
Central Lancashire Online Knowledge (CLoK)

Title An Exhaustive Review and Experimental Exploration of Clinical Mid-Range 
FTIR Urine Analysis

Type Article
URL https://clok.uclan.ac.uk/id/eprint/56397/
DOI https://doi.org/10.1080/05704928.2025.2541109
Date 2025
Citation Greenop, Michael, Crisp, Amy, Barros, Jessica, Segura, Aldo E. E., Ramirez, 

Carlos A. Meza, Williams, Craig, Birtle, Alison and Rehman, Ihtesham U 
(2025) An Exhaustive Review and Experimental Exploration of Clinical Mid-
Range FTIR Urine Analysis. Applied Spectroscopy Reviews. ISSN 0570-4928 

Creators Greenop, Michael, Crisp, Amy, Barros, Jessica, Segura, Aldo E. E., Ramirez, 
Carlos A. Meza, Williams, Craig, Birtle, Alison and Rehman, Ihtesham U

It is advisable to refer to the publisher’s version if you intend to cite from the work. 
https://doi.org/10.1080/05704928.2025.2541109

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/ 

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.  
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors 
and/or other copyright owners. Terms and conditions for use of this material are defined in the 
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/


Applied Spectroscopy Reviews

ISSN: 0570-4928 (Print) 1520-569X (Online) Journal homepage: www.tandfonline.com/journals/laps20

An exhaustive review and experimental
exploration of clinical mid-range FTIR urine
analysis

Michael Greenop, Amy Crisp, Jessica Barros, Aldo E. E. Segura, Carlos A. Meza
Ramirez, Craig Williams, Alison Birtle & Ihtesham Ur Rehman

To cite this article: Michael Greenop, Amy Crisp, Jessica Barros, Aldo E. E. Segura, Carlos
A. Meza Ramirez, Craig Williams, Alison Birtle & Ihtesham Ur Rehman (13 Aug 2025): An
exhaustive review and experimental exploration of clinical mid-range FTIR urine analysis,
Applied Spectroscopy Reviews, DOI: 10.1080/05704928.2025.2541109

To link to this article:  https://doi.org/10.1080/05704928.2025.2541109

© 2025 The Author(s). Published with
license by Taylor & Francis Group, LLC

Published online: 13 Aug 2025.

Submit your article to this journal 

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=laps20

https://www.tandfonline.com/journals/laps20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/05704928.2025.2541109
https://doi.org/10.1080/05704928.2025.2541109
https://www.tandfonline.com/action/authorSubmission?journalCode=laps20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=laps20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/05704928.2025.2541109?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/05704928.2025.2541109?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/05704928.2025.2541109&domain=pdf&date_stamp=13%20Aug%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/05704928.2025.2541109&domain=pdf&date_stamp=13%20Aug%202025
https://www.tandfonline.com/action/journalInformation?journalCode=laps20


REVIEW ARTICLE 

An exhaustive review and experimental exploration of 
clinical mid-range FTIR urine analysis

Michael Greenopa , Amy Crispa, Jessica Barrosb, Aldo E. E. Segurab, Carlos A. 
Meza Ramirezb, Craig Williamsb,c, Alison Birtlea,d, and Ihtesham Ur Rehmana,b 

aSchool of Medicine and Dentistry, University of Lancashire, Preston, Lancashire, UK; bCCI Photonics, 
Campus Technology Hub Daresbury Laboratory, Daresbury, Warrington, England; cMicrobiology 
Department, Royal Lancaster Infirmary, Lancaster, Lancashire, UK; dRosemere Cancer Centre, Lancashire 
Teaching Hospitals, Preston, UK 

ABSTRACT 
Urine provides a noninvasive window into the renal and lymphatic 
systems, providing molecules (potential markers) from around the 
body that are detectable using mid-range Fourier transform infrared 
spectroscopy (MR-FTIR). The benefit of MR-FTIR for urine analysis is 
the simultaneous sampling of many of the 3000þ urine constituents. 
The highly condensed spectral information in a single drop of urine 
potentially provides simpler, faster, and cheaper tests for multiple 
pathologies in a single test, providing hope for simultaneous testing 
of different pathologies. The shortage of pathologists in the UK and 
medical experts worldwide motivates research to improve medical 
diagnostic technologies, increasing interest in techniques like MR- 
FTIR urine analysis. Clinical MR-FTIR urine analysis is ideally posi
tioned for review, niche enough for an exhaustive progress report, 
whilst developed enough to highlight challenges and suitable com
parison to current approaches. Before clinical spectroscopy can help 
patients, clinical validation must be demonstrated. The review high
lights milestones toward this goal, like replicated or blinded studies. 
A section is then dedicated to the experimental considerations 
already investigated, providing a resource for future FTIR urine ana
lysis study design. The paper concludes by testing a critical variable 
for transmission MR-FTIR spectroscopy, identified by assessment of 
reviewed references, discussed in only one, urea hydrogen bonding 
with H2O, emphasizing the importance of robust dehydration proto
cols for urine MR-FTIR analysis. Academic and industrial collaborators 
separately duplicated the experiments, increasing confidence in the 
analysis repeatability and corresponding clinical value of the 
findings.
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1. Introduction

Clinical diagnosis using MR-FTIR analysis of urine is a growing area of research. A 
PubMed database search (Figure 1) shows an early MR-FTIR urine analysis investigating 
postoperative anuria after thoracotomy in 1966. Interest has grown, with a spike in clin
ically focused studies in the last decade, the authors decided it beneficial to review pro
gress in the field (Section 2) and highlight key experimental considerations for future 
studies aiming to push the field forward (Section 3). The investigation covers the related 
and overlapping fields of biospectroscopy, clinical spectroscopy, and spectro-pathology, 
resulting in their interchangeable reference in the paper. In reviewing current progress, 
the authors aimed to draw comparisons to currently available technologies and postulate 
potential benefits provided by MR-FTIR, alongside developments required for the clin
ical adoption of biospectroscopy.

A range of reviews and letters have been published about wider biofluid analysis,[1–7] 

including recommendations for preprocessing[8] and prospects like high throughput[9] 

or automated disease detection.[10] Interest in the field, enough to justify a Faraday 
Discussion,[11] explains the increase in MR-FTIR urine analysis literature. The range of 
MR-FTIR urine analysis applications includes human[12] and bovine[13] doping, detec
tion of microplastics,[14] aerobic exercise assessment,[15] and analysis of dromedary 
urine added to milk by Bedouins.[16] The versatility of urine analysis is an ideal point of 
care technology[17] for a range of applications. However, the remit of this review is clin
ical MR-FTIR urine analysis, allowing discussion of current progress to consider wider 
context and deeper interrogation of technical considerations.

Aiming to provide a comprehensive review of clinical MR-FTIR urine analysis 
requires clear inclusion and exclusion criteria. Excluding references where urine is used 
as a standard,[18] or references focusing on forensic[19–21] applications unless used for 
protocol refinement useful for clinical studies.[22,23] The authors excluded FTIR analysis 
of factors isolated from urine, as analyzing of isolates alters spectral interpretation from 
urine constituent onto bacteria,[24–26] extracellular vesicles,[27] proteins,[28] or extracted/ 
isolated particles.[29–34] Whereas filtered or centrifuged urine samples are included in 
the filtrate/supernatant (urine fluid component) remains the focus of the MR-FTIR ana
lysis. Focusing the review this way avoids deviating the discussion away from the ana
lysis of urine onto de facto cytology, especially where reviews already exist.[35–37]

Figure 1. Number of FTIR urine analysis publications per year identified using the PubMed search 
term: ((FTIR[Title]) OR (Infrared Spectroscopy[Title])) AND (Urine[Title]). Figure is author produced.
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1.1. Inclusion criteria

1. MR-FTIR spectroscopy is applied to a clinically relevant research question.
2. The research question is answered using spectral analysis of urine.
1.2. Exclusion criteria

1. FTIR analysis of factors cultured from urine, e.g. bacteria cultured, extracellular 
vesicles isolated, or particles extracted using centrifuging.

Section 2 is subdivided based on biological transparency, an important consideration 
for spectropathology using artificial intelligence (AI) with the UK guidelines for AI trans
parency[38] based on a UK government report.[39] Section 2.1 discusses studies where bio
logical causation is easier to demonstrate. The 3000þ molecular constituents of urine[40] 

make linking specific biomarkers to diseases complex, albeit desirable to maximize clinical 
and regulatory confidence. Section 2.2. discusses the breadth of potential targets for MR- 
FTIR-urine analysis, where pathologies alter urine composition through obscure pathways. 
Opaque links between identified features and a pathology require increased validation to 
avoid the concern of overfitting models, typically requiring larger datasets for regulatory 
approval when increasingly opaque (or black block) AI is employed.[41]

Disease detection, the purpose of clinical spectroscopy, requires regulatory approval 
and recommendation in medical guidelines (NICE, WHO, etc.) for routine use. 
Challenges previously highlighted as slowing clinical adoption of biospectroscopy 
include the protocol consensus and standards required for multi-centre clinical valid
ation.[42–46] Section 3 compares experimental parameters and consistent spectral adapta
tion relating to experimental variables. The variables are split into pre-experimental 
controls (Section 3.1), for reference when designing a MR-FTIR urine analysis study.

Section 3.2 outlines experimental variables discussed for reference when designing an 
MR-FTIR urine analysis protocol. Studies exploring sample variables, like ex vivo ana
lysis[22] and freeze-thaw cycles[47] are discussed, aiming to stimulate consensus on a 
standardized protocol for MR-FTIR sample storage. Variables including sample volume, 
drying time, and drying temperature are tabulated from the references previously 
reviewed and compared to studies applying ATR-FTIR. Findings for ATR-FTIR were 
compared to transmission MR-FTIR experimental results provided by the authors in a 
repeated analysis between academic (UCLan) and industrial (CCI) partners. The report 
of duplicated hydration-related alterations in urine MR-FTIR spectra, as compared to 
spectral adaptations seen in the ATR-FTIR studies.[48]

2. Progress in MR-FTIR urine analysis for clinical applications

Compared to molecular techniques like polymerase chain reaction,[49] or proteomics,[50] 

which identify specific molecules as biomarkers, a broader molecular description is pro
vided by biospectroscopy. Statistical or machine learning (ML) analysis is typically 
required to link a molecular vibration, or vibrations to a pathology, requiring studies to 
balance biological interpretability alongside maximizing diagnostic potential. The gen
eral composition of urine (Figure 2) reveals that 95% of urine is water, of the remaining 
5% there is: urea (40%), phosphate (5.8%) sulfate (4.6%) hippuric acid (2.1%), creatinine 
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(2.2%), ammonia (1.2%), citrate (1.2%), and uric acid (0.6%) are the larger constituents 
by percentage, with the other near 3000 other constituents taking up the other 
42.3%.[40] Highlighting the reality that the isolation of specific molecules in MR-FTIR 
spectra is unlikely for most urine constituents.

2.1. Clear biological link

Examples of direct physical urine-disease contact include Pan et al.[51] and 
El-Falouji,[52] who looked at urinary tract infections (UTIs) and bladder cancer respect
ively. Pan et al.,[51] studied 11 controls, and 8 UTI cases. The limited dataset size lim
ited the strength of conclusions, compounded by subdividing UTI cases by infection 
type, three (E. Coli, P. aeruginosa, and E. faecium) of the four infections only have one 
sample, with Yeast (n¼ 4). Differences shown in the spectra were related to pathogen 
type (gram-positive bacteria, gram-negative bacteria, or fungus), with a larger study 
required to verify and develop the findings.

In a similar study, linking biological evidence to a specific disease, El Falouji et al., 
investigated FTIR of urine from non-muscle invasive bladder cancer follow-up patients. 
Their aim was to replace invasive cystoscopy and reduce its associated complications.[52] 

Of the 62 patients, cystoscopy identified, 41 as cancer-free and 21 recurrences. The 
identification of a random forest algorithm achieved an AUROC of 92% with 86% sen
sitivity and 77% specificity. Diagnosis without invasive procedures could be a significant 
development if FTIR urine analysis were clinically validated.

Currently, diabetes is a key focus for developing similar FTIR-based diagnostics.

Figure 2. Urine is predominantly formed of 95% water. The remaining 5% is composed of the meas
urable constituents, in the displayed proportions.
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2.1.1. Diabetes
Studies into MR-FTIR detection of diabetes in urine therefore provide an analytical and 
hygienic method for abnormal urine-glucose quantification. Two studies developing 
FTIR for diabetes detection used streptozotocin induction of diabetes in Wistar rats as a 
model. Caixeta et al.[53] induced diabetes in 18/26 subject rats, of which 10 received 
insulin treatment. The study identified spectral differences between diabetic (D), 
non-diabetic (ND), and diabetic with insulin (Dþ I) classes relating to urea 
(1452 cm−1), creatinine (1490 cm−1), and C–O and C–O–C stretching in the 900– 
1200 cm−1 carbohydrate region. The 900–1200 cm−1 region separated D and ND rats 
using principal component analysis (PCA) in the first principal component (PC1). 
Classification using molecules/molecular groups including urea (sensitivity¼ 100%, spe
cificity¼ 88.2, AUC¼ 0.905, p¼ 0.0005), creatinine (sensitivity¼ 100%, specific
ity¼ 88.2, AUC¼ 0.958, p¼ 0.0001), and glucose (sensitivity¼ 100%, specificity¼ 100, 
AUC¼ 1, p¼ 0.0001), showed separation of disease state using individual molecules. 
Farooq et al.[54,55] subsequently carried out a larger Wisar rat diabetes early detection 
study, collecting a dataset from 149 samples (86 D, 63 NDs). Blood glucose concentra
tion was determined using tail vein blood and reactive strips (using an MCR-ALS model 
also used by Caixeta et al R2¼ 0.79) to determine the diabetic state, defined as hypergly
cemic (>250 mg/dL) 48 h post-injection. PCA-LDA (Linear Discriminant Analysis) 
models were trained, comparing 2D and 3D-PCA-LDA, with the 3D model achieving 
100% accuracy, sensitivity, and specificity. Peaks that were used by both Caixeta et al., 
and Farooq et al. related to the 1075 cm−1 peak for glucose (1072 cm−1 for Caixeta 
et al.) and 1460 cm−1 for urea (1450 cm−1 for Caixeta et al.).[54,55] One repeated feature 
was the increased glucose region, where both studies showed a prominent difference in 
the 900–1200 cm−1 region between D and ND.

The link between a single specific peak and a pathology (diabetes) is rare in biospec
troscopy. The authors are aware of dedicated diabetes monitoring methods, the capacity 
to portably test urine glucose has been clinically trialed,[56] which increased monitoring 
frequency when compared to blood glucose monitoring but no reduction of hypergly
cemia incidence or life scores.[57,58] Additionally, the WHO recommends HbA1c as a 
marker, as it provides an 8–12 week average and does not require fasting.[59,60] The 
benefit of MR-FTIR over single-molecule tests for diabetes detection (and wider clinical 
challenges) could be the combined information it provides for situations where testing 
multiple markers in a single process is advantageous.

2.1.2. Diabetes-related complications
Biospectroscopy is additionally benefited by the potential ability to monitor related 
complications simultaneously with glucose levels for diabetes management. In 2022, Lin 
et al investigated a range of mice biofluids including, plasma, urine, and saliva, to detect 
diabetic cardiomyopathy,[61] which is initially asymptomatic but linked to 80% of dia
betic deaths alongside other cardiovascular complications. Biofluids were collected from 
twenty-four male T2DM db/db (Lepr db/db) mice and fifteen male non-diabetic wt/wt 
mice, with 1 ll drops of biofluid dried onto an ATR-FTIR crystal for analysis. The 900– 
1200 cm−1 region was again linked to diabetes samples but the training of genetic algo
rithm (GA) partial least squares (PLS) regression models suggested MR-FTIR can 
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highlight myocardial damage. Saliva performed slightly better than urine, R2¼ 0.967 
and R2¼ 0.954 respectively with a final model trained on data from plasma, saliva, and 
urine combined (R2¼ 0.98).

The potential versatility of MR-FTIR urine analysis is reiterated by Richardson 
et al.[62] who aimed to develop a lower-cost method of diabetic kidney disease (DKD) 
detection. Centrifuge filtered samples (0.8 lL) were dried onto an MR-FTIR-ATR crystal 
from a cohort of 22 controls (healthy individuals), and 155 diabetic patients. The dia
betic patient samples were separated into the urinary albumin creatinine ratios that 
indicate severity, normoalbuminuria (n¼ 64), microalbuminuria (n¼ 61), and macroal
buminuria (n¼ 30). Detection of normoalbuminuria would minimize the risk of per
manent nephron damage, early-stage renal, and cardiovascular disease, associated with 
macroalbuminuria. To achieve that goal two classification models were trained, a PLS- 
DA (sensitivity¼ 89.7% and specificity¼ 97.8%) and SVM (Support Vector Machines) 
discriminant analysis (sensitivity¼ 97% and specificity¼ 100%), highlighted as promis
ing performance compared to urinary dipstick (sensitivity and specificity values as low 
as 33% and 44% respectively). Regression analysis was carried out using PLS-R and 
SVM-R algorithms, with a prediction PLS-R model trained to predict albumin concen
tration. Absorbance at 1651, 1540, 1452, and 1394 cm−1, linked to albumin, provides a 
distinct region of absorption compared to the glucose region (900–1200 cm−1) and 
some distinct regions from the diabetic myocardial damage (3334–3315, 3081–3054, 
2937–2910, and 1620–1592 cm−1).[61]

The distinct regions, or varied peak combinations linked to diabetes (Section 3.1.1.) 
and the two diabetes-related combinations[61,62] suggest they could provide a combined 
test for the long-term management of diabetes. Another finding of this section is the 
possible nascency of this field of research, with only two diabetes-linked diseases 
studied, further investigation may identify further targets. Subsequent questions can also 
be raised, as to whether non-diabetic renal disorders can be detected using MR-FTIR 
urine analysis.

2.1.3. Wider renal issues
Diabetes and diabetes-related complications are not the only renal pathologies with 
interpretable biological MR-FTIR signals. In 2017,[63] Yu et al aimed to improve on the 
conventional serum creatinine or proteinuria renal disease biomarkers, which are often 
detected too late for effective therapeutic intervention. The 1545 cm−1 absorption band, 
linked to amide II (peptide bond) in urinary proteins, was identified as increasing with 
glomerulonephritis severity in mice (n¼ 14), rats (n¼ 54), and humans (n¼ 35), indi
cating potential as a better marker than proteinuria.

The link between cardiac and renal health was explored by Kurultak et al.,[40] who 
noted the precursor of chronic kidney disease, hyperfiltration, and cardiac disease. Tight 
controls were placed on the recruitment of 37 patients, 17 with RHf (hyperfltraters; RHf 
(þ)), and 20 with normal GFR (normofltraters; RHf(−)). Buhas et al identified the 
prominent constituents of urine (summarised in Figure 2) in a study identifying renal 
cell carcinoma (RCC) by testing artificial urine, isolated urine components, and artificial 
urine spiked with urine components.[64] Creatinine was the only component statistically 
demonstrated to separate urine samples from RCC patients (n¼ 49) and healthy 
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controls (n¼ 39), however, PCA-LDA and SVM models trained on the data achieved 82 
and 75% classification accuracy respectively. The limited size of many studies through 
Section 2.1, paired (in many cases) with the observable spectra adaptation, demonstrates 
the potential for MR-FTIR urine analysis of diabetes detection and renal diseases.

Recently, MR-FTIR and ML algorithms, eXtreme Gradient Boosting (XGBoost), 
SVM, PLS, and artificial neural networks (ANN) were compared for post-operative 
markers in urine and plasma.[65] Performance of the models varied from 70% area 
under the curve (AUC) for SVM and PLS, to near 100% AUC (XGBoost), with absorb
ance differences in urine between the classes including decreases at the 1072, 1347, and 
1654 cm−1 bands and increased at 1112, 1143, 1447, 3334, and 3420 cm−1.

The range of renal disease markers, showing relatively small sample sizes indicates 
the potential of MR-FTIR for renal analysis. Clinical validation of the highlighted spec
tral markers, and identification of further markers could provide a quick and simple 
diagnosis for multiple renal diseases. The complexity of urine spectral analysis means 
that the technique should not be limited to simply interpretable classifications. Less 
interpretable links between diseases and urine require stronger evidence, but if clinically 
validated appropriately could similarly provide tests for diseases that are not currently 
available.

2.2. Statistically linked

Urine, vital for maintaining homeostasis through lymphatic and renal purification, 
potentially holds molecular insights into a various conditions. As the biological link 
becomes less manifest, the probability of finding a single disease-related peak becomes 
less likely. Dismissing MR-FTIR urine analysis due to reduced interpretability may over
look its potential. As shown by Duckworth et al,[66] which aimed to develop a screening 
method for pancreatic cancer, incentivized by the <10% 5-year survival rate in the UK 
resulting from the late-stage manifestation of symptoms (e.g. abdominal pain and jaun
dice). A small sample size reduced the required resources, with a focus on ‘statistical 
precision’ from ‘measurement precision’ when comparing serum and urine. A patient 
cohort was recruited and broken into four classes: early cancer (n¼ 13), late-stage can
cer (n¼ 18), benign (n¼ 30), and control (n¼ 12). Filters allowed investigation into the 
ideal particle size ranges for both serum and urine, a potentially beneficial processing 
step for MR-FTIR spectroscopy in transmission mode, previously shown to suffer from 
Mie scattering distortions in cell and tissue analysis.[67]

The unfiltered urine was best within the urine analysis samples (accuracy¼ 86%), 
with lower accuracy than the highest-scoring serum samples (94%). A detailed break
down of what constituted benign, and control was provided in the Supplementary 
Information, allowing differences between model performance when separating a 
‘related disease’. The leave-one out cross-validation showed a drop in SVM performance 
between the cancer vs healthy (95%) and cancer vs premalignant (90%). It should be 
said that the application of spectroscopy for cancer identification, with supplementary 
testing to identify specific stages or subtypes has been suggested as a possible strategy 
for the technology. However, it is commendable to highlight the difference at an early 
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stage of development, along with the recommendation for a larger study over multiple 
centers for the results to be validated.[66]

2.2.1. Gynecology
Along with diabetes and renal studies, gynaecological oncology is a clear focus of inter
est in the MR-FTIR urine analysis literature. A group from Lancashire, UK provided a 
series of papers investigating ovarian and endometrial cancers, starting with a pilot 
study of (n¼ 10) endometrial (n¼ 10), ovarian (n¼ 10), and controls (n¼ 10). The 
paper highlighted the potential of MR-FTIR analysis of urine as a cost-effective and 
noninvasive screening and diagnosis technique for gynaecological carcinomas,[68] result
ing in larger follow-up studies.[69,70]

The first follow-up study in 2021 focused on ovarian cancer and compared urine, 
serum, and plasma analysis of patients with ovarian cancer (n¼ 116) and benign ovar
ian conditions (n¼ 307).[69] Ovarian cancer samples were also investigated for differen
ces between no previous chemotherapy (n¼ 71) and neo-adjuvant chemotherapy 
(n¼ 45), incentivizing the separation of the groups for comparison with benign con
trols. The models trained on the different biofluids were assessed using blind predictive 
models, providing exciting potential for a clinical trial. Assessment again found serum 
achieving the best performance (sensitivity¼ 76% and specificity¼ 98%), with urine 
reported as performing poorly (sensitivity¼ 29% and specificity¼ 87%), looking at the 
neo-chemotherapy subset. However, the performance between urine and serum more 
closely matched for the chemotherapy subset: sensitivity¼ 57% and specificity¼ 96% 
(serum) and sensitivity¼ 57% and specificity¼ 88% (urine).

A second follow-up paper[70] focused on endometrial cancer. The paper addressed 
the exclusion of the pilot study[68] from a review,[71] due to the small sample size by 
increasing the patient cohort. Samples from 219 patients, with the aim of separating 
endometrial cancer (n¼ 109) and benign genealogical conditions (n¼ 110). An orthog
onal projection of latent structures-partial least squares-discriminant analysis model was 
reported as having sensitivity¼ 98% and specificity¼ 97%, significantly higher than the 
blinded urine analysis for detection of ovarian cancer. Potentially confounding factors 
that increase the risk of endometrial cancer, Age, BMI, and Diabetes, were tested to 
determine their effect on the analysis, finding only age with statical significance and 
none that altered the clustering results.

2.2.2. Esophageal cancer
The potential of MR-FTIR urine (and wider biofluid) analysis has been indicated in 
studies investigating pathologies with physiological separation between the biofluid and 
disease site. The physical distance between urine production and the esophagus provides 
an interesting investigation. Do detectable factors travel through the lymphatic, renal, 
and/or digestive systems?

Or does a systematic physiological adaptation result in esophageal cancer identifica
tion in urine? A study exploring the capacity of MR-FTIR to detect esophageal cancer 
(OAC) in biofluids, including urine[72] trained three models on samples from 127 
patients. Spectra were collected from 10 different positions of a dried sample using 
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ATR-FTIR, analyzing the spectra in the fingerprint (1800–900 cm−1 region), with mod
els also trained using saliva (n¼ 127), serum (n¼ 124), plasma (n¼ 120) samples. The 
challenges of detecting OAC were highlighted, with the samples separated into classes 
based on the range of confounding stages for OAC including normal (n¼ 38), inflam
matory (n¼ 19), Barrett’s disease (n¼ 27), low-grade dysplasia (LGD, n¼ 6), high-grade 
dysplasia (HGD, n¼ 11), and OAC (n¼ 25). The Kennard-Stone algorithm was then 
used to break the classes into train (60%), validation (20%), and prediction (20%) 
datasets.

Unlike ovarian cancer, collected using the same equipment and method,[69] the urine 
provided the highest scores (100% accuracy and following metrics for all classes) for a 
principal component analysis-quadratic discriminant analysis (PCA-QDA) model 
trained using the first seven principal components. Additional approaches for feature 
selection were also applied including genetic algorithm-QDA (GA-QDA) and successive 
projections algorithm-QDA (SPA-QDA) were used to identify wavenumbers, providing 
the advantage of highlighting potential specific biomarkers, with the disadvantage of a 
reduction in reported performance, although with small sample counts per class, a 
reduction in performance may indicate an avoidance of over-fitting. For some of the 
smaller classes like HGD and LGD, accuracies for the SPA-QDA (LGD¼ 96.2% and 
HGD¼ 92.6%) and GA-QDA (LGD¼ 92.6% and HGD¼ 96.3%) are only possible from 
prediction datasets of 2 samples (LGD) and 3 samples (HGD) when replicates from the 
same sample are misclassified, suggesting the need for an optimized protocol to avoid 
misclassification relating to spectral collection position. Possibly due to sample hetero
geneity, an issue repeated throughout much of the existing studies.

3. Experimental design considerations

The applications in the previous section demonstrate the progress being made toward 
clinical application of MR-FTIR urine analysis, with applications including cancer diag
nosis,[27,68,70] diabetes monitoring,[54,55] and forensic purposes.[23] The advances demon
strated through Section 2 raise questions around what information must be 
incorporated into subsequent studies and if there are gaps to bridge. The rise in urine 
biospectroscopy research has resulted in the publication of useful information regarding 
experimental variables, currently dispersed over primary articles. The considerable vari
ability across published papers concerning exclusion criteria, sample handling/process
ing, and different methods of data processing will be compared in this section. The 
purpose of collating the reported experimental variables through the sections is to assist 
researchers in implementing suitable and evidence-based experimental design, thereby 
highlighting a key consideration underreported in current MR-FTIR urine research; var
iables relating to the dehydration of urine.

3.1. Urine composition and pre-experimental considerations

The complexity of urine is indicated in studies reporting spectral variation due to gen
der, age, medication, time of urine donation, and stream section (early, mid, or 
late).[73,74] Once water is removed, urine is composed of 8 predominant molecules, and 
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3000 lower concentration constituents (breakdown of the composition given in Figure 
2).[40,75,76] Shared functional groups and similar chemical structures of these molecular 
groups result in overlapping spectral regions that limit the isolation of specific mole
cules unless they represent a large proportion of the molecular composition, incentiviz
ing the investigation of key spectral contributions. One approach has been to develop 
artificial urine, where the largest constituents (by percentage) are altered and the spec
tral response determined.

3.1.1. Urine composition
The main urine feature described in MR-FTIR studies is the dominant urea signal in 
the infrared spectrum, which hinders the identification of other urine components dir
ectly from the spectrum. To overcome this issue, some strategies have been applied 
including mathematical processing like second-order derivates methods,[47,77–79] urea 
peak normalization,[77–79] and the use of artificial urine (also used by Pradhane 
et al.[80]) enriched with urea.[77] Several studies have provided the IR spectra profile of 
urine components. The peaks associated with the main components of urine along with 
hydration effected peaks in MR-FTIR studies are shown in Table 1 (Section 3.2.3).

A thorough characterization of urine components was conducted by Sarigul et al. 
(2021)[79] who analyzed urine samples from both healthy adults and children to estab
lish a reference database of infrared spectra for human urine. The study identified the 
main aspects of urine spectra, highlighting the dominant urea signal in the infrared 
spectrum. The main peaks associated with urea were identified at 3420, 3334, 1609, 
1447, and 1143 cm−1. Spectra saturation is particularly affected by urea signal in the 
high wave number region (between 3600 and 2600 cm−1), however uric acid and cre
atinine also contribute to specific peaks within this range. Creatinine is also linked to 
peaks at 1345 and 1238 cm−1 while uric acid can be detected by increased absorbance in 
the regions of 2600–3000 cm−1 and 850–650 cm−1.

In a study to establish a new artificial urine protocol, the IR spectra of urine collected 
from 28 healthy individuals were analyzed and compared to three artificial urine formu
lations.[77] To identify the characteristic peaks of relevant urine components, the spectra 
of nine urine compounds were also evaluated. The results demonstrated that human 
urine has a similar spectra profile in the 1800–1200 cm−1 region, but significant differ
ences were found within the 1200–800 cm−1 range, more specifically at 1644, 1574, 
1436, 1105, and 1065 cm−1 peaks. Comparing the spectra allowed for the assignment of 
peaks to human urine components like creatinine, citrate, urea, phosphate, and uric 
acid. The spectra of artificial urine formulations exhibit considerable similarity with 
human urine, particularly in the higher frequency region (4000–2500 cm−1), with minor 
discrepancies attributed to distinct urea concentrations in artificial urine formulations. 
Significant variations were found in the 1200–800 cm−1 region, with the most promin
ent difference around the 975 cm−1 position. This spectral region is associated with 
urea, uric acid, creatinine, and sodium phosphate. Therefore, the results reported, and 
the fact that artificial urines contain only a small number of the wide range of urine 
components indicates that the IR spectral profile of urine is dictated by its main compo
nents and minor fluctuations in those generate distinct spectral profiles.

10 M. GREENOP ET AL.



3.1.2. Urine controls
Given that urine components can vary among patients and constitute a significant con
tribution to MR-FTIR spectra, considerable effort is needed to control factors that could 
influence these variables. Among the aspects used for patient eligibility criteria, age, and 
fasting are the most frequently adopted in urine MR-FTIR studies. The effects of 
age, and gender on the spectra were investigated by the examination of child urine 

Table 1. MR-FTIR peak assignments, focused on the information dense fingerprint region of the 
spectrum, for prominent urine constituents, with reference to hydration and age-linked peak shifts/ 
alterations.
Wavenumber (cm−1) Vibration Molecule

1658/1657 H–O–H scissoring 
C¼O stretching (Amide I) 
C¼N stretching (Amide I)

H2O, urea, uric acid, creatinine, & 
proteins[79] 

Urea & creatinine hydration shift 
region[22,48] 

Age related alteration[22]

1637 H–O–H scissoring 
C¼O stretching (Amide I)

H2O, urea, uric acid, creatinine, & 
proteins (alters during 
dehydration[22]) 

Urea & creatinine hydration shift 
region[48]

1623 H–O–H scissoring 
C¼O stretching (Amide I)

H2O, urea, uric acid, creatinine, & 
proteins (alters during 
dehydration[22]) 

Urea & creatinine hydration shift 
region[48]

1609 N–H deformation 
C–N–H vibrations

Urea[79] 

Urea & creatinine hydration shift 
region[48]

1456 Asymmetric C–N stretching Urea[22] 

Urea hydration shift region[48]

1447 C–H bending Urea, uric acid, & creatinine[79]  

Urea hydration shift region[48]

1345 C–N stretching Uric acid & creatinine[79] 

Creatinine hydration shift region[48]

1238 C–N stretching 
CH2 rocking

Creatinine, uric acid, citrate, & 
sulfate[79] 

Creatinine hydration shift region[48]

1157 NH2 deformation Urea & creatinine hydration shift 
region[48] 

Urea, age related alteration[22]

1143 C–NH2 

C–O 
S¼O stretching

Urea, uric acid, citrate, & sulfate[79] 

Urea & creatinine hydration shift 
region[48]

1113 C–H 
C–N–C stretching

Creatinine[79] 

Creatinine hydration shift region[48]

1081 CH2OH groups 
C–O stretching 
COH groups 
PO2—stretching

Symmetric glycosylated proteins/ 
glycosylated proteins 

Age related alteration[22] 

Early sample preparation/creatinine 
hydration shift[22,48]

1075 P–O 
NH2 

S¼O stretching

Urea, sulfate, phosphate, nucleic 
acids[79]  

Creatinine hydration shift region[48]

929 S–O stretching 
P–OH stretching

Phosphate, sulfate, & nucleic acids[79]

867 P–OH bending Phosphate[79]

783 N–H wagging 
C–H (ring) bending

Urea & uric acid[79]
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(3–10 years), young adults (20–30 years), and adults (31–40 years).[79] Results showed 
that urine spectra from children have fewer variations compared to the other ages. 
Comparison across the groups shows that sulfate and phosphate groups are impacted 
by age, as evidenced by differences in 1200–900 cm−1 spectra region, more specifically 
by decreased absorption at 1076 cm−1 with increasing age. Gender comparisons reveal 
that females exhibit slightly higher citrate by differences at 1390 cm−1 (despite the age) 
and demonstrate a higher variance in the region of 1200–1000 cm−1 in comparison to 
men, which is possibly associated with sex-related hormone levels.

While these findings hint at potential effects of age and gender in urine spectra, the 
PCA analysis was unable to differentiate spectra in both age and gender comparisons 
but confirmed the results of variance analysis for age-based comparisons. The authors 
also highlighted that the experiment was conducted with a restricted participant pool, 
suggesting that further studies are required to make more comprehensive conclusions. 
Another study also focused on sex discrimination in urine by MR-FTIR, but in the 
context of forensic application.[23] Urine samples were collected from healthy individ
ual donors within the age group of 20–60 years. The ATR FTIR spectral profiling of 
male and female urine showed differences in the 1462, 1151, and 1087 cm−1 peaks. 
PLS-DA and PCA-LDA show spectra discrimination between male and female urine 
with 95.3 and 95.3% accuracy, respectively. However, no significant discrimination 
was obtained by applying an unsupervised PCA model. Nonetheless, it is important to 
consider that PCA-LDA must be applied in normally distributed data, which is not 
reported by the authors in the study and therefore the discrimination might be 
biased.[81]

Although they constitute only preliminary evidence, these findings suggest the impor
tance of considering age and gender in urine analysis. Typically, MR-FTIR studies dis
criminate the age range of the participants, even if unspecified as an evaluation criterion. 
Similar precaution is taken in relation to gender usually the sample group contains a bal
anced number of female and male human subjects, in a context not involving gender- 
specific diseases. Fasting is another important consideration to minimize the influence of 
consumed food, ensuring that urine spectra mostly reflect changes in the metabolism.[77] 

Overnight or 6h-8h fasting before morning urine samples collection criteria has been 
adopted in MR-FTIR urine analysis of mammals and humans for diagnosis of dia
betes, cancer, autism, and urine components characterization.[40,53,54,61,68,70,77–79]

Apart from being influenced by inter-individual features (like gender, diet, metab
olism, and age), the urine composition shows differences throughout the day for the 
same person.[82] Therefore, a standardized urine collection method is a critical con
sideration during the experiment design phase. Protocols used previously for urine 
collection and processing include 24-h and spot urine. 24-h urine collection offers 
comprehensive information on compounds that fluctuate throughout the day but 
presents practical challenges for patients and may increase the risk of protein deg
radation and contamination. In contrast, spot urine collection methods offer greater 
convenience, standardization, and faster processing and storage.[82] Among single- 
sample methods, first-morning void provides the least variability in protein concen
tration and has been reported to have a composition like that of a 24-h 
collection.[83,84]
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Considering that many aspects of the patient can influence MR-FTIR urine spectra, a 
meticulous selection/exclusion criterion is recommended to control influences on urine 
composition and maximize the validity and repeatability of studies. Additionally, the 
choice of specific controls and the patient pools required for a study may vary depend
ing on the pathology or condition under investigation. A good example of a thorough 
exclusion criteria approach is reported in Sarigul et al., 2023.[78] In their study investi
gating urine MR-FTIR spectroscopy capacity to detect autism they not only ensured 
sex, body mass index, and age-matched controls, but also considered patients eating 
habits and prescribed medicine. The socio-economic situation of the patients and their 
families was also considered. Interestingly, family income was significantly higher in the 
controls, revealing how general patient aspects can have an influence on urine 
composition.

Other studies published by Korkmaz group have been employing tough exclusion cri
teria for sample selection for urine MR-FTIR analysis. In the work comparing healthy 
adults and child urine, the list of exclusion criteria included: the detection of leucocytes, 
protein, blood, glucose, bilirubin and nitrite, urine 5> pH> 7, and urinary system com
plaints.[79] In the study to evaluate renal hyperfiltration, subjects were excluded if pre
sented one of the conditions: acute infection/inflammation, diabetes mellitus, obesity, 
pregnancy, hypertension, urine albumin > 30 mg/day, urine protein> 300 mg/day, car
diovascular disease, peripheral artery disease, cerebrovascular disease, chronic rheumato
logic disease, and thyroid dysfunction.[40] The exclusion criteria will depend on the 
study or the research question they aim to answer.

3.2. Experimental factors

After effective exclusion criteria definition, it is also crucial to follow adequate proce
dures of sample handling and processing to ensure the extraction of the maximum 
information and its accuracy. Given that urine is an unstable biofluid, factors such as 
sample collection, storage, and preparation time must be carefully observed before 
analysis.

Sample storage and processing procedures differ among published MR-FTIR research. 
Figure 3 summarizes some of the most common practices, highlighting that depending 
on the applied treatment it can impact the interpretability of the results. Additionally, 
no statistical analysis was used to check spectral differences. Therefore, more investiga
tion on urine storage to check factors like time of storage and freezer/thaw cycles are 
still required to define experimental aspects for urine analysis.

One of the main experimental variables that can affect spectral stability is the water 
content in the sample. Water provides a saturation signal that masks peaks in the mid- 
infrared region, compromising the extraction of biological information. Therefore, 
proper sample dehydration is typically required before spectral analysis. To counter 
water masking and ensure sample quality, a range of variables must be considered, see 
Dehydration on Figure 3. Practicalities also influence sample preparation, relating to the 
intended application of the technology or the collection mechanism being employed. 
For example, the application of a point-of-care device may be limited by a requirement 
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for nitrogen or condensed air. Similarly, transmission and ATR-FTIR provide different 
advantages, limitations, and sample preparation considerations.

3.2.1. Sample preparation
A sample preparation variable investigated previously is the application of samples onto 
substrates, focusing on the coffee ring effect.[85] The coffee ring is produced as heavier 
particles are deposited in patterns relating to the conflicting capillary flow and the 
Marangoni effect relating to the contact angle between the drop and slide, alongside 
drying temperate.[86,87] Previous research explored substrate surface adaptation[86,88] 

inappropriate for FTIR, which requires a consistent surface area. The necessity of a flat 
surface incentivises the exploration of the most repeatable urine application method.

Consideration of the coffee ring effect is important in ATR- and transmission-FTIR, 
where the heterogeneous distribution of the sample dried onto substrates reduces vari
ability between spectra collected from the same sample. It is difficult to determine 
whether a suitable sample cross-section is analyzed when samples are dried directly 
onto the ATR crystal, an approach employed 11 times in the reviewed literature, along 
with a flow of nitrogen or air to speed drying. The different approaches also potentially 
influence sample volume choice, with drying samples directly onto the ATR crystal 
using <10 ll, potentially selected to reduce the drying time and increase the percentage 
of the sample interacting with the infrared beam during analysis. Samples left on coated 
slides are frequently left overnight,[23,66,69] allowing the selection of 30–60 ll, potentially 
selected to improve the sample connection to the crystal during clamping.

Figure 3. Summary of sample processing steps that occur between sample collection and sample 
analysis that can influence variability in spectral results.
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In a transmission FTIR context, only one clinical MR-FTIR urine analysis application 
was found by the authors,[66] limiting the scope for technique comparison. To fill this 
gap, the authors have provided a comparison (method in supporting material) of tech
niques discussed for other biofluids applied to urine analysis (method: SI1.4.). Testing 
the hypothesis, dropping the sample directly onto the substrate produces a more con
sistent spectrum, was carried out using calcium fluoride (CaF2) slide over two stages, 
either spreading using a pipette tip or as been used in plasma and serum[89,90] analysis, 
through dilution of the biofluid.

The first (Figure 4(A,B)) compared dropping, defined as applying the sample directly 
to the slide without agitation and spreading, where a pipette tip is used to mix the sam
ple over an area. The average spectra and standard deviation for 5 samples are plotted 
for the smear (black) and drop (red). The larger standard deviation for samples dropped 
onto the slide suggesting spreading increases spectral repeatability. Figure 4(B) shows 
the PC1 v PC2 score plot for dropping (red dots) and smeared samples (black dots), 
revealing a tighter cluster for smeared samples and a larger distance between drop 
preparations.

Figure 4. (A) Mean spectrum with standard deviation (shading) for samples dropped (red) and 
smeared (black) onto CaF2 slides. (B) PCA score plot (PC1 v PC2) for samples dropped (red) and 
smeared (black) onto slides. (C) Mean spectrum with standard deviation (shading) for samples diluted 
(red) and spread (black) onto slides. (D) PCA score plot (PC1 v PC2) for samples diluted (red) and 
spread (black) onto slides. Absorbance below zero due to standard normal variate. Figure is author 
produced.
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The increased spectral repeatability (reduced variability) for samples spread over the 
slide is a similar investigation as carried out previously,[89,90] where serum was diluted 
using deionized water to reduce drop cracking during dehydration. The dilution of 
urine samples was hypothesized as an approach for spreading the sample for increased 
uniformity. The sample would be applied to the slide by cycled (2–3 cycles) dispersion 
and aspiration (drop) and compared to samples smeared over the slide surface to an 
approximate 1 cm diameter area (smear). Figure 4(C) shows the mean spectra for five 
samples prepared using each method, with a more closely matching standard deviation 
for spread (black) and diluted (red).

The similarity between spreading by pipette aspiration cycling/dilution and pipette tip 
smearing was reiterated by the overlapping PCA score plot clusters, with groups relating 
to individual samples rather than application group (Figure 4(D)). Figure 4 suggests 
with training, inconsistencies in the spreading area do not denigrate MR-FTIR spectral 
repeatability enough to justify the additional drying time incurred through dilution, as 
least for transmission spectra collected from the entire sample area. However, the het
erogeneous nature of biofluid samples should be a consideration for applications requir
ing ATR collection from different locations of a biofluid sample or vibrational 
spectroscopy mapping. Time must be taken to ensure the spectral influence of hydration 
described in previous papers for urine.[22,48]

3.2.3. Warming urine samples in MR-FTIR urine analysis
Different approaches taken to dehydrate urine samples in the literature typically take 
two routes, temperature, or flow, to speed sample dehydration when drying samples dir
ectly onto ATR crystals, reducing drying time but making the technique dependent on 
the availability of flow supply. Another approach is drying samples onto coated 
slides,[69,70,72] possibly to avoid the requirement of air/nitrogen flow by allowing the 
preparation of multiple samples in a single process.

Temperatures are reported as ‘room temperature overnight’ making precise replica
tion impossible but is better than omitting time and temperature details altogether. Of 
the references reporting dehydration time, with the range from 2 to 45 min for the sam
ples dried directly onto the ATR crystal. Spectral variability relating to drying time was 
investigated by Das et al.,[22] who highlighted time-related spectral changes in three bio
fluids, including urine. Spectra were collected by dropping 50 ml from 4 cm above the 
ATR crystal and collecting spectra at 2 min intervals. The biofluids were deemed dry 
once a consistent spectrum was produced over three consecutive intervals. Table 1 tabu
lates key urine peaks identified by Das et al, highlighting the regions associated with 
urine (urea/creatine-water interactions) hydration alongside corroborating evidence pro
vided by Oliver et al,[48] and Sarigul et al.[79]

To develop the investigation into the temperature for transmission analysis, the 
authors carried out a duplicate experiment (method: SI1.5.), repeated in two locations 
(CCI & UCLan). Five urine samples (5 ml) were smeared onto CaF2 slides and dried 
using a slide warmer set to 30 �C (full method in Supplementary Information) and MR- 
FTIR spectra were collected at times 0 min, after 2 more minutes at 30 �C, and then 
additionally 4, 8, and 10 min at 30 �C. Figure 5 shows the averaged spectra for each 
time step and wavenumbers indicated by Freidman statistic (p< 0.0001) for the 
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experiment at CCI (A) and UCLan (B). Several regions were highlighted (Figure 5 – 
Table) by the Freidman test, which provided several overlapping statistically significant 
regions including an amide I shoulder (1705–1703 cm−1) linked to urea hydration.[48] 

Amide I regions (1668–1656 cm1 & 1592–1580 cm−1) and amide II (1504–1486 cm−1) 
were highlighted at CCI and UCLan, alongside 1384–1369, 1203–1176, and 1047 cm−1.

Statistically significant regions that were not duplicated demonstrate the value of 
repeating experiments, especially in different locations to identify aspects of the analysis 
vulnerable to overinterpretation. Molecular causes of inconsistencies could relate to the 
complex hydrogen bonding that occurs between H2O and urine constituents,[48,91] espe
cially urea.[92,93] Varied urea-water interactions are exacerbated when sample thickness 
and composition cannot be assumed homogeneous, as is the case for MR-FTIR urine 
analysis. To investigate urea hydration further, Nemenyi post-hoc test linked statistical 
differences to time steps (Table 2).

For CCI, a shrinking range of statistical significance focuses on the amide I peak, 
starting broader between time 0 and 2 min (1686–1657 cm−1), narrowing slightly 
between 2 and 6 min (1684–1660 cm−1), and narrowest at 6–14 min (1670–1660 cm−1), 
related to the removal of H2O amide I contamination through continued dehydration, 
with the 1670–1663 cm−1 region appearing as significant in the 2–6 min timeframe at 
UCLan. The uric acid/creatinine linked 1390–1370 cm−1 (UCLan) was also repeated 
(1374–1366 cm−1 – CCI) in the 0–2 min timeframe. However, statistically significant dif
ferences were not seen past 6 min for UCLan and 14 min for CCI. Total dehydration 
removed statistical differences from both repeats, aligning with the hypothesis that 
hydrogen bonding within the urine components, especially urea, caused misalignment 
of CCI and UCLan replicates. The discrepancy in dehydration time between UCLan 

Figure 5. Freidman statistic over 0, þ2, þ4, þ8, þ10 min for UCLan (A) and CCI (B). Absorbance 
below zero due to standard normal variate. Figure is author produced.
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and CCI may result from differences in room temperature but both reduced drying 
times compared to room-temperature drying of urine, the 20-minute (mean) drying 
time identified by Das et al.[22]

3.2.4. Heat-related FTIR spectral adaption in urine
Using temperature to dehydrate urine samples provides the advantages of reducing sam
ple preparation time (simplifying point-of-care diagnoses) and incentivizing the publica
tion of a specific temperature (improving repeatability). The main concern when using 
temperature is that a protocol is in place for the safe handling of slides (where appropri
ate) and sample stability. To investigate sample stability, aiming to identify potential 
regions of denaturation in the sample (within a reasonable handling temperature range), 
an experiment was again duplicated between CCI and UCLan (method: SI1.6.). Five sam
ples were again analyzed over increments, with spectra collected when samples (5 ml 
smeared on CaF2) were dried at 30 �C and again when the samples were exposed to 60 �C 
and again at 90 �C.

Figure 6 shows the results from UCLan (A) and CCI (B), with the Friedman statistic 
(p< 0.0001) shaded in grey (and tabulated) over the average spectra for each tempera
ture step (30, 60, and 90 �C). Freidman test showed the amide I shoulder 1729– 
1677 cm−1 linked with urea/urea hydration,[48,79] the 1630–1590 cm−1 Amide I/II region 
(urea and creatine hydration,[48] and the O–H peak of water[22]), and the 1200– 
1105 cm−1 related to key urine components (Table 1). The final duplicated region is 
1027–982 cm−1 phosphate, sulfate, & nucleic acids.[79] Some spectral regions were again 
not duplicated, indicating the variability of urine samples, alongside the previously 
stated influence of hydrogen-bonded urea and creatinine.[48]

The repeated analyses identified several unmatched spectral regions (Figure 6) 
however, key regions were identified for different temperature steps. To investigate the 

Table 2. Nemenyi post-hoc (p< 0.001) test in over separate time-steps at UCLan and CCI.
Time – Nemenyi Post hoc Test (cm−1 – p< 0.001)

Time 0–2 min 2–6 Min 6–14 Min 14–24 Min

UCLan (cm−1) 1390–1370 1670–1663
997–995 1636–1625

983 1621–1612
1590–1586
1580–1570

CCI (cm−1) 1760–1750 1684–1660 1670–1660
1686–1657 1620–1530 1618–1607
1612–1580
1525–1515
1374–1366
1250–1240
1233–1224
1200–1190
1184–1182
1005–1000

983–973
908–900
893–890
864–860

849

Bold¼ Repeated at both centers and italic¼ continued over time-steps.
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stepwise changes relating to temperature further, Nemenyi post-hoc (p< 0.001) was car
ried out (Table S1) on spectral regions indicated by the Freidman test. The key region 
when comparing 30 and 60 �C is the 1150–1170 cm−1, appearing at both UCLan and CCI, 
similarly replicated was the 1729–1707 cm−1 region for the 60–90 �C. The 1150–1170 cm−1 

region for 30–60 �C is associated with NH2 deformation (urea/hydrated urea/urine age- 
related degradation[22,48]) highlighted in section 3.2.3, with 1729–1707 cm−1 appearing as 
a slight shoulder on the amide I peak, potentially linked to denaturation of proteins.

Variations between different hydration levels, drying times, and temperatures suggest 
that the prominence of sample hydration relative to a given research question should be 
addressed early in an MR-FTIR urine analysis study. A single reference[70] mentioned 
the amount of time between the donation of the sample and freezing. Consideration of 
freeze-thaw cycles,[47] dehydration protocol,[48,85] and time ex vivo[22] raise the question 
of whether preservatives should be used or whether their inclusion will introduce new 
distortions. The abundance of experimental variables and potential provides a fertile 
research field and incentivises further investigation into sample preparation and wider 
clinical applications of MR-FTIR urine analysis. Notably, statistically significant regions 
have been linked to water-urea/water-creatine interactions[48] for the temperature steps 
(Figure 6) higher temperatures might be possible for applications requiring rapid ana
lysis. However, the key region used for qualitative assessment of sample dehydration 
(amide I & II), is exactly the spectral region of the denatured proteins, making their iso
lation complex, and highlighting the need for further research.

Figure 6. Freidman statistic for 30, 60, and 90 �C for CCI (A) and UCLan (B), with table comparing 
UCLan and CCI analysis Freidnam (p< 0.0001) regions, ranges on same row are repeated regions. 
Absorbance below zero due to standard normal variate. Figure is author produced.
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4. Conclusions and next steps

MR-FTIR provides clinical insights by simultaneously sampling the molecular constitu
ents of urine, without the need for reagents.[94] The potential of the technique was dem
onstrated in Section 2, with not only diabetes (1072 cm−1 – Caixeta et al.[54]) but 
complications, e.g. diabetic kidney disease detection through albumin (1651, 1540, 1452, 
and 1394 cm−1 – Richardson et al[62]) but wider renal disorders (Section 2.1.3) and dis
eases indirectly linked to urine (Section 2.2).

The distinct signatures of the different diseases are strong evidence that further devel
opment can provide a technique for detecting and monitoring a range of renal and 
diabetes-related disease pathways in a single cheap, simple, and noninvasive test. 
However, key markers identified for several diseases are in spectral regions shown to 
vary relating to urea and creatinine hydration,[48] incentivizing a deeper investigation 
into urine sample dehydration using transmission MR-FTIR.

The wider molecular context provided by vibrational spectroscopy comes with the 
cost of complex biological interpretation of urine spectra. Statistical techniques were 
shown to expand the clinical applications of MR-FTIR urine analysis to gynaecological 
applications and anatomical regions with obscurer links to urine like the Esophagus. 
Applying ML/chemometric/multivariate techniques extends the potential for clinical 
spectroscopy but obscures the association of spectral features to classifications/diagno
ses. The thousands of vibrational spectroscopy features (wavenumbers) used to train 
biospectroscopy algorithms risk overfitting models (forced prediction of classes).

To counter overfit models, which waste time, effort, and funding by failing to gener
alize to new data, risking the credibility of researchers and the field, blinded and ideally 
multi-centre studies are imperative. Standardization and multi-centre studies are stated 
targets for clinical spectroscopy translation.[44,45] No multi-centre or multi-instrument 
MR-FTIR urine analysis studies were found by the authors. However, blind testing for 
ovarian cancer is a promising development.[69] Section 3 compiled studies investigating 
key experimental variables for MR-FTIR urine analysis, comparing findings for ATR, 
and expanding into transmission. The influence of patient sex,[23] age,[79] and sample 
storage[47] on spectral composition were described, and the influence of the dehydration 
temperature and time was demonstrated.

Section 3 extends the review of progress provided in Section 2 by providing a central
ized resource for FTIR urine analysis researchers, alongside demonstrating the effect of 
repeating an analysis with different researchers and locations. Although the repeated 
experiments were small (n¼ 5 per class), demonstrating reduced H2O contributions in 
the 1686–1657 cm−1 amide I region as a key urine hydration marker, confirming that 
30 �C dehydrates 5 ml of urine in 14 min without sample degradation. Differences were 
shown between 30, 60, and 90 �C, but changes could not be separated from 
dehydration-linked changes conclusively, resulting in a current recommendation to 
avoid speeding up dehydration further by using 60 or 90 �C. However, further investiga
tion is required to identify spectral adaptations that might occur, possibly relating to 
protein denaturing.

Repeating experiments in two locations A) Requires a strict protocol to be developed, 
preparing the technique for larger validation studies and eventual regulation, and B) 
Reduces the risk that over-interpretation or bias in the analysis is inadvertently 
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published. For example, the repeated analysis focused spectral interpretation onto spec
tral regions highlighted in both locations, indicating their potential robustness to inter- 
operator variability. A development on the current protocol is incorporating a standard 
specific to the analysis being carried out, with one previously investigated option being 
potassium thiocyanate.[95] The current protocol used the Thermo Fisher Factory Test 
and qualifications test, which are built into the Summit Pro to meet US, EU, Chinese, 
and Japanese pharmacopeia standards. However, the implementation of a quicker stand
ard would provide greater comparison between equipment.

By showing differences between measurements of the same sample (Figures 5 and 6) 
we highlight the inconsistency between preparations using different dehydration times 
and temperatures. The differences demonstrated in Figures 5 and 6 therefore indicate 
the kinds of differences that can occur between (and even within) sample preparations 
of the same sample (intra-sample variability) relating to hydration state. Although the 
authors acknowledge that simply drying for longer, or at higher temperatures may be 
seem a simple solution, we have shown that the replication of results required to speed 
clinical approval of the technique necessitates publication of dehydration routines. We 
suggest that future research be carried out investigating intra-sample variability in rela
tion to stability of identified biomarkers over repeated experiments.
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