4.2.7. Overall Path-Planning Node via ROS-Based Differential Evolution (RDE)

The path-planning node operates as a central component in the navigation frame-
work, integrating all previous steps into a complete ROS-based optimization process. It
subscribes to two topics from the Hector SLAM node: ‘Map/grid’ for the occupancy grid,
‘Map/metadata’ for map dimensions and resolution. Additionally, it subscribes to the
‘Filtered/odom’ topic from the EKF node to obtain the robot’s current pose. All steps are
summarized in Algorithm 1, which outlines the whole execution logic of the node.

Algorithm 1 Path-Planning Node with RDE

Subscribe to ’Map/grid’, ’Map/metadata’, and ’Filtered/odom’ topics.
Publish to ’Path/waypoint’ and ’Path/valid’ topics.
Initialize DE parameters (F, CR) and set safety threshold τcost, timeout ttimeout.
while System is running do

Read ’Map/metadata’ to obtain map dimensions.
Compute x, y boundaries from map metadata.
Read ’Filtered/odom’ to obtain current vehicle pose.
Set current pose as DE starting point.
Determine goal on heading line within LiDAR range.
Apply boundary constraints on goal coordinates.
Read ’Map/grid’ to acquire occupancy data.
Construct cost function using Equations (9)–(13).
Apply DBSCAN clustering to identify nobst.
Start timing: tstart ← current time
Run DE to optimise path:
Initialize population {pj}

nPop
j=1 with random paths.

Actuators 2025, 14, 375 18 of 46

Algorithm 1 Cont.

for t = 1 to T do
for each path j do

Apply mutation: Equation (14)
Apply crossover: Equation (15)
Evaluate child path: Equation (13)
Apply selection: Equation (16)

end for
Update best-so-far path.
if (current time −tstart) > ttimeout then

Break and proceed to validation check.
end if

end for
Path Validity Check:
if best path is collision-free then

Publish ‘Path/valid’ = true
else

Publish ‘Path/valid’ = false
end if
Return best path.
Publish next waypoint on ‘Path/waypoint’.

end while

4.3. Control Node

The control node translates the path generated by the path planner into velocity com-
mands for the robot actuators. It supports two vehicle configurations: a 4WD mechanism
(used in this paper as the primary hardware) and an Ackermann-steered variant (presented
as an extension). For both cases, it publishes the desired linear and angular velocities to the
‘Required/vel’ topic. Additionally, it employs a Differential Evolution (DE) algorithm to
adaptively tune the PID gains based on current motion errors.

4.3.1. Modified Pure Pursuit

The control node utilizes a modified Pure Pursuit algorithm to convert waypoints
into motion vectors. In the standard Pure Pursuit algorithm, the look-ahead distance ld
is pre-determined as a parameter [71]. However, in this implementation, the look-ahead
distance ld is dynamically computed as the Euclidean distance between the robot’s current
position (xi, yi) and the next waypoint (xn, yn), as shown in Equation (17).

The desired orientation angle θn is calculated from the relative position of the waypoint
using Equation (18). The drift angle ∆θ is defined as the angular deviation between the
current and desired orientations, as given in Equation (19).

ld =
√
(xn − xi)2 + (yn − yi)2 (17)

θn = arctan 2
(

yn − yi
xn − xi

)
(18)

∆θ = θn − θi (19)

4.3.2. Velocity Command Generation

This subsection describes how the control node utilizes the outputs of the Pure Pursuit
algorithm to compute the linear and angular velocity commands, taking into account the
vehicle’s mechanical configuration.

Actuators 2025, 14, 375 19 of 46

4WD Differential-Drive Configuration

In the 4WD mechanism, the desired angular velocity ω
req
z is computed as a linear

function of the drift angle ∆θ, following Equation (20). Here, the proportional gain kω

determines the turning aggression and is set to a small value (typically 0.3) to rotate safely
at a slow speed during turns.

The linear velocity vreq
x is calculated using Equation (21) as a function of the look-ahead

distance ld and the drift angle ∆θ. It is directly proportional to the normalized look-ahead
distance ld/lmax, which encourages the robot to speed up when the path is straight. Where
lmax is the maximum look-ahead range, e.g., 30 m for a UTM-30LX LiDAR.

Simultaneously, vreq
x is inversely proportional to the absolute value of the drift angle,

meaning the robot slows down in sharp turns to avoid instability. The gain Kv scales the
maximum velocity vxmax, typically set to 0.3 for safe operation. The parameter β (commonly
0.9) regulates how aggressively the linear speed is reduced in response to steering error.

ω
req
z = kω · ∆θ (20)

vreq
x = Kv · vxmax · (1− β · |∆θ|) · ld

lmax
(21)

Ackermann Steering Extension

For Ackermann-steered vehicles, the control node extends the Pure Pursuit algorithm
by incorporating curvature-based path tracking. First, the required path curvature κ is
computed from the drift angle and look-ahead distance via Equation (22). The steering
angle δ is derived from the curvature and wheelbase Wb using Equation (23), where Wb

denotes the distance between front and rear axles. The steering angle is then directly
assigned to the angular velocity command ω

req
z as shown in Equation (24).

The linear velocity vreq
x is computed using Equation (25) in a similar manner to the

4WD configuration. It is directly proportional to the normalized look-ahead distance
and inversely proportional to the curvature magnitude |κ|. This method ensures the
vehicle slows down during tight curves (high curvature) and speeds up on straight paths
(low curvature).

κ =
2 sin(∆θ)

ld
(22)

δ = arctan(κ ·Wb) (23)

ω
req
z = δ (24)

vreq
x = Kv · vxmax · (1− β · |κ|) · ld

lmax
(25)

4.3.3. Adaptive PID Tuning via DE

In both configurations, the control node applies the DE algorithm to adaptively tune
the PID gains for motor speed control. It receives the current velocities from the ‘Cur-
rent/raw_vel’ topic and the current motor RPMs from the ‘Current/rpm’ topic. The DE
algorithm minimizes the control error between desired and measured velocities by optimiz-
ing the PID parameters (Kp, Ki, Kd) in real time. The tuned parameters are published on
the ‘PID/params’ topic. This continuous adaptation improves stability and responsiveness
under varying environmental and mechanical conditions.

4.3.4. Failsafe Stop Handling Based on Path Validity

The control node continuously monitors the Boolean flag ’Path/valid’ published by the
path-planning node. If false is received, it immediately commands a stop by publishing

Actuators 2025, 14, 375 20 of 46

zero linear and angular velocities on ‘Required/vel’. It also publishes ‘Failsafe/stop’ =
true, ensuring motor PWMs are disabled directly at the firmware level [72]. This behavior
ensures a rapid and safe halt in case of failed planning attempts. Normal control resumes
automatically once two consecutive planning cycles confirm valid replanning (‘Path/valid
= true’). The complete logic of the control node is summarized in Algorithm 2.

Algorithm 2 Control Node

Initialize the DE algorithm parameters and PID gains.
Initialize the required velocities as zeros.
Subscribe to ‘Path/waypoint’, ‘Filtered/odom’, ‘Current/rpm’, ‘Current/raw_vel’,
and ‘Path/valid’.
Publish to ‘Required/vel’, ‘PID/params’, and ‘Failsafe/stop’.
while System is running do

Read the subscribed topic: ‘Path/valid’.
if ‘Path/valid’ == false then

Immediately publish zero velocities on ‘Required/vel’.
Publish ’Failsafe/stop’ = true.
Continue to next cycle.

else
Publish ‘Failsafe/stop’ = false.

end if
Read ‘Path/waypoint’ to obtain next desired point.
Read ‘Filtered/odom’ to obtain current pose.
Compute look-ahead distance from Equation (17).
Compute heading error using Equations (18) and (19).
if 4WD Mechanism then ▷ 4WD Case

Compute required angular velocity: Equation (20).
Compute required linear velocity: Equation (21).

else if Ackerman Mechanism then ▷ Ackerman case
Calculate the desired steering angle using: Equations (22) and (23).
Calculate the required angular velocity: Equation (24).
Calculate the required linear velocity: Equation (25).

end if
Publish the required velocities on the topic ’Required/vel’.
Read ‘Current/raw_vel’ and ’Current/rpm’ to obtain current motor velocities.
Compute the velocity error.
if Error < tolerance then

Run the DE algorithm to update PID parameters.
end if
Publish PID parameters to ’PID/params’.

end while

4.4. Arduino Node: Kinematics and Control

The Arduino node interfaces directly with the vehicle’s hardware, managing the
control and kinematics layers of the ADS. It subscribes to the topics ‘Required/vel’,
‘PID/params’, and ‘Failsafe/stop’, which provide the required velocities (vreq

x , vreq
y , ω

req
z),

PID gains, and the emergency stop flag, respectively. It publishes the current velocities
(’current/raw_vel’), motors’ speed (’Current’/rpm), and IMU sensor readings (’Raw/imu’).

4.4.1. Inverse Kinematics: Obtain the Required Motor Values from Velocities

The Arduino node calculates motor RPM values from the required velocities using
inverse kinematics based on the Mecanum omnidirectional model. Equations (26)–(29)
define the required RPM values for each motor (Mreq

FL,rpm, Mreq
FR,rpm, Mreq

RL,rpm, Mreq
RR,rpm),

considering the contributions of vreq
x , vreq

y , and ω
req
z . Here, Mcurr

FL,rpm, Mcurr
FR,rpm, Mcurr

RL,rpm,

Actuators 2025, 14, 375 21 of 46

and Mcurr
RR,rpm represent the current RPMs of the front-left, front-right, rear-left, and rear-

right motors, respectively.
vreq

x is the required linear velocity in the x-direction, vreq
y is the required linear velocity

in the y-direction, and ω
req
z is the required angular velocity around the z-axis. Cw is the

wheel circumference, Lw is the wheelbase (distance between the front and rear wheels),
and Ww is the track width (distance between the left and right wheels). For skid steering,
vreq

y is set to zero, simplifying the system such that the left and right sides of the vehicle
move at uniform speeds [73].

Mreq
FL,rpm =

(
vreq

x × 60
Cw

)
−
(

vreq
y × 60

Cw

)
−
(

ω
req
z × 60× (Lw + Ww)

4Cw

)
(26)

Mreq
FR,rpm =

(
vreq

x × 60
Cw

)
+

(
vreq

y × 60
Cw

)
+

(
ω

req
z × 60× (Lw + Ww)

4Cw

)
(27)

Mreq
RL,rpm =

(
vreq

x × 60
Cw

)
+

(
vreq

y × 60
Cw

)
−
(

ω
req
z × 60× (Lw + Ww)

4Cw

)
(28)

Mreq
RR,rpm =

(
vreq

x × 60
Cw

)
−
(

vreq
y × 60

Cw

)
+

(
ω

req
z × 60× (Lw + Ww)

4Cw

)
(29)

For the Ackerman mechanism, only vreq
x is considered, as vreq

y and ω
req
z are set to zero.

The single rear motor’s RPM (Mreq
rear,rpm) is calculated using Equation (30). The steering

angle θ is directly proportional to ω
req
z , as defined in Equation (31) [74].

Mreq
rear,rpm =

vreq
x

Cw
× 60 (30)

θreq = ω
req
z (31)

4.4.2. Obtain the Current Speed from Encoder

The Arduino node calculates the current RPM of each motor by interpreting the
change in encoder ticks, denoted as ∆ticks, over a specific time interval ∆t. The encoder
disc is divided into counts_per_rev slots (typically, 20 in the 4WD), which determines its
resolution. ∆ticks is measured as the difference between the current and previous tick
counts. The current motor speed Mcurr

i,rpm is computed using Equation (32), where ∆t is
converted from milliseconds to minutes.

Mcurr
i,rpm =

(
∆ticks

counts_per_rev

)
×
(

60, 000
∆t

)
(32)

4.4.3. Apply the PID Control

The Arduino node applies a PID controller to ensure the motors operate at the desired
speed. The error e is defined as the difference between the required RPM Mreq

i,rpm and the
current RPM Mcurr

i,rpm, as indicated in Equation (33). The PID controller then generates a
control signal using this error, combining proportional Kp, integral Ki, and derivative Kd

components as shown in Equation (34).

e = Mreq
i,rpm −Mcurr

i,rpm (33)

PID = Kp · e + Ki ·
∫ t

0
e(τ)dτ + Kd ·

de
dt

(34)

Actuators 2025, 14, 375 22 of 46

The control signal from the PID controller determines both the magnitude and direc-
tion of each motor’s actuation. The PWM value Mnew

i,pwm adjusts the motor speed and is
computed as the absolute value of the PID output using Equation (35). The direction Mnew

i,dir
is determined by the sign of the PID signal, as given in Equation (36). A positive value
drives the motor forward, a negative value drives it in reverse, and zero stops the motor.
The same logic is applied to control the steering angle, which is continuously adjusted until
it matches the desired value θreq.

Mnew
i,pwm = |PID| (35)

Mnew
i,dir =


Forward if PID > 0

Reverse if PID < 0

Stop if PID = 0

(36)

4.4.4. Forward Kinematics: Obtain the Velocity from the Motor Values

The Arduino node applies forward kinematics to compute the current linear and
angular velocities from the motor RPM values. For the Mecanum model, the forward
kinematic Equations (37)–(39) calculate the current velocities (vx, vy, and ωz) based on the
current RPM values of the four motors: Mcurr

FL,rpm, Mcurr
FR,rpm, Mcurr

RL,rpm, and Mcurr
RR,rpm

vx =

(
Mcurr

FL,rpm + Mcurr
FR,rpm + Mcurr

RL,rpm + Mcurr
RR,rpm

4× 60

)
× Cw (37)

vy =

(
−Mcurr

FL,rpm + Mcurr
FR,rpm + Mcurr

RL,rpm −Mcurr
RR,rpm

4× 60

)
× Cw (38)

ωz =

(
−Mcurr

FL,rpm + Mcurr
FR,rpm −Mcurr

RL,rpm + Mcurr
RR,rpm

4× 60

)
× Cw

(Lw/2 + Ww/2)
(39)

In the differential drive and skid-steering models, the y-component vy is neglected.
In the Ackerman model, the x-component vx is derived from Mcurr

rear,rpm using Equation (40).
The angular velocity ωz is then set to the current steering angle θcurr as shown in
Equation (41).

vx =
Mcurr

rear,rpm × Cw

60
(40)

ωz = θcurr (41)

4.4.5. Failsafe Motor Stop via Direct Override

The Arduino node supports a direct override mechanism that bypasses the PID and
kinematics control layers, enhancing safety in emergency scenarios where planning fails.
A Boolean topic ’Failsafe/stop’ is subscribed to by the Arduino. When this flag is set to
’true’, the node immediately disables all motor PWMs and sets their directions to ’Stop’,
regardless of the current PID output or requested velocities [72]. This logic ensures a
low-latency halt in hardware, avoiding the delay introduced by PID control convergence.
The normal control resumes when the flag is reset to ’false’.

4.4.6. Overall Arduino Node

The current velocities computed through forward kinematics are published on the
‘Current/raw_vel’ topic, while the RPM values of all motors are shared via the ‘Cur-
rent/raw_rpm’ topic. The node also transmits IMU sensor data through the ‘Raw/imu’
topic. The overall steps of the Arduino node are illustrated in Algorithm 3. This node

Actuators 2025, 14, 375 23 of 46

represents the ADS firmware, which is responsible for handling the hardware layer, control
actions, and kinematics layer.

Algorithm 3 Arduino Node Firmware

Setup and configure all the input and output pins.
Subscribe to the ‘Required/vel’, ‘PID/params’, and ‘Failsafe/stop’ topics.
Publish the ‘Current/raw_vel’, ‘Current/rpm’, and ‘Raw/imu’ topics.
while System is running do

Check Failsafe Flag
Read the subscribed topic: ‘Failsafe/stop’ to check the path validity.
if ’Failsafe/stop’ == true then

Immediately stop all motors (PWM = 0, Direction = Stop).
Continue to next loop cycle.

end if
Read the subscribed topic: ‘Required/vel’ to obtain the desired velocities.
Read the subscribed topic: ’PID/params’ to obtain the PID gains.
Apply the IK to obtain the desired motor RPMs:
if 4WD Mechanism then

Apply the IK to obtain required motor RPMs from desired velocities: Equations (26)–
(29).

else if Ackerman Mechanism then
Obtain the required rear motor RPM using: Equation (30).
Obtain the desired steering angle: Equation (31).

end if
Get the current motor RPMs from the encoder readings: Equation (32).
Calculate the error between the desired PWM and current PWM using Equation (33).
Apply the PID controller using Equation (34).
Set the new motor PWMs and directions based on the PID values: Equations (35)

and (36).
Apply the FK to obtain the current motor RPMs:
if 4WD Mechanism then

Apply FK to obtain the new current velocities: Equations (37)–(39).
else if Ackerman Mechanism then

Obtain the current velocities using Equations (40) and (41).
end if
Publish the new current velocity on the topic ‘Current/raw_vel’.
Publish the new motor RPMs on the topic ‘Current/rpm’.
Read and Publish the current IMU sensor data on topic ‘Raw/imu’.

end while

4.5. Supporting ROS Nodes

The proposed system relies on additional standard ROS nodes for LiDAR input,
mapping, localization, and sensor fusion. These nodes are based on widely used ROS
packages and libraries. While they are not part of the contributions of this work, they form
the foundational infrastructure upon which the proposed methodology operates.

4.5.1. Dead Reckoning Node: Raw Odometry

The dead reckoning node calculates the car’s position (x, y) and orientation θ based
on its previous state and current velocities vx, vy, and ωz provided by the Arduino
node [75]. Starting with the current position (xt, yt) and orientation θt, the updated posi-
tion (xt+1, yt+1) and heading θt+1 are calculated after a time interval ∆t. The updates are
performed using Equations (42)–(44), which account for linear and angular motion.

xt+1 = xt + (vx · cos(θt)− vy · sin(θt))× ∆t (42)

yt+1 = yt + (vx · sin(θt) + vy · cos(θt))× ∆t (43)

Actuators 2025, 14, 375 24 of 46

θt+1 = θt + ωz × ∆t (44)

The node subscribes to the ‘current/raw_vel’ topic to access the latest velocities and
calculates the updated position and orientation. It publishes these values as odometry
on the ‘Raw/odom’ topic. While useful, dead reckoning is prone to errors from slippage
and encoder noise. To improve accuracy, these data are fused with other pose readings,
providing a refined estimate of the car’s location.

4.5.2. LiDAR Node

The LiDAR sensor used in the study is the Hokuyo UTM-30LX, a compact 2D LiDAR
sensor. It has a wide scanning angle of 270° and a long detection range of 30 m. The speed
of the scan is 25 ms, which means it can provide 40 frames of scan per second. The angular
resolution is 0.25°, dividing the 270° field-of-view into 1080 angles. It operates on a 12
V DC power source with a maximum current of 1A [76]. It was first tested using the
UrgBenriPlus software (version 2.2.0, rev.274) by Hokuyo [77] to ensure that the LiDAR is
functioning correctly.

The ROS has a built-in library called ‘urg_node,’ compatible with the Hokuyo UTM-
30LX LiDAR (Hokuyo Automatic Co., Ltd., Osaka, Japan) [78]. This node reads LiDAR data
via USB and publishes them to the ‘laser’ topic, formatted as a ‘sensor_msgs/LaserScan’
message. This message includes the scan range, resolution, minimum and maximum
ranges, and arrays for distances and intensities [79].

4.5.3. Madgwick Filter Node

The Madgwick filter is applied to the IMU data to merge the accelerometer and
gyroscope data into one frame. The filter estimates the real-time orientation by combining
the accelerometer data with the gyroscope data relative to the Earth’s frame. This fusion
process corrects any drift in the gyroscope sensor [80].

This filter is fully implemented in a built-in ROS package named imu-filter-madgwick [81].
The Madgwick filter node subscribes to the raw readings of the IMU sensor, published
in the ‘Raw/imu’ topic by the Arduino node. It publishes a new topic, ‘Filtered/imu’,
containing the corrected orientation and the fused IMU data.

4.5.4. Mapping Node: Hector SLAM

The SLAM (Simultaneous Localization and Mapping) algorithm is a method that is
used for real-time mapping and navigation. Hector SLAM is a specific implementation
of the SLAM algorithm mainly designed to work with the LiDAR sensor. It generates a
dynamic environment map, identifies obstacles, and estimates the vehicle’s location within
the map [82].

The Hector Slam node is implemented using the built-in ROS hector slam library [83].
The implemented node subscribes to the ‘laser’ topic from the LiDAR node, which includes
the LiDAR scan data. It publishes three topics: ‘Map/metadata’ for map dimensions
and resolution, ‘Map/grid’ for the occupancy values, and ‘Map/pose’ for the vehicle’s
current position.

4.5.5. Extended Kalman Filter (EKF) Node

The Extended Kalman Filter (EKF) node fuses data from the dead reckoning odometry,
filtered IMU readings, and SLAM-derived position to estimate a more accurate and reliable
vehicle location [84]. This node is implemented using the standard ROS implementation
described in [85]. It subscribes to ‘Filtered/imu’, ‘Raw/odom’, and ‘Map/pose’ topics for
IMU data, encoder-based odometry, and SLAM position, respectively. The corrected pose,
orientation, and velocity are published on the ‘Filtered/odom’ topic.

Actuators 2025, 14, 375 25 of 46

5. Hardware Implementation of the 4WD Robot
Figure 8 illustrates the hardware architecture of the modified 4WD robotic car. It is a

modified version of the original Elegoo V4 smart car [86]. It comprises four 6–10 V geared
DC motors with a 7.4 V lithium battery. The car is supported by an MPU-6050 IMU sensor
(TDK InvenSense Inc., Sunnyvale, CA, USA) to measure its orientation. The original setup
uses two TB6612 motor drivers (Toshiba Corporation, Tokyo, Japan) , each controlling a
pair of motors on the left and right sides, forming a two-wheel differential drive.

This setup is upgraded to four L298N drivers, enabling independent control of all four
motors in a four-wheel differential drive configuration [87]. Rotary encoders (KY-040) are
added to each motor to measure the speed and RPM [88].

Figure 8. The block diagram of the overall hardware view of the proposed ADS system.

The HOKUYO UTM-30LX LiDAR (Hokuyo Automatic Co., Ltd., Osaka, Japan) is
mounted on a third layer of the car to map the surrounding environment. A dedicated 11.1
V LiPo lithium battery supplies the LiDAR with a 2000 mAh capacity. The battery voltage
can decrease over time from 11.2 V to less than 10.8 V, which is insufficient to operate the
LiDAR. Therefore, a step-up boost converter (XL6009 by Xlsemi Microelectronics Co., Ltd.,
Shanghai, China) is used to maintain the voltage at approximately 12 V [89].

Due to the additional hardware added to the Elegoo V4 car, the Arduino Uno is
replaced with an Arduino Mega. The Arduino Mega is responsible for the car’s low-level
control, including the motor speed control, reading encoder data, and IMU sensor data.
The primary controller is the Raspberry Pi 4B, on which the whole ROS software, Noetic
version is installed to implement the stages of the ADS. It is connected to Arduino and
LiDAR via the UART protocol. The Raspberry Pi is supplied with a separate UPS circuit of
type X728 V2.3 and two 18,650 batteries to ensure a safe power connection [90].

6. Pid Transient Response
This section compares the transient response performance between the proposed

adaptive DE-tuned PID controller and a conventional Ziegler–Nichols (ZN) tuned PID
controller. The objective is to assess the dynamic behavior of both approaches under
nominal conditions and disturbance.

6.1. Traditional PID Control

In the traditional closed-loop control setup, the control cycle begins by setting the
desired motor speed. The encoder measures the actual motor speed, which is compared
to the desired speed to generate the error signal. The PID controller uses the error signal
to generate the control signal, which combines proportional, integral, and derivative
components. This signal is then sent to the motor driver to update the motor speed
accordingly. The loop continues until the error is minimized.

Actuators 2025, 14, 375 26 of 46

The tuning of the PID controller has a critical impact on the system’s transient perfor-
mance. A widely used tuning approach is the Ziegler–Nichols (ZN) method, where the
integral and derivative gains are initially set to zero, and the proportional gain is gradually
increased until the system output exhibits sustained oscillations [91]. The corresponding
gain is called the ultimate gain Ku = 2.9, and the oscillation period is Pu = 1.4 s. These val-
ues were obtained experimentally, and then the ZN tuning rules yield the PID parameters:
Kp = 1.75, Ki = 2.5, and Kd = 0.3063 [92].

6.2. Adaptive DE-Tuned PID Control

Figure 9 illustrates the architecture of the adaptive PID control system, composed of
the control node (Section 4.3) and the Arduino node (Section 4.4). In the complete system,
the control node receives waypoint and localization data, generating the desired speed
using the modified Pure Pursuit algorithm, which is sent to the Arduino.

The Arduino compares the desired speed (converted to RPM using inverse kinematics)
with the actual motor speed from the encoders and computes the control signal using the
PID logic. Meanwhile, the control node runs a Differential Evolution (DE) optimization
algorithm every 3 s to adaptively update the PID gains in real time based on the current con-
trol error. This dual-feedback structure improves convergence, accelerates error reduction,
and enhances robustness.

Figure 9. Overall closed-loop architecture of the adaptive DE-tuned PID controller.

6.3. Experiment Setup

In this test, the modified Pure Pursuit algorithm is temporarily disabled to isolate the
PID control loop performance. The system is set at a constant velocity reference, and the
motor is commanded to run at maximum duty cycle (normalized to 1), allowing evaluation
of the transient and disturbance response.

The experiment involves driving the motor at full duty cycle and monitoring the
system’s response in two phases: (1) the start-up phase, where the system accelerates from
a standstill state to the target speed, and (2) the recovery phase, where a temporary external
load disturbance is applied for 1 s, followed by system recovery.

During both phases, key transient metrics are measured, including rise time (tr),
settling time (ts), maximum overshoot (Mp), and steady-state error (ess). These indicators
provide insight into how quickly and accurately each controller stabilizes the motor speed.

Actuators 2025, 14, 375 27 of 46

6.4. Transient Response Analysis

Figure 10 shows the transient responses of both controllers, while Table 4 summarizes
the key performance indicators.

In the start-up phase, the proposed DE-PID achieved significantly reduced overshoot
(Mp = 0.83%) compared to the ZN-PID (Mp = 17.65%), marking a 95% improvement.
Additionally, the settling time improved by over 69% (from 4.74 s to 1.44 s), while main-
taining a comparable rise time (tr increased slightly from 0.8240 s to 0.9020 s). Despite the
marginally slower rise, the DE-PID effectively suppressed oscillations and converged faster
with minimal steady-state error (ess = 0.0168%).

In the recovery phase, following the disturbance, the DE-PID controller again outper-
formed the ZN-PID. It achieved an 84% reduction in settling time (from 2.03 s to 0.316 s)
and a 55% reduction in overshoot (from 2.83% to 1.27%). While the ZN-PID produced a
slightly lower ess (0.0021% vs. 0.0066%), this minor trade-off is outweighed by the sub-
stantial gains in transient response and stability. These results validate the robustness
and adaptability of the proposed DE-tuned PID controller, particularly under dynamic
conditions and load variations.

Table 4. Transient-response metrics of the proposed adaptive DE-PID controller versus a conventional
Ziegler–Nichols (ZN) PID controller.

Controller Phase tr [s] ts [s] Mp [%] ess [%]

Adaptive DE-PID (proposed) Start-up 0.9020 1.4360 0.8332 0.0168
Recovery 0.3160 0.3160 1.2687 0.0066

ZN-PID (baseline) Start-up 0.8240 4.7360 17.6526 0.0322
Recovery 0.3560 2.0300 2.8330 0.0021

(a) Traditional ZN-PID (b) Adaptive DE-PID

Figure 10. Transient response comparison between traditional ZN-PID and the proposed adaptive
DE-PID controllers in both start-up and recovery phases.

7. Ads Validation on Driving Scenarios Using 4WD
This section presents the experimental validation of the proposed ADS on the 4WD

robotic platform. It includes the evaluation of key functional tasks such as the failsafe
mechanism and performance in realistic driving scenarios.

7.1. Failsafe Validation

A blocked-corridor stress test is performed to evaluate the failsafe mechanism. Four
traffic cones are tightly positioned around the stationary 4WD robot, forcing all candidate
paths to intersect with obstacles. As expected, the RDE planner returned no feasible
solution, triggering the ‘Path/valid’ flag to switch to FALSE within the 250 ms cycle
window. In response, the control node immediately issued zero linear and angular velocity

Actuators 2025, 14, 375 28 of 46

commands and activated the ‘Failsafe/stop’ flag. This effectively disabled motor output at
the firmware level, keeping the vehicle fully immobilized.

After 2 s, the front cone was manually removed, creating a clear path forward.
Within the subsequent two planning cycles (0.5 s), the ’Path/valid’ flag reverted to TRUE,
allowing the control node to resume velocity commands and reset the ‘Failsafe/stop’ flag.
The robot successfully departed from its initial position and advanced towards the target
goal. Figure 11 illustrates both the blocked and cleared corridor scenarios during the test.

Figure 11. Blocked-corridor test setup to evaluate the the failsafe mechanism.

7.2. Driving Scenarios

The 4WD model is validated against six simulated driving scenarios, two of which
are based on the perception hazards outlined in the UK Highway Code theory book.
The objective of the experiment is to ensure that the car can follow the path generated by
the RDE algorithm without hitting any obstacles, thereby proving the correct integration of
all nodes in the ADS pipeline.

The first scenario is an open-field scenario with no obstacles, in which the car must
move from the starting point to the endpoint, as shown in Figure 12a. The second scenario
is a single chicane obstacle between the start and endpoints, as seen in Figure 12b. The third
and fourth scenarios consist of two and three chicanes, as in Figure 12c and Figure 12d,
respectively. The fifth and sixth scenarios are constructed using four chicanes to simulate
two challenging real-life driving scenarios: the chicanes overtaking and the overtaking of
roadworks and parked cars, as seen in Figure 12e and Figure 12f, respectively.

Chicanes are traffic-calming methods that convert straight paths into curves, forcing
the drivers to slow down and enhancing pedestrian safety in residential areas [93]. However,
it can increase the risk of collision if not navigated properly, especially for inexperienced
drivers. Moreover, urban chicanes are designed to accommodate only one vehicle at a time,
which makes it more hazardous. Aydin et al. evaluated the chicanes scenarios using a
driving simulator and reported a 43% accident rate in such scenarios, nearly half of all
tests [94]. A similar real-world setup is prepared for this study, as illustrated in Figure 12e.

Roadwork overtaking is one of the most common everyday driving situations, espe-
cially in the UK. Roadworks can block the entire road, leading to diverted traffic. It can also
be located on the side of the road, forcing drivers to overtake them to return to their original
lane. Temporary traffic lights and traffic signs guide some road works, but overtaking must
be performed in both cases, which is the primary objective in this experiment. The UK
Highway Code Sections 162 to 169 outline the procedure for overtaking [93]. Besides road-
works, parked cars on narrow roads can also obstruct traffic, demanding precise path
planning to avoid collisions. Figure 12f illustrates the simulated roadworks scenario used
in this study.

Actuators 2025, 14, 375 29 of 46

(a) S1: open field. (b) S2: single obstacle. (c) S3: two obstacles.

(d) S4: multi-Obstacles. (e) S5: Chicanes overtaking. (f) S6: Roadworks overtaking.

Figure 12. Simulated driving scenarios.

7.3. Experiment Setup and Results Visualization

A networked setup is established between the Raspberry Pi onboard the vehicle and
an external PC to enable real-time ROS communication via a shared local network and
the ROS Master [95]. This setup allows live publishing of map, pose, laser scan, and path
cost data from the vehicle, with complete visualization performed using the RViz tool on
the PC.

Figures 13 and 14 show a sample of the step-by-step results of the path followed by
the car using the proposed ADS structure and the RDE algorithm in the chicanes and
road works overtaking scenarios. Each frame shows the vehicle in real time alongside its
corresponding RViz environment visualization.

The path is indicated by a blue line, divided by equally spaced red circles generated
by RViz during path construction. The real-time laser scan is indicated by red boundaries
that surround the front side of obstacles facing the LiDAR at each time step. The car’s
current location is marked by a green circle, with a frame attached to its center showing the
vehicle’s current orientation.

As the car moves, the surrounding environment is incrementally mapped using the
Hector SLAM node from frame 1 to frame 12. The occupancy grid assigns cost values to
each cell, indicated by different colors. The purple color marks obstacle boundaries with
the highest cost of 254, representing a 100% collision risk. Cyan indicates inflated zones
that the car’s center cannot enter. Areas near obstacles range from red to dark blue (costs
253 to 1), within which the robot is allowed to navigate. Black regions denote free space
with zero cost, indicating safe traversal zones.

These results demonstrate that the vehicle successfully navigated the chicanes and
roadworks in a collision-free manner, as generated by the proposed ADS system, proving
the perfect integration between all the nodes. The following section discusses the statistical
analysis of the results for four state-of-the-art path-planning algorithms.

Actuators 2025, 14, 375 30 of 46

Figure 13. Chicanes driving scenario results. Visualizing the path and map generated by the ROS
system on the four-wheel differential drive on RViz side-by-side with the real snapshot.

Actuators 2025, 14, 375 31 of 46

Figure 14. Roadworks driving scenario results. Visualizing the path and map generated by the ROS
system on the four-wheel differential drive on RViz side-by-side with the real snapshot.

8. Results Statistical Analysis and Discussion
This section compares the proposed ROS-based Differential Evolution (RDE) planner

against four conventional path-planning algorithms commonly used within the ROS system:
A*, RRT, A*+TEB, and DWA. The aim is to assess the practical performance of RDE relative
to these baseline planners in terms of path cost and statistical significance across real-
world scenarios.

8.1. Comparison Setup and Local Planning Configuration

All algorithms are deployed in a local planning configuration within the same ROS
architecture to ensure a fair and consistent comparison. Fixed short-range goals are assigned
in each scenario, and each planner generates paths based on real-time LiDAR-derived

Actuators 2025, 14, 375 32 of 46

occupancy maps from Hector SLAM. While A* is traditionally used for global planning,
it is executed in our setup using local SLAM maps to reach short-distance goals without
relying on pre-loaded global maps or predefined routes. This uniform design ensures that
each algorithm operates under identical conditions and inputs.

Using the 4WD car platform, all algorithms are tested across six chicane driving
scenarios. For each planner, 20 independent runs are conducted per scenario. The parameter
settings for all planners are detailed in Table 5. All algorithms are configured to terminate
upon finding their first valid solution, while the RDE planner is allowed to run up to a
maximum of 10,000× nobst function evaluations, where nobst represents the number of
obstacle clusters detected by the DBSCAN algorithm. The resulting path costs are recorded
as previously described, and statistical analysis is performed to evaluate comparative
effectiveness and significance.

Table 5. Summary of parameter settings for path-planning algorithms.

Algorithm Parameters

A* Grid resolution = 0.01

RRT Step size = 0.01

A*TEB [46]
vmax = 0.4, amax = 0.5, Safety margin = 0.25
Weight length = 30, Grid resolution = 0.01

DWA [96,97]
vmax = 0.4, vmin = 0, linear velocity resolution = 0.01

ωmax = π/4, ωmin = −π/4, angular velocity resolution = 0.1, ∆t = 0.1

RDE NP = 30, F = 0.5, CR = 0.5

8.2. Results Collection and Visualization

Table 6 presents the best, worst, median, mean, and SD of the path costs obtained
over 20 runs for each algorithm across the six chicane driving scenarios. The distribution
of these results is visualized using box plots in Figure 15a and violin plots in Figure 15b.
A compact and low-positioned box indicates both low cost and high consistency across
runs in the box plots. The A*TEB algorithm exhibited significantly higher path costs than
the other planners, resulting in its exclusion from the violin plots to enhance the visibility
of the other algorithms’ distributions.

Table 6. Best, worst, median, mean, and SD path cost results of all the algorithms across the
20 experiments for the scenarios (S1–S6).

S No. Alg. Best Worst Median Mean SD

S1

A* 2.00000000 × 102 2.00000000 × 102 2.00000000 × 102 2.00000000 × 102 0.00000000
A*TEB 3.62384274 × 102 3.62384274 × 102 3.62384274 × 102 3.62384274 × 102 1.16640234 × 10−13

RRT 2.00116704 × 102 2.08740222 × 102 2.01575938 × 102 2.02458382 × 102 2.15278122
DWA 2.01047468 × 102 2.01047468 × 102 2.01047468 × 102 2.01047468 × 102 8.74801758 × 10−14

RDE 2.00000000 × 102 2.00000000 × 102 2.00000000 × 102 2.00000000 × 102 0.00000000

S2

A* 8.75192075 × 10 8.75192075 × 10 8.75192075 × 10 8.75192075 × 10 0.00000000
A*TEB 4.73667614 × 102 4.73667614 × 102 4.73667614 × 102 4.73667614 × 102 0.00000000
RRT 8.52189202 × 10 1.19273804 × 102 9.70616612 × 10 9.83924551 × 10 9.73163601
DWA 9.28122347 × 10 9.28122347 × 10 9.28122347 × 10 9.28122347 × 10 2.91600586 × 10−14

RDE 8.15317851 × 10 9.30635455 × 10 8.15317851 × 10 8.21088853 × 10 2.57846002

Actuators 2025, 14, 375 33 of 46

Table 6. Cont.

S No. Alg. Best Worst Median Mean SD

S3

A* 1.60194616 × 102 1.60194616 × 102 1.60194616 × 102 1.60194616 × 102 5.83201172 × 10−14

A*TEB 7.18529285 × 102 7.18529285 × 102 7.18529285 × 102 7.18529285 × 102 2.33280469 × 10−13

RRT 1.58055638 × 102 1.82707339 × 102 1.67118392 × 102 1.67918799 × 102 5.79856369
DWA 1.63021900 × 102 1.63021900 × 102 1.63021900 × 102 1.63021900 × 102 5.83201172 × 10−14

RDE 1.52676247 × 102 1.52680889 × 102 1.52676551 × 102 1.52677171 × 102 1.33552752 × 10−3

S4

A* 1.47475290 × 102 1.47475290 × 102 1.47475290 × 102 1.47475290 × 102 2.91600586 × 10−14

A*TEB 1.07240462 × 103 1.07240462 × 103 1.07240462 × 103 1.07240462 × 103 2.33280469 × 10−13

RRT 1.52826598 × 102 1.76183628 × 102 1.61016604 × 102 1.61394440 × 102 7.47421701
DWA 1.69999293 × 102 1.69999293 × 102 1.69999293 × 102 1.69999293 × 102 2.91600586 × 10−14

RDE 1.49785795 × 102 1.49910983 × 102 1.49793129 × 102 1.49802956 × 102 3.15616530 × 10−2

S5

A* 2.17247995 × 102 2.17247995 × 102 2.17247995 × 102 2.17247995 × 102 2.91600586 × 10−14

A*TEB 8.33081518 × 103 8.33081518 × 103 8.33081518 × 103 8.33081518 × 103 0.00000000
RRT 2.20839573 × 102 2.50735916 × 102 2.28663314 × 102 2.31625135 × 102 8.12402140
DWA 2.29383191 × 102 2.29383191 × 102 2.29383191 × 102 2.29383191 × 102 1.16640234 × 10−13

RDE 2.08182454 × 102 2.08201368 × 102 2.08185161 × 102 2.08186998 × 102 5.06874043 × 10−3

S6

A* 2.57185725 × 102 2.57185725 × 102 2.57185725 × 102 2.57185725 × 102 0.00000000
A*TEB 1.47008696 × 103 1.47008696 × 103 1.47008696 × 103 1.47008696 × 103 4.66560938 × 10−13

RRT 2.56951451 × 102 2.78581854 × 102 2.64370048 × 102 2.65120604 × 102 5.81853033
DWA 2.61966070 × 102 2.61966070 × 102 2.61966070 × 102 2.61966070 × 102 5.83201172 × 10−14

RDE 2.51004800 × 102 2.52346676 × 102 2.51005463 × 102 2.51083162 × 102 2.98022348 × 10−1

The results show that the proposed RDE consistently has compact, low-positioned
boxes in all scenarios, indicating low path cost and high repeatability. The only exception
is Scenario 4, where the A* algorithm has less path cost than RDE. In contrast, the RRT
displays the widest boxes and violin shapes, indicating non-repeatable results and a lack of
consistency across runs. Compared to A*, A*TEB, DWA, and RRT, the RDE planner offers
the most reliable and efficient path-planning performance in the tested scenarios.

(a) Box plots.

Figure 15. Cont.

Actuators 2025, 14, 375 34 of 46

(b) Violin plots.

Figure 15. Box and violin plots showing the distribution of path-planning costs for all tested
algorithms across 20 trials and six driving scenarios. Each distribution reflects the algorithm’s overall
performance variability.

8.3. Statistical Analysis Results

Figure 16 and Table 7 present the results of the Wilcoxon Signed-Rank test and the
Friedman test for all evaluated cost metrics. The Wilcoxon Signed-Rank test is conducted to
evaluate the pairwise statistical significance of the RDE algorithm against each competing
method across all six driving scenarios. For the mean, median, and best metrics, RDE
outperformed A* in 5 out of 6 scenarios and outperformed A*TEB, RRT, and DWA in
all scenarios. For the worst cost metric, RDE outperformed A* in 4 scenarios, DWA in
5, and A*TEB and RRT in all 6 scenarios. These consistent wins highlight the superior
reliability and performance of RDE across different statistical measures.

(a) Mean Metric. (b) Median Metric.

(c) Best Metric. (d) Worst Metric.

Figure 16. Function-wise Wilcoxon Signed-Rank test results comparing the proposed RDE plan-
ner with other baseline algorithms across four statistical metrics: mean, median, best, and worst
path costs.

Actuators 2025, 14, 375 35 of 46

Table 7. Statistical analysis of all the experiments for all six scenarios for all the path-planning
algorithms: A*, A*TEB, RRT, DWA, and RDE. RDE is the reference algorithm in all comparisons,
and thus the Wilcoxon test is not applicable (NA) for RDE as it cannot be compared against itself.
‘+’ means the number of scenarios in which the RDE is better, and ‘=’ means draw. The level of
significance α is 0.05. The results are significant if p-value < α. In the Friedman test, the best algorithm
is the one with the minimum mean rank.

Metric
Alg. Wilcoxon Friedman Test

Name Test SumRanks MeanRanks Rank p-Value

Mean

A* +5/=0/−1 11 1.83333333 2

0.00014760
A*TEB +6/=0/−0 30 5.00000000 5
RRT +6/=0/−0 23 3.83333333 4
DWA +6/=0/−0 19 3.16666667 3
RDE NA 7 1.16666667 1

Median

A* +5/=0/−1 11 1.83333333 2

0.00017735
A*TEB +6/=0/−0 30 5.00000000 5
RRT +6/=0/−0 22 3.66666667 4
DWA +6/=0/−0 20 3.33333333 3
RDE NA 7 1.16666667 1

Worst

A* +4/=0/−2 10 1.66666667 2

0.00022646
A*TEB +6/=0/−0 30 5.00000000 5
RRT +6/=0/−0 24 4.00000000 4
DWA +5/=0/−1 17 2.83333333 3
RDE NA 9 1.50000000 1

Best

A* +5/=0/−1 14 2.33333333 2

0.00022646
A*TEB +6/=0/−0 30 5.00000000 5
RRT +6/=0/−0 15 2.50000000 3
DWA +6/=0/−0 24 4.00000000 4
RDE NA 7 1.16666667 1

The Friedman test is used to compare the overall rankings of the algorithms across the
six scenarios. For all cost metrics (mean, median, worst, and best), RDE achieved the top
rank (Rank 1). The corresponding mean ranks for RDE were the lowest among all planners:
1.17 (mean), 1.17 (median), 1.50 (worst), and 1.17 (best). In contrast, A*TEB consistently
ranked lowest, with a mean rank of 5.00. The p-values for all metrics were below the
significance threshold (α = 0.05), confirming that the observed differences among the
algorithms are statistically significant.

9. Computational Complexity Analysis
This section analyzes the computational complexity of the proposed RDE-based plan-

ning node and compares it against traditional A*+DWA/TEB pipelines in both theoretical
and practical contexts.

9.1. Asymptotic Complexity Comparison

The overall computational complexity of the proposed ROS-based path-planning
node is primarily governed by the DE optimization process, but it also involves several
preprocessing stages, including map boundary extraction, LiDAR-based goal determina-
tion, cost evaluation, and DBSCAN-based obstacle clustering. The DE component, which
dominates the runtime, has a complexity of O(Np · nobst · T), where Np is the population
size, nobst represents the number of DE decision variables (scaled to the number of clustered
obstacles), and T is the maximum number of DE iterations.

The clustering phase using DBSCAN operates on a set of obstacle points N and has a
worst-case complexity of O(N2), although efficient indexing (KD-trees) typically reduces
this to near-linear time. Additionally, higher-resolution maps (smaller Mres) increase the
cost of cell indexing and penalty calculations. However, the proposed node constrains all

Actuators 2025, 14, 375 36 of 46

operations within a dynamic local field defined by the LiDAR range, which is typically
constrained to 30 m, reducing unnecessary computation.

In contrast, traditional pipelines combine A* for global planning with DWA or TEB
for local planning. A* requires full-map traversal with a time complexity of O(M log M),
where M is the number of traversable cells, making it inefficient for large or dynamic
environments. The local planner TEB incurs high overhead due to continuous trajectory
optimization and constraint solving, with worst-case time complexity up to O(k3), where
k is the number of trajectory states [45]. DWA, while faster, relies on dense velocity
sampling and repeated trajectory rollouts, often reaching O(nv · nθ · nt), where nv and nθ

are sampled linear and angular velocities, and nt is the time horizon steps [98]. These
methods depend on fixed-resolution grids and are less adaptive to localized changes or
sensor-driven updates.

In summary, the proposed RDE node achieves a total computational complexity of
O(Np · nobst · T + N), compared to O(M log M + nv · nθ · nt) for the A*+DWA pipeline
and O(M log M + k3) for A*+TEB. By unifying global and local planning within a single
DE-based optimization loop and operating entirely on real-time LiDAR occupancy data,
RDE avoids global traversal and velocity discretization, offering better scalability and
responsiveness in dynamic environments.

9.2. Practical Time Complexity Analysis

The time complexity metrics T0, T1, T2, and T3, previously introduced for bench-
marking CEC2020 functions, are analogously applied here to evaluate the computational
efficiency of each planner in real driving scenarios. Specifically, T0 captures the baseline
computational speed of the onboard controller (Raspberry Pi). A fixed arithmetic-intensive
code is run on the controller in isolation for a large number of iterations (200,000 in our
study), measuring the total time with a built-in timing function, yielding a T0 = 0.0029934.

The metric T1 represents the time consumed by environment handling alone, such
as sensor reading (LiDAR and IMU), basic data logging, and trivial motion commands,
without executing the main path-planning algorithm. For each scenario, we disabled the
advanced planner node (e.g., RDE). We allowed the robot to remain idle, recording the total
execution time over a fixed number of iterations, averaging them across scenarios to obtain
T1 = 10.56. The metric T2 measures the full execution time, including the path-planning
node. The final metric, T3 = (T2 − T1)/T0, normalizes the net planning overhead by the
hardware’s baseline speed, providing a hardware-independent comparison.

Table 8 reports these metrics across all six driving scenarios. The proposed RDE
algorithm consistently achieves the lowest T3 value (9206.64), indicating the most efficient
computational performance among all methods. RRT ranks second (15,421.21), followed
by A* (45,632.43), DWA (45,709.03), and A*TEB (54,493.90). These results demonstrate
that RDE not only excels in planning accuracy but also minimizes computational load,
which represents an essential factor for energy-efficient operation in embedded or battery-
powered autonomous vehicles.

Table 8. Time complexity results for all algorithms across all scenarios.

Algorithm T0 T1 T2 T3 Rank

A* 0.00299340 10.56405612 147.16016833 45,632.42874880 3

A*TEB 0.00299340 10.56405612 173.68609014 54,493.89792000 5

RRT 0.00299340 10.56405612 56.72592000 15,421.21463330 2

DWA 0.00299340 10.56405612 147.38945167 45,709.02503842 4

RDE 0.00299340 10.56405612 38.12321333 9206.64034765 1

Actuators 2025, 14, 375 37 of 46

10. Deployment Extensions for Outdoor and Dynamic Environments
This section presents a set of practical considerations and implementation guidelines

for extending the proposed RDE-based local planning framework from indoor validation
to outdoor road navigation. It also outlines how it can be adapted to handle dynamic
obstacles in real-world scenarios.

10.1. Deployment Considerations for Outdoor and Road-Based Navigation

While the current validation was conducted using an indoor 4WD robot, the core
architecture of the proposed RDE-based local planner is designed to be directly transferable
to outdoor road scenarios. In such scenarios, the global navigation route is typically gener-
ated from GPS or high-level mission planners, which provide sequential waypoints along
the road network. These GPS-derived waypoints can seamlessly replace the dynamically
generated short-range goals used in the indoor experiments. Once received, each way-
point becomes the target input for the RDE local planner, which then computes a smooth,
collision-free path segment using real-time LiDAR data.

Additionally, the system can be extended with a vision-based perception layer that
uses camera inputs to recognize road lanes, traffic signs, and dynamic road agents. These
perception outputs can be incorporated into the local planning process either by constrain-
ing the search space (e.g., enforcing lane boundaries) or influencing decision-making logic
(e.g., yielding or stopping). For instance, a detected lane centerline can limit the feasible
region where RDE explores new paths, ensuring road compliance. This hybrid structure
mirrors real-world autonomous driving architectures, where GPS provides long-range
routing and vision sensors support short-range planning.

The control and Arduino nodes are designed to accommodate both configurations
(4WD and Ackermann) with minimal modifications to support outdoor vehicle scenar-
ios where Ackermann steering is more common than 4WD mechanisms. Furthermore,
the hardware controllers will be upgraded to handle higher power demands typical of
road vehicles. For example, low-power modules such as the LM358 motor driver will
be replaced with more robust controllers like the Cytron MD30 series, and the control
units themselves will be scaled accordingly to ensure stable operation under real-world
driving conditions.

10.2. Handling Dynamic Obstacles

Although the driving scenarios in this study involve static obstacles, the software stack
is already configured for dynamic environments. The Hokuyo UTM-30LX delivers range
scans at 40 Hz, while the RDE optimizer is invoked after every fifth scan, resulting in an
effective replanning rate of 8 Hz (125 ms cycle). This duration is significantly longer than
the measured optimization time of 39 ms, ensuring that each planning cycle is completed
before the next trigger. Therefore, pedestrians or vehicles that cross the laser field are
interpreted as transient obstacles in the updated occupancy grid. The RDE planner then
immediately provides a collision-free path that reflects recent motion updates, allowing the
vehicle to avoid the obstacle in the next planning round.

While dynamic obstacle testing lies beyond the current experimental scope, the pro-
posed framework can be extended to handle such cases using the following two enhance-
ments. First, a lightweight strategy inspired by Dynamic Occupancy Grid Mapping
(DOGM) can be incorporated to track short-term occupancy history across successive
scans [99]. Grid cells that alternate frequently between free and occupied states over a
brief window (e.g., 10 frames) are flagged as potentially dynamic. These flagged cells are
grouped into clusters, and if a cluster’s centroid shifts beyond a defined threshold (e.g.,
15–20 cm), it is identified as a dynamic object. If any such cluster intersects the current path,

Actuators 2025, 14, 375 38 of 46

an internal flag triggers immediate replanning. This mechanism requires no additional
ROS topics and integrates efficiently into the existing architecture.

Second, the system can benefit from incorporating localized frontier-led exploration,
as inspired by the dynamic frontier-led swarming approach proposed by Tran et al. [100].
While originally developed for multi-robot systems, a simplified adaptation can be applied
to a single robot by periodically re-evaluating unexplored or recently cleared map frontiers.
These frontiers can be prioritized in the RDE waypoint-generation phase. Then, the robot
can adjust its path based on the dynamically emerging free space.

Although the current system has been validated indoors using a 4WD robot in static
environments, its modular design allows straightforward adaptation to outdoor, real-
world conditions. With minor software adjustments and hardware upgrades, the same
RDE-based framework can be deployed in full-scale autonomous vehicles for dynamic,
road-based navigation.

11. Conclusions
This study presents a modular ROS-based autonomous driving system comprising

eight integrated nodes, each dedicated to a specific task within the ADS pipeline. The sys-
tem features enhanced path-planning and control capabilities, integrating LiDAR-based
Hector SLAM for real-time mapping, an Extended Kalman Filter (EKF) for robust local-
ization, and a Differential Evolution (DE)-based optimizer for path planning to ensure
adaptive and efficient navigation.

In the path-planning node, a ROS-based Differential Evolution (RDE) algorithm is im-
plemented with a dynamic cost function that estimates the path cost based on Hector-SLAM
mapping and DBSCAN clustering. The goal point is dynamically allocated according to Li-
DAR range and search space boundaries, ensuring adaptability in real-world environments.
Unlike conventional planners that generate motor velocities, the RDE algorithm generates
Cartesian coordinates, enhancing generalization and cross-platform compatibility.

In the control node, a modified pure-pursuit algorithm translates waypoints from the
path planner into motor velocity commands for the Arduino node, considering the drift
angle to ensure accurate trajectory execution. The DE algorithm dynamically adjusts the PID
controller gains, optimizing motor speed control for smooth vehicle handling. With minor
modifications in the control node, this architecture can be adapted and deployed across
various vehicle platforms.

Extensive simulations and real-world experiments validated the system’s performance,
demonstrating its ability to generate collision-free paths with reduced path length and
enhanced execution efficiency. Comparative evaluations revealed that the proposed RDE
method outperformed state-of-the-art planners, such as A*, RRT, DWA, and A*TEB. RDE
ranked first in the Friedman test, achieving a significance level of 0.05, with better conver-
gence and lower computational overhead.

In the future, the proposed system could be extended to support various vehicle
architectures, including Omni-wheel (Mecanum) steering systems, to evaluate its adapt-
ability across different mobility platforms. Additionally, other meta-heuristic optimization
algorithms could be implemented within the path-planning node to compare their per-
formance. The perception layer could also be expanded by incorporating an RGB camera
and deep learning-based computer vision techniques for object-recognition tasks. Overall,
the proposed ADS framework has demonstrated its efficiency, modularity, and flexibility,
and future research could focus on its improvement.

Author Contributions: Conceptualization, M.R.; taxonomy, M.R.; methodology, M.R.; software, M.R.;
hardware, M.R.; validation, M.R.; visualization, M.R.; formal analysis, M.R.; data curation, M.R.;
investigation, M.R.; resources, M.R., A.O., A.G. and A.Y.H.; writing—original draft preparation, M.R.;

Actuators 2025, 14, 375 39 of 46

writing—review and editing, M.R.; supervision, A.O., A.G. and A.Y.H.; project administration, A.O.,
A.G. and A.Y.H.; funding acquisition, A.O., A.G. and A.Y.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. The best, worst, mean, median, SD results for the error metric for all meta-heuristic
optimization algorithms, CEC2020 (F1–F10).

Fun Alg. 10D 20D

No. Name Best Worst Median Mean SD Best Worst Median Mean SD

F1

GA 1.4974 × 104 1.7788 × 106 3.6617 × 105 5.0509 × 105 4.3654 × 105 1.2426 × 104 2.6591 × 105 5.3753 × 104 7.4397 × 104 6.4180 × 104

PSO 1.4168 × 106 2.0380 × 109 3.0350 × 108 5.8239 × 108 6.1165 × 108 2.1809 × 109 1.5419 × 1010 6.5854 × 109 7.5710 × 109 3.5970 × 109

TEO 1.1793 × 104 8.7009 × 104 2.3377 × 104 4.0459 × 104 2.8956 × 104 1.9895 × 104 1.2542 × 105 9.8042 × 104 8.6402 × 104 3.2579 × 104

GNDO 3.5706 5.4951 × 103 3.6748 × 102 6.2313 × 102 1.0436 × 103 1.6474 × 10−6 9.7521 × 103 4.3134 × 10−4 5.7523 × 102 1.7676 × 103

SA 1.4496 × 106 8.0358 × 106 4.0704 × 106 4.2385 × 106 1.8020 × 106 6.5182 × 105 2.3992 × 106 1.6167 × 106 1.5951 × 106 4.7568 × 105

ABC 2.2673 × 10 2.6460 × 103 3.1767 × 102 6.2372 × 102 6.7841 × 102 9.4640 1.1106 × 104 2.0601 × 103 2.8874 × 103 2.7787 × 103

GWO 3.3673 × 102 4.8782 × 108 1.1451 × 104 4.2925 × 107 1.2103 × 108 1.9767 × 102 3.0740 × 109 4.6268 × 108 6.9956 × 108 8.5131 × 108

AHA 1.3347 3.4245 × 103 1.6803 × 103 1.4297 × 103 1.0617 × 103 1.9126 × 10 4.7895 × 103 1.5288 × 103 1.7714 × 103 1.9357 × 103

BAS 8.5458 × 109 3.8408 × 1010 2.0401 × 1010 2.2467 × 1010 7.5480 × 109 3.8225 × 1010 8.6432 × 1010 6.3699 × 1010 6.4602 × 1010 1.1161 × 1010

FA 8.7940 × 10−1 5.8425 × 103 1.4874 × 103 2.0079 × 103 1.9840 × 103 4.4123 1.1691 × 104 1.8836 × 103 3.0924 × 103 3.5731 × 103

MFO 1.5474 1.6049 × 109 5.5320 × 103 1.9685 × 108 4.9533 × 108 1.2092 × 104 1.6428 × 1010 1.7118 × 109 2.7251 × 109 3.3182 × 109

LCA 9.0536 × 109 2.7883 × 1010 2.1343 × 1010 1.8992 × 1010 6.9087 × 109 4.2757 × 1010 4.7895 × 1010 4.5530 × 1010 4.5529 × 1010 1.9365 × 109

HHO 1.1640 × 107 8.4877 × 108 1.0479 × 108 1.8747 × 108 2.0781 × 108 2.4371 × 107 4.9665 × 108 1.5918 × 108 1.7041 × 108 1.0456 × 108

CMAES 1.6829 × 103 8.4241 × 109 4.3266 × 109 4.0683 × 109 1.9841 × 109 2.1323 × 102 2.1728 × 1010 9.8212 × 109 8.4589 × 109 7.6954 × 109

DE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

F2

GA 1.9127 × 10 8.2353 × 102 3.5663 × 102 3.8877 × 102 2.0957 × 102 1.1192 × 10 7.6484 × 102 4.0814 × 102 4.1054 × 102 2.1424 × 102

PSO 2.4555 × 102 1.4602 × 103 1.0420 × 103 1.0210 × 103 3.2130 × 102 1.3760 × 103 3.1143 × 103 2.3544 × 103 2.2551 × 103 5.0741 × 102

TEO 2.8627 × 10 5.6673 × 102 2.6147 × 102 3.2377 × 102 1.6449 × 102 4.4381 × 102 1.2969 × 103 4.9771 × 102 6.9416 × 102 3.7018 × 102

GNDO 1.3749 × 102 1.3682 × 103 3.4881 × 102 6.4692 × 102 4.7313 × 102 6.8427 × 102 2.2231 × 103 1.6770 × 103 1.5768 × 103 3.9128 × 102

SA 3.3255 × 10 3.5270 × 102 1.6893 × 102 1.6639 × 102 9.1001 × 10 4.8356 × 10 8.3909 × 102 3.3886 × 102 3.8547 × 102 2.2554 × 102

ABC 1.1458 × 103 1.6475 × 103 1.4025 × 103 1.4261 × 103 1.1288 × 102 3.5122 × 103 4.4878 × 103 4.1658 × 103 4.1567 × 103 2.3736 × 102

GWO 4.4864 × 10−1 7.9786 × 102 4.2419 × 102 4.0355 × 102 2.3216 × 102 5.1117 × 102 2.1611 × 103 1.3963 × 103 1.3636 × 103 3.9201 × 102

AHA 3.5399 7.1827 × 102 2.5212 × 102 3.2178 × 102 2.8836 × 102 3.3953 × 102 8.9714 × 102 5.3698 × 102 5.8656 × 102 2.1338 × 102

BAS 1.6612 × 103 2.9002 × 103 2.3956 × 103 2.3881 × 103 2.4614 × 102 4.6840 × 103 6.2094 × 103 5.8057 × 103 5.7104 × 103 3.4316 × 102

FA 3.7194 9.9497 × 102 3.6187 × 102 3.5041 × 102 2.9683 × 102 3.5576 × 102 2.3035 × 103 1.2768 × 103 1.2564 × 103 4.3842 × 102

MFO 3.3181 × 102 1.5108 × 103 9.2324 × 102 8.9678 × 102 3.2405 × 102 5.8718 × 102 3.0032 × 103 2.1382 × 103 2.0504 × 103 5.6477 × 102

LCA 1.7222 × 103 2.1941 × 103 1.7644 × 103 1.8618 × 103 2.0459 × 102 5.0734 × 103 5.4637 × 103 5.3879 × 103 5.3269 × 103 1.4843 × 102

HHO 5.5573 × 102 2.0119 × 103 1.1700 × 103 1.1842 × 103 2.8902 × 102 1.6729 × 103 3.8250 × 103 2.8877 × 103 2.8599 × 103 5.3056 × 102

CMAES 1.2936 × 103 2.1447 × 103 1.8079 × 103 1.7842 × 103 1.9028 × 102 3.9583 × 103 5.1006 × 103 4.6652 × 103 4.6431 × 103 2.6692 × 102

DE 1.0370 × 10 4.6920 × 102 2.4575 × 102 2.2807 × 102 1.4237 × 102 2.6838 × 10 1.5918 × 103 1.1688 × 103 1.0565 × 103 4.1834 × 102

F3

GA 1.5019 × 10 5.2344 × 10 3.1609 × 10 3.2048 × 10 8.5395 2.5129 × 10 5.2493 × 10 3.7674 × 10 3.9198 × 10 5.7818
PSO 2.2594 × 10 9.7814 × 10 4.2976 × 10 4.8523 × 10 2.0152 × 10 8.4114 × 10 2.2566 × 102 1.4498 × 102 1.5338 × 102 3.3011 × 10
TEO 1.7335 × 10 3.8975 × 10 3.5735 × 10 3.2141 × 10 9.0735 4.7712 × 10 8.4530 × 10 4.9362 × 10 5.7885 × 10 1.4044 × 10

GNDO 4.0981 × 10 7.5818 × 10 5.1703 × 10 5.0834 × 10 7.8193 1.3530 × 102 2.9592 × 102 1.8632 × 102 1.9628 × 102 5.0240 × 10
SA 1.9857 × 10 4.0166 × 10 3.2383 × 10 3.1247 × 10 4.8798 3.4996 × 10 7.4456 × 10 5.8414 × 10 5.6258 × 10 8.6220

ABC 2.7640 × 10 4.7019 × 10 4.1408 × 10 4.0345 × 10 4.7952 1.1020 × 102 1.4429 × 102 1.2951 × 102 1.2895 × 102 8.0044
GWO 1.3128 × 10 4.7748 × 10 2.8058 × 10 2.7709 × 10 8.6992 4.2527 × 10 9.6178 × 10 6.6196 × 10 6.8030 × 10 1.3915 × 10
AHA 2.1213 × 10 3.6252 × 10 2.4561 × 10 2.7072 × 10 6.2887 3.7562 × 10 7.8446 × 10 5.3093 × 10 5.8339 × 10 1.4434 × 10
BAS 2.3649 × 102 6.6616 × 102 4.2734 × 102 4.2785 × 102 1.1571 × 102 1.0719 × 103 1.8417 × 103 1.4114 × 103 1.4594 × 103 2.0708 × 102

FA 1.2440 × 10 2.6835 × 10 1.6983 × 10 1.7337 × 10 3.4682 3.2303 × 10 7.4941 × 10 4.4072 × 10 4.5661 × 10 1.0390 × 10
MFO 1.7003 × 10 7.9331 × 10 3.8552 × 10 4.1954 × 10 1.4497 × 10 4.8076 × 10 2.6684 × 102 9.5346 × 10 1.2323 × 102 6.5378 × 10
LCA 1.5658 × 102 1.8690 × 102 1.7773 × 102 1.7241 × 102 1.1616 × 10 4.1318 × 102 4.4194 × 102 4.4104 × 102 4.3189 × 102 1.2090 × 10
HHO 5.5817 × 10 1.3748 × 102 1.1057 × 102 1.0536 × 102 1.9159 × 10 2.0008 × 102 3.6010 × 102 2.9135 × 102 2.8546 × 102 3.9099 × 10

CMAES 1.2007 × 10 3.2346 × 10 1.4210 × 10 1.5142 × 10 3.8204 1.3263 × 10 4.3109 × 10 3.1306 × 10 3.2130 × 10 5.8292
DE 1.7600 × 10 2.4306 × 10 2.0917 × 10 2.0867 × 10 1.8442 4.6169 × 10 6.5556 × 10 5.8769 × 10 5.8930 × 10 5.2305

F4

GA 1.1889 1.3800 × 10 5.5279 6.1676 3.6904 1.0271 4.2028 × 10 5.3050 7.5279 8.1102
PSO 2.3776 × 10 2.0323 × 104 8.2961 × 102 2.5839 × 103 4.5963 × 103 4.6508 × 102 6.9316 × 104 6.6722 × 103 1.3881 × 104 1.5279 × 104

TEO 1.1586 2.4495 1.4817 1.6996 4.9263 × 10−1 1.0555 7.1760 1.7702 3.0159 2.2529
GNDO 2.4899 × 10 2.8542 × 102 7.7850 × 10 1.2454 × 102 1.0399 × 102 3.9551 × 102 7.8060 × 102 5.4323 × 102 5.3416 × 102 1.1546 × 102

SA 1.5240 3.1352 2.3407 2.3371 3.4889 × 10−1 2.7671 5.3034 4.0831 4.0945 6.5655 × 10−1

ABC 1.1653 2.5446 1.8641 1.8896 3.4324 × 10−1 7.8007 1.1807 × 10 1.0272 × 10 1.0003 × 10 1.1339
GWO 5.0434 × 10−1 2.6835 1.8009 1.5908 7.4071 × 10−1 1.7591 1.3262 × 103 8.1292 6.1546 × 10 2.4002 × 102

AHA 7.0161 × 10−1 2.3227 1.7824 1.5703 6.3449 × 10−1 1.1305 2.4684 1.6468 1.8304 4.4748 × 10−1

BAS 2.8548 × 104 1.9816 × 107 3.4760 × 106 4.7210 × 106 5.2016 × 106 1.4739 × 106 4.3505 × 107 1.0227 × 107 1.2433 × 107 9.6398 × 106

FA 3.6599 × 10−1 1.6405 7.6493 × 10−1 8.4064 × 10−1 3.0215 × 10−1 8.7802 × 10−1 3.1403 1.7940 1.9511 5.8292 × 10−1

MFO 7.7343 × 10−1 3.6148 × 102 1.9272 1.6044 × 10 6.5697 × 10 7.0343 3.7385 × 105 3.0239 × 103 2.4214 × 104 7.1382 × 104

LCA 6.0400 × 104 5.8792 × 105 3.8498 × 105 3.4108 × 105 2.2607 × 105 2.1014 × 105 5.5651 × 106 4.4558 × 106 3.5155 × 106 2.0939 × 106

HHO 5.1335 6.0208 × 102 1.7543 × 10 4.9141 × 10 1.1773 × 102 2.0719 × 10 2.1017 × 103 6.6776 × 10 1.7745 × 102 3.9969 × 102

CMAES 2.2408 × 102 4.6770 × 103 1.1301 × 103 1.4534 × 103 1.1522 × 103 3.6721 × 103 1.4634 × 105 3.2136 × 104 4.9423 × 104 3.8618 × 104

DE 9.7477 × 10−1 1.8765 1.5087 1.4914 2.3284 × 10−1 4.1719 6.9222 5.7205 5.7049 6.6065 × 10−1

Actuators 2025, 14, 375 40 of 46

Table A1. Cont.

Fun Alg. 10D 20D

No. Name Best Worst Median Mean SD Best Worst Median Mean SD

F5

GA 1.6195 × 104 3.8926 × 106 5.6856 × 105 1.1642 × 106 1.1768 × 106 3.6842 × 105 9.1174 × 106 1.4630 × 106 2.0008 × 106 1.8026 × 106

PSO 1.1785 × 103 1.7951 × 106 4.0500 × 105 5.3711 × 105 4.9870 × 105 2.2468 × 105 6.2761 × 106 1.5078 × 106 1.7969 × 106 1.4517 × 106

TEO 3.3586 × 105 5.6246 × 105 5.3324 × 105 4.8645 × 105 9.3475 × 104 6.9479 × 105 1.6344 × 106 8.9291 × 105 9.9479 × 105 3.1871 × 105

GNDO 2.9082 × 10 4.0721 × 102 3.4784 × 102 2.8135 × 102 1.5685 × 102 4.7809 × 102 1.6005 × 104 1.0864 × 104 7.5474 × 103 6.6830 × 103

SA 2.7275 × 102 1.8566 × 104 3.2823 × 103 5.1606 × 103 5.0607 × 103 4.9847 × 103 1.5093 × 105 3.1260 × 104 4.5571 × 104 3.5033 × 104

ABC 2.3129 × 104 2.3669 × 105 9.3308 × 104 9.8242 × 104 5.1338 × 104 5.4337 × 105 5.6922 × 106 2.4481 × 106 2.5917 × 106 1.1415 × 106

GWO 8.7721 × 102 3.4512 × 105 2.6693 × 103 1.5254 × 104 6.2362 × 104 3.5390 × 104 2.3382 × 106 2.4408 × 105 5.3121 × 105 6.5340 × 105

AHA 1.4970 × 10 4.6264 × 103 1.1462 × 102 8.7552 × 102 1.7091 × 103 2.0461 × 104 1.6489 × 105 6.3449 × 104 6.6283 × 104 3.4650 × 104

BAS 8.8417 × 105 1.2879 × 108 9.3323 × 106 2.0112 × 107 2.9259 × 107 9.3991 × 106 3.3799 × 108 1.5765 × 108 1.5858 × 108 9.3061 × 107

FA 2.8253 × 10 7.3105 × 103 1.5968 × 103 2.5023 × 103 2.2652 × 103 2.1078 × 103 2.3953 × 105 5.2909 × 104 7.4722 × 104 6.5999 × 104

MFO 8.0830 × 102 2.9387 × 106 6.5705 × 103 1.1804 × 105 5.3402 × 105 4.5879 × 103 1.6116 × 107 3.5692 × 105 1.5403 × 106 3.3947 × 106

LCA 4.4673 × 105 7.6961 × 105 6.4311 × 105 6.3415 × 105 1.2431 × 105 1.1647 × 107 4.7321 × 107 2.4508 × 107 3.1179 × 107 1.5054 × 107

HHO 5.6645 × 103 7.3598 × 105 1.4105 × 105 2.9631 × 105 2.8668 × 105 1.8768 × 105 3.4197 × 106 1.2303 × 106 1.3911 × 106 7.7396 × 105

CMAES 3.1809 × 104 1.6024 × 106 1.2477 × 105 2.4691 × 105 3.2524 × 105 1.2710 × 106 3.8779 × 107 1.0471 × 107 1.2520 × 107 8.9411 × 106

DE 0.0000 5.0181 × 10 2.1158 6.4324 1.1096 × 10 1.1190 × 103 2.6355 × 104 2.1156 × 103 3.8958 × 103 4.7046 × 103

F6

GA 1.7603 4.2228 × 102 1.2258 × 102 1.3262 × 102 1.0718 × 102 7.3447 × 10−1 7.7369 2.8436 3.2691 1.6755
PSO 3.2109 6.3954 × 102 3.1212 × 102 3.1970 × 102 1.8124 × 102 4.7061 × 102 1.6814 × 103 9.8696 × 102 9.5607 × 102 3.0090 × 102

TEO 1.4885 2.2126 × 10 2.9904 9.0922 8.1010 1.9735 7.5486 5.1843 4.6312 2.1503
GNDO 1.2536 2.5465 × 102 1.2117 × 102 1.0404 × 102 9.8759 × 10 1.2129 × 102 5.6755 × 102 5.1597 × 102 3.6649 × 102 1.9747 × 102

SA 1.2076 3.1210 × 102 1.2265 × 102 9.9271 × 10 8.4382 × 10 3.2896 1.5637 × 102 2.8785 × 10 5.2812 × 10 5.6180 × 10
ABC 3.5312 × 10 1.5261 × 102 9.5158 × 10 9.1182 × 10 3.1313 × 10 4.5301 × 102 9.5763 × 102 7.9077 × 102 7.7105 × 102 1.1356 × 102

GWO 1.5119 × 10 4.1746 × 102 1.5320 × 102 1.7314 × 102 9.9177 × 10 3.2595 × 10 6.7678 × 102 2.6788 × 102 3.1220 × 102 1.6732 × 102

AHA 1.3969 1.4715 × 102 1.1969 × 102 8.3899 × 10 6.4509 × 10 1.2299 2.2280 1.7141 1.7137 3.4919 × 10−1

BAS 5.2728 × 102 3.7166 × 103 1.2564 × 103 1.3729 × 103 6.3254 × 102 2.0437 × 103 5.1105 × 103 3.0469 × 103 3.2298 × 103 7.8191 × 102

FA 8.0615 × 10−1 3.4419 × 102 6.6891 × 10 7.9175 × 10 8.7621 × 10 3.1100 4.4023 × 102 1.4291 × 102 1.4911 × 102 1.1696 × 102

MFO 2.8237 4.3420 × 102 2.5975 × 102 2.3228 × 102 1.1099 × 102 5.3418 × 10 9.8132 × 102 3.9563 × 102 3.9918 × 102 2.2049 × 102

LCA 3.7739 × 102 1.0599 × 103 7.8398 × 102 8.0507 × 102 2.1997 × 102 1.8901 × 103 2.7912 × 103 2.0888 × 103 2.1962 × 103 2.9031 × 102

HHO 5.4263 × 10 6.1259 × 102 3.4992 × 102 3.5525 × 102 1.3995 × 102 3.6168 × 102 1.7284 × 103 9.5047 × 102 9.2383 × 102 2.9609 × 102

CMAES 9.2260 × 10 6.0883 × 102 3.9119 × 102 4.0752 × 102 1.2131 × 102 9.1419 × 102 1.6387 × 103 1.2544 × 103 1.2378 × 103 2.0520 × 102

DE 7.7686 × 10−2 1.5030 × 102 6.5606 × 10−1 1.1343 × 10 3.4144 × 10 8.0589 × 10−1 7.4191 × 10 1.6019 × 10 2.2142 × 10 1.9314 × 10

F7

GA 4.6341 × 102 4.1988 × 106 2.1551 × 105 5.1481 × 105 9.8725 × 105 7.1314 × 104 3.7286 × 106 1.1128 × 106 1.3044 × 106 1.0034 × 106

PSO 1.2816 × 102 1.0100 × 106 1.6794 × 104 1.3213 × 105 2.6765 × 105 9.5587 × 104 8.8349 × 106 7.0209 × 105 1.1388 × 106 1.6422 × 106

TEO 1.3564 × 102 1.9689 × 105 1.4110 × 103 2.2239 × 104 3.8834 × 104 1.2786 × 104 3.4946 × 105 1.9902 × 105 1.4902 × 105 1.0700 × 105

GNDO 6.4709 × 10−1 1.4341 × 102 5.8688 × 10 7.4842 × 10 6.2436 × 10 5.3307 × 102 1.2642 × 103 1.0506 × 103 9.1748 × 102 2.8867 × 102

SA 2.7657 × 10 8.3916 × 102 3.2494 × 102 3.8422 × 102 2.5726 × 102 2.2933 × 103 3.3903 × 104 1.4176 × 104 1.5180 × 104 9.1011 × 103

ABC 3.7636 × 103 6.9115 × 104 2.4432 × 104 2.6905 × 104 1.5003 × 104 3.7987 × 105 1.9180 × 106 8.0236 × 105 8.7096 × 105 4.3548 × 105

GWO 4.8657 × 102 1.2061 × 104 5.2044 × 103 5.6321 × 103 4.2771 × 103 5.3803 × 103 8.3670 × 105 9.1130 × 104 1.4848 × 105 1.9945 × 105

AHA 3.2293 × 10−1 1.7113 × 10 1.6762 × 10 1.0968 × 10 8.0599 9.7662 × 103 1.9209 × 105 6.9758 × 104 9.3166 × 104 7.3449 × 104

BAS 9.9083 × 103 1.3495 × 108 5.2464 × 106 1.8402 × 107 3.2967 × 107 5.0555 × 106 4.1957 × 108 8.1566 × 107 9.7923 × 107 9.3156 × 107

FA 8.3766 × 10−2 6.7825 × 102 5.8819 × 10 1.1091 × 102 1.6102 × 102 1.6419 × 103 1.3073 × 105 1.1956 × 104 2.3097 × 104 2.9849 × 104

MFO 2.3188 × 102 3.0556 × 104 6.4689 × 103 8.2241 × 103 8.1578 × 103 8.0382 × 103 4.9036 × 106 6.6893 × 104 4.1463 × 105 1.0523 × 106

LCA 3.2481 × 104 2.1011 × 106 8.2800 × 104 5.0792 × 105 8.1736 × 105 5.2469 × 105 1.7583 × 108 3.0273 × 106 1.4285 × 107 4.3929 × 107

HHO 4.0539 × 103 1.0634 × 106 3.9080 × 104 1.5265 × 105 2.7301 × 105 1.0002 × 105 2.1321 × 106 3.4751 × 105 6.0524 × 105 6.0070 × 105

CMAES 3.6593 × 103 3.3500 × 106 2.9965 × 105 5.3895 × 105 7.6065 × 105 9.9753 × 105 2.1289 × 107 4.0429 × 106 5.7073 × 106 5.3362 × 106

DE 5.8594E-04 1.7515 × 10 3.1609 × 10−1 8.9054 × 10−1 3.1476 1.6428 × 10 3.7639 × 102 1.1537 × 102 1.3208 × 102 7.9062 × 10

F8

GA 1.0437 × 102 1.2402 × 102 1.0871 × 102 1.1022 × 102 5.4318 1.0129 × 102 3.4174 × 103 1.0535 × 102 1.0876 × 103 1.1455 × 103

PSO 1.0563 × 102 2.1361 × 103 1.3119 × 102 2.1340 × 102 3.6509 × 102 3.3041 × 102 3.8475 × 103 1.3857 × 103 1.8319 × 103 1.2583 × 103

TEO 1.0745 × 102 1.2160 × 102 1.1230 × 102 1.1430 × 102 4.7197 1.1216 × 102 2.6718 × 103 1.1266 × 102 7.5078 × 102 1.0825 × 103

GNDO 1.0380 × 102 1.9127 × 102 1.1777 × 102 1.3170 × 102 2.9040 × 10 1.0121 × 102 2.8644 × 103 1.0798 × 102 3.8118 × 102 8.4191 × 102

SA 4.4456 1.1394 × 102 1.1247 × 102 1.0565 × 102 2.6128 × 10 1.1203 × 102 7.6363 × 102 1.1254 × 102 1.6090 × 102 1.5675 × 102

ABC 1.0733 × 102 1.2253 × 102 1.1251 × 102 1.1345 × 102 3.9158 1.4194 × 103 4.3731 × 103 2.8901 × 103 2.9592 × 103 8.6222 × 102

GWO 1.0089 × 102 1.3127 × 102 1.0232 × 102 1.0668 × 102 7.6409 1.0921 × 102 2.5176 × 103 1.8332 × 102 6.4869 × 102 7.9431 × 102

AHA 1.0094 × 102 1.0301 × 102 1.0136 × 102 1.0168 × 102 7.6257 × 10−1 1.0000 × 102 1.0156 × 102 1.0000 × 102 1.0068 × 102 7.4651 × 10−1

BAS 5.7537 × 102 3.0943 × 103 2.0540 × 103 2.0729 × 103 6.4220 × 102 4.7962 × 103 6.9016 × 103 6.0740 × 103 5.9888 × 103 5.2244 × 102

FA 1.8030 × 10 1.0211 × 102 1.0077 × 102 9.2947 × 10 2.4466 × 10 1.0000 × 102 1.0000 × 102 1.0000 × 102 1.0000 × 102 3.4532E-11
MFO 5.0321 × 10 1.5372 × 102 1.0413 × 102 1.0938 × 102 1.9726 × 10 1.7481 × 102 3.8776 × 103 1.9898 × 103 1.8885 × 103 1.3121 × 103

LCA 1.0281 × 103 2.7583 × 103 2.0701 × 103 1.9919 × 103 5.7070 × 102 4.9798 × 103 5.5112 × 103 5.5110 × 103 5.4137 × 103 1.5670 × 102

HHO 6.0240 × 10 1.3648 × 103 1.2616 × 102 2.0162 × 102 2.8202 × 102 1.1990 × 102 4.1258 × 103 2.3663 × 102 1.3083 × 103 1.4838 × 103

CMAES 1.1563 × 10 2.2007 × 103 1.0000 × 102 4.4843 × 102 6.9143 × 102 1.0000 × 102 4.9377 × 103 4.6566 × 103 3.7316 × 103 1.8585 × 103

DE 1.0000 × 102 1.0045 × 102 1.0000 × 102 1.0009 × 102 1.4815 × 10−1 1.0000 × 102 3.4155 × 103 1.0000 × 102 2.1052 × 102 6.0533 × 102

F9

GA 1.0111 × 102 4.0487 × 102 3.5643 × 102 3.5170 × 102 4.9507 × 10 4.1381 × 102 5.8499 × 102 5.1269 × 102 5.1293 × 102 3.7749 × 10
PSO 1.1818 × 102 5.2140 × 102 4.3292 × 102 3.9768 × 102 1.2833 × 102 4.7026 × 102 1.1661 × 103 9.1225 × 102 8.9162 × 102 1.2903 × 102

TEO 3.6154 × 102 3.8587 × 102 3.8333 × 102 3.7401 × 102 1.1559 × 10 5.0429 × 102 5.9352 × 102 5.4048 × 102 5.3342 × 102 2.0883 × 10
GNDO 3.4678 × 102 3.8899 × 102 3.7611 × 102 3.7163 × 102 1.7781 × 10 5.3414 × 102 7.7251 × 102 5.5918 × 102 6.0075 × 102 8.9053 × 10

SA 1.0927 × 102 3.4788 × 102 3.1815 × 102 2.8684 × 102 9.0912 × 10 4.0608 × 102 4.1841 × 102 4.1140 × 102 4.1124 × 102 2.8379
ABC 2.9864 × 102 3.6852 × 102 3.5817 × 102 3.5229 × 102 1.7884 × 10 4.9173 × 102 5.2825 × 102 5.2057 × 102 5.1935 × 102 7.1713
GWO 1.1835 × 102 3.5935 × 102 3.4004 × 102 3.3258 × 102 4.2761 × 10 4.1285 × 102 5.2228 × 102 4.4573 × 102 4.5327 × 102 3.1139 × 10
AHA 1.0000 × 102 3.6188 × 102 1.0000 × 102 2.1840 × 102 1.2891 × 102 4.5158 × 102 5.2810 × 102 5.0887 × 102 5.0618 × 102 2.2740 × 10
BAS 5.0507 × 102 1.0493 × 103 6.2767 × 102 6.5683 × 102 1.1479 × 102 9.6645 × 102 1.7635 × 103 1.4211 × 103 1.3956 × 103 1.7718 × 102

FA 1.0000 × 102 3.6728 × 102 3.4367 × 102 2.9726 × 102 1.0057 × 102 4.1703 × 102 4.7759 × 102 4.3994 × 102 4.4195 × 102 1.4388 × 10
MFO 3.4263 × 102 3.8618 × 102 3.6641 × 102 3.6554 × 102 1.0829 × 10 4.4447 × 102 5.6033 × 102 4.9012 × 102 4.9111 × 102 2.2538 × 10
LCA 4.5317 × 102 6.2579 × 102 5.6643 × 102 5.5934 × 102 6.8470 × 10 9.7722 × 102 1.6932 × 103 1.3782 × 103 1.3766 × 103 2.2046 × 102

HHO 1.6656 × 102 5.3000 × 102 4.2105 × 102 4.1098 × 102 7.3871 × 10 2.4291 × 102 8.3904 × 102 7.0380 × 102 6.6867 × 102 1.3192 × 102

CMAES 2.9519 × 102 4.2983 × 102 4.1492 × 102 4.0955 × 102 2.3408 × 10 5.5490 × 102 6.5130 × 102 6.0439 × 102 6.0590 × 102 2.1128 × 10
DE 3.3511 × 102 3.5074 × 102 3.4319 × 102 3.4385 × 102 3.6245 4.5895 × 102 4.8700 × 102 4.7669 × 102 4.7520 × 102 8.0101

F10

GA 3.9862 × 102 4.6164 × 102 4.4753 × 102 4.4113 × 102 1.8713 × 10 4.0151 × 102 5.2422 × 102 4.6783 × 102 4.6477 × 102 3.7463 × 10
PSO 4.0123 × 102 6.9870 × 102 4.6117 × 102 4.7092 × 102 6.1030 × 10 6.0508 × 102 1.6972 × 103 8.4940 × 102 8.9152 × 102 2.3580 × 102

TEO 4.1291 × 102 4.4961 × 102 4.4646 × 102 4.3411 × 102 1.5514 × 10 4.9699 × 102 5.1979 × 102 5.1727 × 102 5.1521 × 102 5.0552
GNDO 3.9961 × 102 4.7222 × 102 4.5852 × 102 4.4740 × 102 2.9744 × 10 5.2233 × 102 5.7973 × 102 5.4720 × 102 5.5103 × 102 2.3575 × 10

SA 3.9939 × 102 4.4627 × 102 4.0089 × 102 4.0568 × 102 1.2972 × 10 4.1420 × 102 4.1436 × 102 4.1428 × 102 4.1429 × 102 4.4626 × 10−2

ABC 3.9774 × 102 4.4598 × 102 4.3874 × 102 4.3309 × 102 1.5436 × 10 4.0643 × 102 4.0666 × 102 4.0655 × 102 4.0655 × 102 5.1604 × 10−2

GWO 3.9816 × 102 4.4977 × 102 4.3382 × 102 4.3120 × 102 1.5576 × 10 4.1899 × 102 5.0838 × 102 4.7290 × 102 4.6668 × 102 2.7952 × 10
AHA 3.9793 × 102 4.4619 × 102 4.4527 × 102 4.2989 × 102 2.2750 × 10 4.6968 × 102 5.0639 × 102 5.0136 × 102 4.9496 × 102 1.1809 × 10
BAS 8.3299 × 102 3.8705 × 103 2.0392 × 103 1.9937 × 103 7.1495 × 102 3.0312 × 103 2.1876 × 104 9.5062 × 103 1.0611 × 104 4.5566 × 103

FA 3.9774 × 102 4.4597 × 102 4.4342 × 102 4.2612 × 102 2.3080 × 10 4.0289 × 102 4.9344 × 102 4.1369 × 102 4.2613 × 102 2.4801 × 10
MFO 3.9819 × 102 4.9671 × 102 4.5013 × 102 4.4154 × 102 2.7400 × 10 4.1068 × 102 1.8715 × 103 4.8503 × 102 5.6976 × 102 2.9041 × 102

LCA 5.2672 × 102 2.0992 × 103 1.0891 × 103 1.2245 × 103 4.6181 × 102 4.2850 × 103 8.2542 × 103 6.1850 × 103 6.5622 × 103 1.6099 × 103

HHO 4.2191 × 102 6.7452 × 102 4.6512 × 102 4.8132 × 102 4.9846 × 10 4.8930 × 102 7.0897 × 102 5.3915 × 102 5.4414 × 102 4.1321 × 10
CMAES 4.4336 × 102 8.7406 × 102 5.9742 × 102 6.0663 × 102 1.0735 × 102 4.5383 × 102 2.1098 × 103 1.1431 × 103 1.1043 × 103 3.8356 × 102

DE 3.9774 × 102 4.4605 × 102 4.4579 × 102 4.2963 × 102 2.2682 × 10 4.1366 × 102 4.1375 × 102 4.1367 × 102 4.1367 × 102 2.0380 × 10−2

Actuators 2025, 14, 375 41 of 46

Appendix B

Figure A1. Violin plots for the best fitness in 30 runs for all the algorithms (10D).

Figure A2. Cont.

Actuators 2025, 14, 375 42 of 46

Figure A2. Violin plots for the best fitness in 30 runs for all the algorithms (20D).

References
1. Marchand, R. The Designers Go to the Fair II: Norman Bel Geddes, The General Motors “Futurama,” and the Visit to the Factory

Transformed. Des. Issues 1992, 8, 23–40.
2. Buehler, M.; Iagnemma, K.; Singh, S. The DARPA Urban Challenge: Autonomous Vehicles in City Traffic; Springer Science & Business

Media: Berlin/Heidelberg, Germany, 2009; Volume 56.
3. Velasco-Hernandez, G.; Yeong, D.J.; Barry, J.; Walsh, J. Autonomous driving architectures, perception and data fusion: A review.

In Proceedings of the 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 3–5 September 2020; pp. 315–321.

4. Wong, K.; Gu, Y.; Kamijo, S. Mapping for autonomous driving: Opportunities and challenges. IEEE Intell. Transp. Syst. Mag.
2020, 13, 91–106.

5. Parekh, D.; Poddar, N.; Rajpurkar, A.; Chahal, M.; Kumar, N.; Joshi, G.P.; Cho, W. A review on autonomous vehicles: Progress,
methods and challenges. Electronics 2022, 11, 2162.

6. Shekh, M.; Umrao, O.; Singh, D. Kinematic Analysis of Steering Mechanism: A Review. In Proceedings of the International Confer-
ence in Mechanical and Energy Technology: ICMET 2019, Greater Noida, India, 7–8 November 2019. Springer: Berlin/Heidelberg,
Germany, 2020; pp. 529–540.

7. Saleem, H.; Riaz, F.; Mostarda, L.; Niazi, M.A.; Rafiq, A.; Saeed, S. Steering angle prediction techniques for autonomous ground
vehicles: a review. IEEE Access 2021, 9, 78567–78585.

8. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot
Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5.

9. Ali, S.; Jalal, A.; Alatiyyah, M.H.; Alnowaiser, K.; Park, J. Vehicle detection and tracking in UAV imagery via YOLOv3 and
Kalman filter. Comput. Mater. Contin. 2023, 76, 1249–1265.

10. Jin, Q.; Liu, Y.; Man, Y.; Li, F. Visual slam with rgb-d cameras. In Proceedings of the 2019 Chinese Control Conference (CCC),
Guangzhou, China, 27–30 July 2019; pp. 4072–4077.

11. Hong, Z.; Petillot, Y.; Wallace, A.; Wang, S. RadarSLAM: A robust simultaneous localization and mapping system for all weather
conditions. Int. J. Robot. Res. 2022, 41, 519–542.

12. Burnett, K.; Wu, Y.; Yoon, D.J.; Schoellig, A.P.; Barfoot, T.D. Are we ready for radar to replace lidar in all-weather mapping and
localization? IEEE Robot. Autom. Lett. 2022, 7, 10328–10335.

13. Purnama, H.S.; Sutikno, T.; Alavandar, S.; Subrata, A.C. Intelligent control strategies for tuning PID of speed control of DC
motor—A review. In Proceedings of the 2019 IEEE Conference on Energy Conversion (CENCON), Yogyakarta, Indonesia, 16–17
October 2019; pp. 24–30.

14. Sridhar, H.; Hemanth, P.; Pavitra; Soumya, H.; Joshi, B.G. Speed control of BLDC motor using soft computing technique. In
Proceedings of the 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 10–12
September 2020; pp. 1162–1168.

15. Chitta, S.; Marder-Eppstein, E.; Meeussen, W.; Pradeep, V.; Tsouroukdissian, A.R.; Bohren, J.; Coleman, D.; Magyar, B.; Raiola, G.;
Lüdtke, M.; et al. ros_control: A generic and simple control framework for ROS. J. Open Source Softw. 2017, 2, 456–456.

16. Reda, M.; Onsy, A.; Haikal, A.Y.; Ghanbari, A. Path-planning algorithms in the autonomous driving system: A comprehensive
review. Robot. Auton. Syst. 2024, 174, 104630.

Actuators 2025, 14, 375 43 of 46

17. Foead, D.; Ghifari, A.; Kusuma, M.B.; Hanafiah, N.; Gunawan, E. A systematic literature review of A* pathfinding. Procedia
Comput. Sci. 2021, 179, 507–514.

18. Gautam, S.C.; Lim, J.; Jaar, B.G. Complications associated with continuous RRT. Kidney360 2022, 3, 1980–1990.
19. Kobayashi, M.; Motoi, N. Local path planning: Dynamic window approach with virtual manipulators considering dynamic

obstacles. IEEE Access 2022, 10, 17018–17029.
20. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872.
21. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713.
22. Wang, Y.; Liu, Z.; Zuo Z.; Ll, Z. Local path planning of autonomous vehicles based on A* algorithm with equal-step sampling. In

Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 7828–7833.
23. Udomsil, R.; Sangpet, T.; Sapsaman, T. Environment generation from real map to investigate path planning and obstacle

avoidance algorithm for electric vehicle. In Proceedings of the 2019 Research, Invention, and Innovation Congress (RI2C),
Bangkok, Thailand, 11–13 December 2019; pp. 1–5.

24. Zhong, X.; Tian, J.; Hu, H.; Peng, X. Hybrid path planning based on safe A* algorithm and adaptive window approach for mobile
robot in large-scale dynamic environment. J. Intell. Robot. Syst. 2020, 99, 65–77.

25. Li, B.; Dong, C.; Chen, Q.; Mu, Y.; Fan, Z.; Wang, Q.; Chen, X. Path planning of mobile robots based on an improved A* algorithm.
In Proceedings of the 2020 4th High Performance Computing and Cluster Technologies Conference & 2020 3rd International
Conference on Big Data and Artificial Intelligence, Qingdao, China, 3–6 July 2020; pp. 49–53.

26. Zhang, D.; Chen, C.; Zhang, G. AGV path planning based on improved A-star algorithm. In Proceedings of the 2024 IEEE 7th
Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 15–17 March
2024; Volume 7, pp. 1590–1595.

27. Thoresen, M.; Nielsen, N.H.; Mathiassen, K.; Pettersen, K.Y. Path planning for UGVs based on traversability hybrid A. IEEE
Robot. Autom. Lett. 2021, 6, 1216–1223.

28. Liu, T.; Zhang, J. An improved path-planning algorithm based on fuel consumption. J. Supercomput. 2022, 78, 12973–13003.
29. González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A review of motion planning techniques for automated vehicles. IEEE Trans.

Intell. Transp. Syst. 2015, 17, 1135–1145.
30. Lu, D.V.; Ferguson, M.; Hoy, A. global_planner: A Fast Interpolated Global Path Planner for ROS Navigation. 2021. Available

online: http://wiki.ros.org/global_planner (accessed on 8 July 2025).
31. Wang, J.; Wu, S.; Li, H.; Zou, J. Path planning combining improved rapidly-exploring random trees with dynamic window

approach in ROS. In Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan,
China, 31 May–2 June 2018; pp. 1296–1301.

32. Chen, J.; Liang, J.; Tong, Y. Path Planning of Mobile Robot Based on Improved Differential Evolution Algorithm. In Proceedings
of the 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), Shenzhen, China, 13–15
December 2020; pp. 811–816.

33. Hu, B.; Cao, Z.; Zhou, M. An efficient RRT-based framework for planning short and smooth wheeled robot motion under
kinodynamic constraints. IEEE Trans. Ind. Electron. 2020, 68, 3292–3302.

34. Niu, C.; Li, A.; Huang, X.; Xu, C. Research on Intelligent Vehicle Path Planning Method Based on Improved RRT Algorithm.
In Proceedings of the 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), Yantai, China, 13–16
October 2022; pp. 1–7.

35. Shi, P.; Liu, Z.; Liu, G. Local path planning of unmanned vehicles based on improved RRT algorithm. In Proceedings of the the
2022 4th Asia Pacific Information Technology Conference, Virtual, 14–16 January 2022; pp. 231–239.

36. Chen, R.; Hu, J.; Xu, W. An RRT-Dijkstra-based path planning strategy for autonomous vehicles. Appl. Sci. 2022, 12, 11982.
37. Yang, G.; Yao, Y. Vehicle local path planning and time consistency of unmanned driving system based on convolutional neural

network. Neural Comput. Appl. 2022, 34, 12385–12398.
38. Zhang, X.; Zhu, T.; Xu, Y.; Liu, H.; Liu, F. Local Path Planning of the Autonomous Vehicle Based on Adaptive Improved RRT

Algorithm in Certain Lane Environments. Actuators 2022, 11, 109.
39. Mao, S.; Yang, P.; Gao, D.; Bao, C.; Wang, Z. A Motion Planning Method for Unmanned Surface Vehicle Based on Improved RRT

Algorithm. J. Mar. Sci. Eng. 2023, 11, 687.
40. Marder-Eppstein, E.; Lu, D.V.; Ferguson, M.; Hoy, A. dwa_local_planner: Dynamic Window Approach for Local Navigation.

2020. Available online: http://wiki.ros.org/dwa_local_planner (accessed on 8 July 2025).
41. Zhang, F.; Li, N.; Xue, T.; Zhu, Y.; Yuan, R.; Fu, Y. An improved dynamic window approach integrated global path planning. In

Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019;
pp. 2873–2878.

42. Liu, L.-S.; Lin, J.-F.; Yao, J.-X.; He, D.-W.; Zheng, J.-S.; Huang, J.; Shi, P. Path planning for smart car based on Dijkstra algorithm
and dynamic window approach. Wirel. Commun. Mob. Comput. 2021, 2021, 8881684.

http://wiki.ros.org/global_planner
http://wiki.ros.org/dwa_local_planner

Actuators 2025, 14, 375 44 of 46

43. hua Zhang, J.; Feng, Q.; di Zhao, A.; He, W.; Hao, X. Local path planning of mobile robot based on self-adaptive dynamic window
approach. J. Phys. Conf. Ser. 2021, 1905, 012019.

44. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 2002, 4, 23–33.
45. Rösmann, C. teb_local_planner ROS Package. 2025. Available online: http://wiki.ros.org/teb_local_planner (accessed on 25 June

2025).
46. Wu, J.; Ma, X.; Peng, T.; Wang, H. An improved timed elastic band (TEB) algorithm of autonomous ground vehicle (AGV) in

complex environment. Sensors 2021, 21, 8312.
47. Dang, T.V. Autonomous mobile robot path planning based on enhanced A* algorithm integrating with time elastic band. MM Sci.

J. 2023, 2023, 6717–6722.
48. Kulathunga, G.; Yilmaz, A.; Huang, Z.; Hroob, I.; Arunachalam, H.; Guevara, L.; Klimchik, A.; Cielniak, G.; Hanheide,

M. Resilient Timed Elastic Band Planner for Collision-Free Navigation in Unknown Environments. J. Field Robot. 2024.
https://doi.org/10.1002/rob.22602

49. Xi, H.; Li, W.; Zhao, F.; Chen, L.; Hu, Y. A Safe and Efficient Timed-Elastic-Band Planner for Unstructured Environments. In
Proceedings of the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United Arab
Emirates, 14–18 October 2024; pp. 3092–3099.

50. Turnip, A.; Faridhan, M.A.; Wibawa, B.M.; Anggriani, N. Autonomous Medical Robot Trajectory Planning with Local Planner
Time Elastic Band Algorithm. Electronics 2025, 14, 183.

51. Reda, M.; Onsy, A.; Haikal, A.Y.; Ghanbari, A. A novel reinforcement learning-based multi-operator differential evolution with
cubic spline for the path planning problem. Artif. Intell. Rev. 2025, 58, 142.

52. Koohi, S.Z.; Hamid, N.A.W.A.; Othman, M.; Ibragimov, G. Raccoon optimization algorithm. IEEE Access 2018, 7, 5383–5399.
53. Hansen, N.; Ostermeier, A. Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 2001, 9, 159–195.
54. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61.
55. Zhao, W.; Wang, L.; Mirjalili, S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications.

Comput. Methods Appl. Mech. Eng. 2022, 388, 114194.
56. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.
57. Kaveh, A.; Bakhshpoori, T.; Kaveh, A.; Bakhshpoori, T. Thermal exchange optimization algorithm. In Metaheuristics: Outlines,

MATLAB Codes and Examples; Springer: Cham, Switzerland, 2019; pp. 179–190.
58. Zhang, Y.; Jin, Z.; Mirjalili, S. Generalized normal distribution optimization and its applications in parameter extraction of

photovoltaic models. Energy Convers. Manag. 2020, 224, 113301.
59. Jiang, X.; Li, S. BAS: Beetle antennae search algorithm for optimization problems. arXiv 2017, arXiv:1710.10724.
60. Khan, A.H.; Cao, X.; Li, S.; Katsikis, V.N.; Liao, L. BAS-ADAM: An ADAM based approach to improve the performance of beetle

antennae search optimizer. IEEE/CAA J. Autom. Sin. 2020, 7, 461–471.
61. Houssein, E.H.; Oliva, D.; Samee, N.A.; Mahmoud, N.F.; Emam, M.M. Liver cancer algorithm: A novel bio-inspired optimizer.

Comput. Biol. Med. 2023, 165, 107389.
62. Yue, C.T.; Price, K.V.; Suganthan, P.N.; Liang, J.J.; Ali, M.Z.; Qu, B.Y.; Awad, N.H.; Biswas, P.P. Problem Definitions and Evaluation

Criteria for the CEC 2020 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization; Technical
Report; Nanyang Technological University: Singapore, 2019.

63. Heris, M.K. Simulated Annealing in MATLAB; The MathWorks, Inc.: Natick, MA, USA, 2015.
64. Fischetti, M.; Stringher, M. Embedded hyper-parameter tuning by simulated annealing. arXiv 2019, arXiv:1906.01504.
65. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18.
66. Cleophas, T.J.; Zwinderman, A.H.; Cleophas, T.J.; Zwinderman, A.H. Non-parametric tests for three or more samples (Friedman

and Kruskal-Wallis). In Clinical Data Analysis on a Pocket Calculator: Understanding the Scientific Methods of Statistical Reasoning and
Hypothesis Testing; Springer: Cham, Switzerland, 2016; pp. 193–197.

67. Woolson, R.F. Wilcoxon Signed-Rank test. In Wiley Encyclopedia of Clinical Trials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007;
pp. 1–3.

68. Qiao, K.; Wen, X.; Ban, X.; Chen, P.; Price, K.V.; Suganthan, P.N.; Liang, J.; Wu, G.; Yue, C. Evaluation Criteria for CEC 2024
Competition and Special Session on Numerical Optimization Considering Accuracy and Speed; Technical Report; Zhengzhou University:
Zhengzhou, China; Central South University: Changsha, China; Henan Institute of Technology: Xinxiang, China; Qatar University:
Doha, Qatar, 2023.

69. Li, X.; Li, J.; Mu, T. A Local Map Construction Method for SLAM Problem Based on DBSCAN Clustering Algorithm. In
Proceedings of the Bio-Inspired Computing: Theories and Applications: 14th International Conference, BIC-TA 2019, Zhengzhou,
China, 22–25 November 2019; Revised Selected Papers, Part II 14; Springer: Berlin/Heidelberg, Germany, 2020; pp. 540–549.

70. Bilal; Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A review of more than two decades of
research. Eng. Appl. Artif. Intell. 2020, 90, 103479.

http://wiki.ros.org/teb_local_planner

Actuators 2025, 14, 375 45 of 46

71. Horváth, E.; Hajdu, C.; Kőrös, P. Novel pure-pursuit trajectory following approaches and their practical applications. In
Proceedings of the 2019 10th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Naples, Italy, 23–25
October 2019; pp. 597–602.

72. Ames, A.D.; Coogan, S.; Egerstedt, M.; Notomista, G.; Sreenath, K.; Tabuada, P. Control barrier functions: Theory and applications.
In Proceedings of the 2019 18th European control conference (ECC), Naples, Italy, 5–28 June 2019; pp. 3420–3431.

73. Maulana, E.; Muslim, M.A.; Hendrayawan, V. Inverse kinematic implementation of four-wheels mecanum drive mobile robot
using stepper motors. In Proceedings of the 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA),
Surabaya, Indonesia, 20–21 May 2015; pp. 51–56.

74. Philip, J.T.; Rashed, O.H.; Onsy, A.; Varley, M.R. Development of a Driverless Personal Mobility Pod. In Proceedings of the 2018
24th International Conference on Automation and Computing (ICAC), Newcastle upon Tyne, UK, 6–7 September 2018; pp. 1–6.

75. Zheng, W.; Zhou, X.; Zhang, X.; Wei, M.; Fu, P. An improved indoor mobile robot positioning method based on Dead Reckoning.
In Proceedings of the 2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence
(ICSMD), Harbin, China, 22–24 December 2022; pp. 1–6.

76. HOKUYO. Hokuyo UTM-30LX Lidar Manual; HOKUYO: Osaka, Japan, 2018.
77. URG Benri Developers. URG Benri. 2024. Available online: (accessed on 17 January 2024).
78. Baltovski, T.; Rockey, C.; O’Driscoll, M. urg_node: A ROS Package for Hokuyo URG Laser Scanners. 2024. Available online:

https://wiki.ros.org/urg_node (accessed on 26 February 2024).
79. Contributors, R. sensor_msgs/LaserScan—ROS Wiki. 2022. Available online: https://docs.ros.org/en/noetic/api/sensor_msgs/

html/msg/LaserScan.html (accessed on 4 January 2024).
80. Madgwick, S. An eFficient Orientation Filter for Inertial and Inertial/Magnetic Sensor Arrays; Report x-io and University of 1232

Bristol (UK): Bristol, UK, 2010, Volume 25, pp. 113–118.
81. Ivan Dryanovski and Martin Günther. imu_filter_madgwick—ROS Wiki. 2022. Available online: https://wiki.ros.org/imu_

filter_madgwick (accessed on 20 December 2023).
82. Talukder, M. Parameter Variations in Hector SLAM. Master’s Thesis, The University of Regina (Canada), Regina, SK, Canada,

2022.
83. Kohlbrecher, S.; Meyer, J. hector_slam—ROS Wiki. 2022. Available online: http://wiki.ros.org/hector_slam (accessed on 2 March

2024).
84. Moore, T.; Stouch, D. A Generalized Extended Kalman Filter Implementation for the Robot Operating System. In Proceedings

of the the 13th International Conference on Intelligent Autonomous Systems (IAS-13), Padova, Italy, 15–18 July 2014; Springer:
Berlin/Heidelberg, Germany, 2014.

85. Moore, T. robot_localization. 2024. Available online: (accessed on 20 March 2024).
86. ELEGOO Inc. Smart Robot Car V4.0 With Camera Assembly Tutorial; ELEGOO Inc.: Shenzhen, China, 2021.
87. STMicroelectronics. L298N Dual Full-Bridge Driver. Available online: (accessed on 14 December 2023).
88. JOY-IT. KY-040 Rotary Encoder Datasheet. Available online: (accessed on 14 December 2023).
89. Hobby Components. XL60009 DC-DC Steo-Up Boost Converter Manual; Hobby Components: Chesterfield, UK, 2012.
90. GEEKWORM. X728 V2.3 Raspberry Pi UPS Manual; GEEKWORM: Shenzhen, China, 2022.
91. Patel, V.V. Ziegler-Nichols Tuning Method: Understanding the PID Controller. Resonance 2020, 25, 1385–1397.
92. Reda, M.; Onsy, A.; Haikal, A.Y.; Ghanbari, A. Motor Speed Control of Four-wheel Differential Drive Robots Using a New Hybrid

Moth-flame Particle Swarm Optimization (MFPSO) Algorithm. J. Intell. Robot. Syst. 2025, 111, 31.
93. GOV.UK DVLA. The Highway Code UK; GOV.UK DVLA: Swansea, UK, 2023.
94. Aydin, M.M.; Gunay, B.; Akgol, K. Performance Comparison of Various Chicane Types: A Driving Simulator Study. Int. J. Civ.

Eng. 2019, 17, 1753–1765.
95. ROS Wiki Contributors. ROS Master—ROS Wiki. 2023. Available online: http://wiki.ros.org/Master (accessed on 14 Jan-

uary 2024).
96. Kong, J.; Cheng, J. Path Planning of Mobile Robots Based on the Fusion of an Improved A* Algorithm and a Dynamic Window

Approach. In Proceedings of the 2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC), Chongqing, China, 24–26 February 2023; Volume 6, pp. 968–973.

97. Chang, L.; Shan, L.; Jiang, C.; Dai, Y. Reinforcement based mobile robot path planning with improved dynamic window approach
in unknown environment. Auton. Robot. 2021, 45, 51–76.

98. Lin, Z.; Taguchi, R. Faster implementation of the dynamic window approach based on non-discrete path representation.
Mathematics 2023, 11, 4424.

https://wiki.ros.org/urg_node
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/LaserScan.html
https://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/LaserScan.html
https://wiki.ros.org/imu_filter_madgwick
https://wiki.ros.org/imu_filter_madgwick
http://wiki.ros.org/hector_slam
http://wiki.ros.org/Master

Actuators 2025, 14, 375 46 of 46

99. Hoermann, S.; Bach, M.; Dietmayer, K. Dynamic occupancy grid prediction for urban autonomous driving: A deep learning
approach with fully automatic labeling. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, 21–25 May 2018; pp. 2056–2063.

100. Tran, V.P.; Garratt, M.A.; Kasmarik, K.; Anavatti, S.G. Dynamic frontier-led swarming: Multi-robot repeated coverage in dynamic
environments. IEEE/CAA J. Autom. Sin. 2023, 10, 646–661.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Autonomous Driving System (ADS)
	Overview of the State-of-the-Art and Research Gap
	Contributions
	Paper Organization

	Related Work
	Control Algorithms and PID Tuning
	Path-Planning Algorithms
	A* Algorithm
	Rapidly Exploring Random Tree (RRT)
	Dynamic Window Approach (DWA)
	Timed Elastic Band (TEB)

	Meta-Heuristic Optimization Algorithms in Path Planning

	Benchmark-Driven Meta-Heuristic Optimizer Selection
	Experimental Setup
	Statistical Evaluation Framework
	Statistical Analysis Results
	Time Complexity Analysis
	Asymptotic Time Complexity of the DE
	Practical Time Complexity Analysis

	The Proposed ROS Architecture for the Full ADS
	Overall View of the ROS System Architecture
	The Proposed Path-Planning Node
	Search Space Boundaries
	Start and Dynamic Goal Calculation
	Path Cost Calculation
	Obstacle Clustering
	Differential Evolution Optimization
	Failsafe Triggering Based on Path Validity
	Overall Path-Planning Node via ROS-Based Differential Evolution (RDE)

	Control Node
	Modified Pure Pursuit
	Velocity Command Generation
	Adaptive PID Tuning via DE
	Failsafe Stop Handling Based on Path Validity

	Arduino Node: Kinematics and Control
	Inverse Kinematics: Obtain the Required Motor Values from Velocities
	Obtain the Current Speed from Encoder
	Apply the PID Control
	 Forward Kinematics: Obtain the Velocity from the Motor Values
	Failsafe Motor Stop via Direct Override
	Overall Arduino Node

	Supporting ROS Nodes
	Dead Reckoning Node: Raw Odometry
	LiDAR Node
	Madgwick Filter Node
	Mapping Node: Hector SLAM
	Extended Kalman Filter (EKF) Node

	Hardware Implementation of the 4WD Robot
	Pid Transient Response
	Traditional PID Control
	Adaptive DE-Tuned PID Control
	Experiment Setup
	Transient Response Analysis

	Ads Validation on Driving Scenarios Using 4WD
	Failsafe Validation
	Driving Scenarios
	Experiment Setup and Results Visualization

	Results Statistical Analysis and Discussion
	Comparison Setup and Local Planning Configuration
	Results Collection and Visualization
	Statistical Analysis Results

	Computational Complexity Analysis
	Asymptotic Complexity Comparison
	Practical Time Complexity Analysis

	Deployment Extensions for Outdoor and Dynamic Environments
	Deployment Considerations for Outdoor and Road-Based Navigation
	Handling Dynamic Obstacles

	Conclusions
	Appendix A
	Appendix B
	References

