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Abstract—The rapid adoption of electric vehicles (EVs)
presents new challenges in designing efficient charging infras-
tructure and route planning mechanisms to ensure sustainable
urban mobility. This paper introduces a novel two-stage opti-
mization framework that leverages Deep Q-Networks (DQNs)
for the intelligent placement of EV charging stations and real-
time routing of vehicles. In the first stage, a DQN placement
model learns to identify optimal charging station locations within
a graph-represented road network, minimizing the expected
energy consumption of future routing. In the second stage, a
separate DQN routing model is trained to approximate cost-to-
go functions and guide vehicles to the nearest stations efficiently.
The models are evaluated against traditional methods, including
Q-Learning, neural networks (NN), deep graph neural networks
(DGNN), and Random Walk baselines. Simulation results across
diverse network topologies demonstrate that our DQN approach
consistently outperforms baselines in terms of average energy
consumption, travel time, and route success ratio. Specifically,
the DQN placement strategy achieved the lowest average energy
consumption of 1.2387 kWh and the most spatially equitable con-
figuration (average distance: 6.34 km), while the DQN routing
model recorded the best performance with 1.2587 kWh average
energy, 1.98 hops, and a 96.67% success rate. These findings
highlight the effectiveness of deep reinforcement learning in
enhancing the scalability, reliability, and energy efficiency of
EV infrastructure planning.

Index Terms—Electric Vehicles (EV), Deep Q-Network (DQN),
Charging Station Placement, Route Optimization, Reinforcement
Learning, Smart Mobility, Energy Efficiency

I. INTRODUCTION

The accelerating global adoption of electric vehicles (EVs)
is driving a transformative shift in sustainable urban trans-
portation [1]. However, this transition introduces formidable
challenges in optimizing limited charging infrastructure, es-
pecially in complex and dynamic urban environments [2].
High-density cityscapes exhibit erratic EV traffic patterns and
spatially diverse charging demands [3], often resulting in
long queues, station congestion, and critical energy-depletion
events. These issues erode user trust and inhibit the scalability
of EV ecosystems [4]]. This work targets the dual optimization
challenge central to EV-based smart mobility: (i) the strategic
placement of a fixed number of charging stations (K =3 in
our experimental setup) within an urban road network, repre-
sented as a directed graph G = (V,E), where nodes represent
candidate charging locations and edges encode travel and
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the METACITIES project under Grant Agreement No. 101087257, and the
Government of the Republic of Cyprus through the Deputy Ministry of
Research, Innovation and Digital Policy.

energy costs; and (ii) the real-time routing of EVs to these
stations to minimize energy consumption, travel time, and
distance [S)]. The complexity of real-world traffic networks,
marked by dynamic topology, varying state-of-charge levels,
and stochastic demands, necessitates intelligent and scalable
learning-based solutions [6].

Conventional approaches to this problem often rely on
static heuristics or centralized control systems that fail to
incorporate environmental feedback or adapt to dynamic
changes in the network [7], [8]. As a result, popular charg-
ing locations tend to be overloaded while other stations
remain underutilized, leading to inefficient vehicle flows and
poor user experience [9]. To address these limitations, we
propose a unified machine learning-driven framework that
intelligently integrates the placement and routing problems
and learns from optimal examples to adapt to future unseen
scenarios [10]. This study introduces a comprehensive and
modular two-phase solution that harnesses deep reinforcement
learning and supervised machine learning for efficient EV
charging system design. Phase one addresses charging station
placement through various strategies, including a Deep Q-
Network (DQN) [[11]] that learns placement actions via re-
ward feedback based on simulated routing energy [12]. It
is supplemented by placement Neural Networks (NN) [13],
Graph Neural Networks (GNNs) [14], and machine learning
(ML) proxy methods [[15] that score placements using routing
outcomes. In phase two, a separately trained DQN routing
model approximates energy-optimal paths for EVs by learning
value functions based on Dijkstra-generated ground truth [[16].
Additional supervised routing models include Q-learning [[17]],
[L8], standard Neural Networks (NN) [19], and Deep Graph
Neural Networks (DGNN) [14]], each trained to generalize
routing across variable network sizes and vehicle distributions
l6].

The novelty of our work lies in this joint learning frame-
work that co-evolves infrastructure placement and vehicle
routing, exploiting learned knowledge across both tasks. By
simulating a diverse set of graphs and loads, our method
rigorously evaluates each model’s ability to generalize and
adapt. Moreover, our ML models are designed to be fully
auto-tuned—trained via data-driven supervision to eliminate
the need for manual tuning and perform effectively in un-
known environments. The main contributions of this paper
are as follows:

o Integrated Two-Phase Optimization Framework: A

novel, unified framework for simultaneous EV charging



station placement and routing using learning-based mod-
els in a modular simulation pipeline.

o Data-Driven and Auto-Tuned ML Models: Deploy-
ment of DQN, NN, DGNN, and Q-Learning models
that are trained using optimal path data from Dijkstra’s
algorithm and optimized through supervised learning and
reinforcement feedback.

o Machine Learning-Driven Placement Strategies: Ex-
ploration of multiple placement approaches—including
DQN placement, GNN-spectral analysis, and proxy-
based scoring—Ilinked to routing outcomes for adaptive
infrastructure planning.

o Extensive Evaluation across Topologies and Loads:
Detailed simulations across large graph sizes (100 nodes)
and vehicle loads (100) to benchmark and analyze model
performance under realistic constraints.

o Seamless Integration of Learning and Planning:
Demonstration of how learned routing behaviors can
serve as evaluators for placement policies, forming an
efficient, scalable loop between planning and control.

The remainder of the paper is structured as follows: Section
[] defines the joint optimization problem for EV charging
station placement and routing and details the system ar-
chitecture. Section presents the two-phase methodology,
including synthetic data generation, DQN model training,
and evaluation metrics. Section discusses the simulation
results, analyzing the performance of DQN and baseline
models across diverse network scenarios. Finally, Section
concludes the paper, highlighting key findings and outlining
future research directions, including integration with digital
twins and federated learning.

II. PROBLEM DESCRIPTION AND SYSTEM ARCHITECTURE

In modern urban and suburban environments, the rapid growth
of electric vehicles (EVs) creates two intertwined challenges.
First, planners must decide where to install a fixed number of
charging stations so that drivers can reach them conveniently
and with minimal energy expenditure. Second, given any
chosen set of stations, individual EVs need an efficient way
to navigate the road network—selecting routes that consume
the least energy while avoiding unnecessary detours or delays.
These two tasks—station placement and vehicle routing—are
deeply connected: stations that are poorly sited force vehi-
cles into long, energy-hungry trips, while even an optimal
routing policy cannot overcome a suboptimal placement of
chargers. Consequently, finding a jointly optimal solution
means striking the right balance between broad geographic
coverage and energy-efficient routing. This creates a com-
plex combinatorial problem: choosing a handful of locations
out of many possibilities, and simultaneously guiding EVs
along near-optimal paths through a dynamic traffic network.
The proposed architecture tackles these challenges head-on
by combining classical graph-theoretic methods with deep
reinforcement learning in a two-phase pipeline. First, we
identify near-optimal charging-station locations; then, we
learn energy-efficient routing policies. Formally, we solve the
coupled two-level optimization:

o Placement: choose S C V, |S| = K, to minimize
1
_— minCost(v—s).
[V S| ses ( )

veV\S

Placement Model

Routing Model

;
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Figure 1: System Model

e Routing: for fixed S, compute or approximate energy-
optimal paths from each v ¢ S to its nearest s € S, either
exactly via Dijkstra or approximately via the learned
V().

Figure |1|illustrates the complete workflow—from synthetic
network generation through placement optimization to trained
routing—over a graph-modeled road network, enabling joint
station planning and vehicle navigation under a unified frame-
work.

ITII. METHODOLOGY

This section outlines a comprehensive two-phase methodol-
ogy for optimizing Electric Vehicle (EV) charging infrastruc-
ture, combining supervised learning and reinforcement learn-
ing techniques to improve both station placement and routing
efficiency. The pipeline begins with synthetic, strongly con-
nected road network generation and proceeds through feature
extraction, model training, and performance evaluation. The
learning backbone of the framework leverages DQL, which
extends classical Q-learning by using deep neural networks
to approximate the optimal action-value function Q*(s,a).
Instead of relying on tabular Q-values, DQL generalizes over
large state-action spaces through a DQN. Stability during
training is ensured via experience replay (randomized mini-
batch updates) and a target network (periodically updated to
stabilize learning). An &-greedy policy balances exploration
and exploitation. This architecture enables DQN to make
effective, real-time decisions in high-dimensional EV routing
and placement tasks [L1], [20], [21]. Overall, the proposed
pipeline supports a scalable and generalizable approach to EV
infrastructure planning, integrating simulation-based datasets,
ML model training, and robust evaluation for both placement
and routing tasks.

A. Dataset Generation

a) Road Network Synthesis
Synthetic urban road networks are modeled as directed
graphs G = (V,E), where nodes V represent intersections
and edges E represent directed road segments. Each edge
is annotated with distance (km,) and energy consumption
(kWh, = 0.2 x km,). To ensure strong connectivity, graphs are
generated from a base ring topology with additional random
and targeted edges. Diverse topologies are constructed using
varying node counts and random seeds to simulate different
urban layouts.
b) Placement Feature Dataset
For each generated graph, a greedy Dijkstra-based heuristic
is used to select an initial placement of K charging stations.



The first station is placed at the node with the minimum
total distance to all others. Subsequent stations are added
iteratively to minimize the overall nearest-station distance
across all nodes. This process ensures spatial diversity and
reduced average travel cost. For each placement configuration,
a feature vector is extracted, capturing the impact of station
locations on network accessibility. Specifically, for every non-
station node, the shortest path to the nearest station is com-
puted using Dijkstra’s algorithm, from which several statistics
are derived.Energy features include the average and standard
deviation of energy required to reach the nearest station:
AvgEnergy = ﬁZVGV\SE (v). Distance metrics include the
average and standard deviation of the shortest path lengths:
AvgDist = ﬁzveV\sD(V)- Hop count statistics (AvgHops)
and time-based metrics (AvgTime) are also computed, with
time estimated from distance and average speed. Together,
these aggregated statistics describe the overall accessibility
and energy efficiency of the placement. Additional graph-
theoretic features—such as coverage within 10km and cen-
trality metrics (e.g., degree, betweenness)—are included to
enrich spatial analysis. The resulting vectors are labeled with
multi-label binary targets indicating selected station nodes,
forming a supervised training dataset.
¢) Routing (Path-Finding) Dataset

To train routing models, a comprehensive dataset is gen-
erated using synthetically created graphs of various sizes
and topologies. Each graph includes edge-level annotations
for distance (km), energy cost (kWh), and estimated travel
time (s), assuming average vehicle speed. Charging station
placements are again derived using a greedy Dijkstra-based
heuristic. For each non-station node v, the nearest station s*
is identified by minimizing the total energy cost:

s* = argminEnergy(v — s).
SES

The optimal path &,_ is extracted, and the following
metrics are computed:

Ewv)= Y kWh(uu), (1)
(uu") e
D)= Y km(uu), 2)
(uu')e P
Tv)= Y time(u,u), 3)
(uu)e P
H(v) =|2|. “)
Each sample is stored as a tuple

[v,s*,E(v),D(v),T(v),H(v)], used to train supervised models
for routing cost approximation. This dataset supports the
learning of deep Q-networks (DQN) capable of generalizing
routing behavior across topologies, eliminating the need for
explicit shortest path computation at inference time.

B. Placement and Routing Model Training and Architecture

Multiple methods are considered for placement: greedy
heuristic, spectral GNN, and NN. Although all were evalu-
ated, the DQN ML placement method proved most effective.
This work employs a Deep Q-Network-based architecture to
jointly optimize the placement and routing of electric vehicle
(EV) charging stations. While several methods were evalu-
ated, including greedy heuristics and GNN-based models, the

DQN-informed placement and routing approach demonstrated
the best trade-off between scalability and energy efficiency.

1) Placement Model

a) DON Placement Model Training

The DQN placement model is trained using reinforcement
learning to select the optimal set of K charging station loca-
tions within a given graph. The environment state is encoded
as a binary vector s € {0,1}", where each element indicates
whether a node currently hosts a station. At each timestep,
the agent selects an action a € {1,...,N} corresponding to the
next node where a station should be placed. The placement
process proceeds sequentially until K stations are selected,
forming a complete placement configuration.

The reward signal is derived from evaluating the total rout-
ing cost under the current placement. Specifically, for a given
placement configuration, the average energy consumption for
routing all non-station nodes to the nearest station is computed
using the trained DQN approach. This cost is transformed into
areward (e.g., negative energy cost) to guide the agent toward
more efficient placements. The Q-function Q(s,a) is updated
using the Bellman equation:

O(si,ar) < Qs ar) + [rt + Ym;,lx O(si11,d") — Q(St,ar)]
(5)

where « is the learning rate and ¥ is the discount factor.

The model is implemented as a multi-layer perceptron with
input size N, hidden layers with ReLU activations, and an
output layer of size N representing Q-values for all node
actions. The training employs experience replay and €-greedy
exploration to balance exploitation and exploration. Once
convergence is achieved, the agent is able to recommend near-
optimal station placements for unseen graphs without needing
to simulate all possible configurations. Overall, the DQN
placement model was trained using 70% of the generated
graph instances, while the remaining 30% were reserved for
evaluation on unseen topologies to assess generalization and
placement effectiveness.

b) DON Placement Model

The strategic placement of EV charging stations is modeled
as a sequential decision-making process, addressed by a Deep
Q-Network (DQN) based reinforcement learning agent. This
agent learns a policy to select an optimal set of K charging
station locations from the available nodes V in the graph G =
(V,E). The core components of this RL approach are defined
as follows:

State Representation. The state sp € .%p for the placement
agent encapsulates information about the graph’s topology
and the current partial placement of charging stations. This
can be represented, for instance, by a binary vector of length
|V| indicating which nodes have already been selected to host
stations, potentially augmented with a counter for the number
of stations placed so far, or by more complex graph embed-
ding features that capture the overall network configuration.

Action Space. At each decision step 7 in the placement
process (where ¢ ranges from 1 to K, the total number of
stations to be placed), the agent selects an action ap € .<7p. The
action space «7p consists of all graph nodes V that have not yet
been chosen in the current partial placement S;_; (i.e., o/p =
V'\ S;—1). Executing an action ap corresponds to selecting the
chosen node to host the next charging station.



Reward Function. The reward rp is critical for guiding the
placement agent’s learning process. Typically, a significant
reward (or penalty) is provided only upon the completion
of a full placement, i.e., after all K stations have been
sited. This terminal reward reflects the overall quality of the
chosen set of K station locations, Sk = {ap1,...,apg}. The
quality is quantified by the efficiency of routing vehicles
to these stations. Specifically, the reward can be defined
as the negative of the average routing energy (or a similar
metric like travel time or unreachability penalty) calculated
for a representative set of vehicles or all non-station nodes
when routed to their nearest station in Sx. These routing
costs can be estimated using a pre-trained DQN routing
model, albeit computationally intensive, ground-truth eval-
vation during RL training. The reward is formulated as:
rp= fWISK‘ Yev\s, EstimatedRoutingCost(v — Sk ).

A deep neural network is utilized to approximate the
optimal action-value function Qj(sp,ap), representing the
maximum expected cumulative reward for taking action ap
in state sp and following the optimal policy thereafter. The
network maps states sp to Q-values for all possible actions. It
is trained by minimizing the temporal difference error, with
updates guided by the Bellman equation:

Op(sps,aps) < Qp(sps,apy) (6)

+a {rp,z +ymax Op(spis1,d’)
a

- QP(SP,tyaP,t)} @)

where « is the learning rate and Y is the discount factor.
Standard RL techniques such as experience replay (storing
and sampling transitions (sp,ap,rp,sp)) and an e-greedy
exploration strategy are employed during training, which pro-
ceeds over numerous episodes, each involving the placement
of K stations.

2) Routing Model

While our placement model relies on Q-learning with
discrete actions Q(s,a), the routing model instead estimates
a scalar value function V (s), as the objective is to evaluate
expected energy cost from a node to its nearest station rather
than choosing between multiple actions.

a) DON Routing Model Training

The routing model is trained as a value-based deep rein-
forcement learning model that approximates the state-value
function V(s), where each state s represents a node in the
graph and the value V(s) denotes the expected minimum cu-
mulative energy required to reach the nearest charging station.
The input is a one-hot encoded vector s € RV representing
the current node. The output is a vector v = V(s'), where
each component v; estimates the minimum cumulative energy
required to reach the nearest charging station from node i.

Training data is generated using Dijkstra’s algorithm to
compute optimal energy paths from each non-station node to
its nearest station. Let v} be the target cost from node i. The
DQN is trained to minimize the mean squared error (MSE)
between the predicted and acltua}\ll values:

$0uting = ﬁ izzl(vi - V;F)Z ®)

Inference and Decision Policy: At inference time, the

DQN predicts values V (s) for all neighbors s’ of the current

node s.. The next-hop decision is made by selecting the
neighbor that minimizes the sum of the immediate energy

cost and the predicted future cost:
s, = argmin [Cost(sc,s") + V(s)] ©)
S,

Model Architecture and Optimization: The DQN model
is implemented as a multi-layer perceptron (MLP) with two
hidden layers. The first layer has n; € [32,192] units and
the second layer has np € [16,96] units, both followed by
ReLU activations and dropout regularization. The output
layer is a linear projection of size N, corresponding to the
number of graph nodes. The learning rate is optimized in
the range € [107>,102]. Hyperparameters—including hidden
layer sizes and learning rate—are optimized using Bayesian
optimization. Training employs early stopping and adaptive
learning rate scheduling to ensure convergence. Once trained,
the DQN model is reused across different graph scenarios to
evaluate placement strategies and execute real-time routing
decisions. Overall, the DQN routing model was trained on
70% of the synthetic graphs with known optimal routing
costs, while the remaining 30% were held out for evaluation
to validate the model’s ability to generalize and accurately
predict routing behavior on unseen network topologies.

b) DON Routing Model

The routing model utilizes a DQN structure to approximate
the state-value function V (s) for all nodes (states) s € . in the
graph. When provided with an input representing the current
node s, (e.g., a one-hot encoded state vector s, € RY, where N
is the number of nodes), the model outputs a vector v € RN
Each component v; of this vector v represents the model’s
prediction of the state-value V(s;) for every node s; in the
graph, which is the estimated minimum future energy cost
to reach a charging station starting from node s;. The DQN
is trained in a supervised manner using ground truth energy
costs obtained via Dijkstra’s algorithm. Let v; be the model’s
predicted cost-to-go from node j (i.e., the j-th component of
the output vector v), and v;f the corresponding target (optimal)
cost. The training objective minimizes the mean squared error

(MSE): LN

Zouting = N Z (Vj - V;)z
=

(10)

For decision-making during routing, when the vehicle is at
current node s., the model evaluates the cost of moving to
each neighbor s'. The next hop, s,, is chosen using the rule:
Sy = arg min ’[Cost(sms/) + V(s’ﬁ (11)
s"€Neighbors(s.)
Here, Cost(s.,s’) is the actual energy cost of traversing
the edge from s, to s’, and V(s') is the model’s predicted
cost-to-go from the neighboring state s’ (obtained from the
corresponding component of the model’s output vector).
This approach enables the agent to select paths that mini-
mize the cumulative energy consumption by combining imme-
diate transition costs with long-term estimates of future costs,
effectively mimicking classical shortest-path algorithms while
enabling generalization to unseen graph topologies.
3) Model Selection Criteria
The final step involves selecting the best-performing
placement-routing model combination based on a comprehen-
sive evaluation using multiple performance metrics. Specifi-
cally, we prioritize models that achieve the lowest average



energy consumption across all vehicle routes, followed by
secondary metrics such as average travel time, number of
hops, and route success ratio. During validation, each model
is tested on unseen synthetic graph scenarios, and the com-
bination yielding the minimum average energy consumption
with a success ratio above 95% is selected as the optimal
deployment. This ensures both efficiency and reliability in
real-world routing conditions.

C. The DON Approach Algorithm

The proposed DQN approach follows a two-step learning
and evaluation pipeline to optimize EV routing and charg-
ing station placement. In the first step, the DQN model is
trained to approximate the cost-to-go from any node to its
nearest charging station using ground-truth energy-optimal
paths computed via Dijkstra’s algorithm. This allows the
DQN to generalize over unseen topologies and rapidly esti-
mate routing efficiency without re-computing full paths. In
the second step, the trained DQN is used as a proxy to
evaluate multiple candidate placements by simulating routing
performance and selecting the configuration that minimizes
average energy consumption. This architecture effectively
decouples placement from routing, enabling a scalable and
data-driven optimization framework that performs well across
varied network conditions. The use of the learned value func-
tion accelerates placement evaluation and makes the system
highly adaptable for real-time decision-making in urban EV
deployment scenarios.

Algorithm 1 Two-Step Optimization using a DQN Routing
Model

Require: Graph characteristics (to generate training instances G = (V,E)), station count K for placement, training
parameters for Vg (e.g., dataset size, epochs Ne’m(,hq)
Ensure: Optimal placement S* and the trained DQN Routing Model (value function Vg)

1: /I Step 1: Train DQN Routing Model (V) to approximate cost-to-go
2: Initialize an empty dataset 7
3 Generate a set of training instances, each with a graph G/ = (V' E') and fixed station placements S vain
4: for all each training instance (G',S],:) do
. stati os 1 1\ o
5:  for all non-station nodes v € V \S7rain 40
6: Compute optimal energy cost ¢* (1,5}, ) from v to the nearest station in S7,,,;, using Dijkstra’s algorithm.
g: Extract smj features ¢(v} S/ i) for node v given placement S, . .
M ), v, 8. ataset 7
: Add (9(%.8], ) (18], i) to dataset 7.
9: end for
10: end for

11: Train the DQN Routing Model Vg (s) (which approximates the state-value function) using dataset %. The model is
¢}
parameterized by 6 and trained by minimizing the Mean Squared Error (MSE) loss:

20)- = L (Velo)-ch)?
12 (a_,-.nj)eyl /

12: 4 Step 2: Evaluate candidate placements S; using the trained Vy to find optimal §*
13: Let .7, 4nq be the set of candidate placements for K stations in the target graph G = (V,E).
14: for all candidate placements S; € 7,4 do

15: Initialize a list of path costs Lgqgg 5 < I8

16:  for all non-station nodes v € V'\ S; do

17: Simulate a path PVHS" from v to its nearest station in S; (within graph G). The path is generated by iteratively
selecting the next hop s’ from current state sc that minimizes (Cost(sc,s”)+ Vg (9(s',5;))). where ¢(s'.S;) are state
features of s’ given placement S;.

18: Let E(P,_,s,) be the total energy cost of the simulated path B, ;.

19: Append E(P,_,5;) © Leggys_; -

20: end for

210 i Leggy s, is not empty then

22: Calculate average energy cost C; = Mcnn(LL.m,lLSi ).

23: else

24 Cj = oo (or other penalty for invalid/unreachable placements).

25 endif

206: end for
* Select optimal pl t 5% =argmi v G

elect optimal placement argming.¢c 7 . Ci

28: return 5*, V.

IV. SIMULATION RESULTS AND ANALYSIS
This section presents the evaluation of the proposed DQN
framework for EV charging station placement and routing.
Simulations were conducted across various graph sizes and

vehicle loads, using classical and learning-based models.
Key performance metrics included energy consumption, travel
time, hop count, and success ratio. DQN consistently out-
performed Q-Learning, DGNN, and NN baselines in both
placement and routing phases, achieving the lowest energy
usage and highest route reliability. The simulation setup
ensured fair comparison, and generalization tests confirmed
DQN’s robustness on unseen graph scenarios.

A. Simulation Setup

The simulation environment was designed to evaluate clas-
sical and learning-based strategies for electric vehicle (EV)
charging station placement and routing under controlled,
reproducible conditions. Each experiment was conducted
on graphs consisting of 100 nodes, with edges generated
probabilistically using a 0.30 edge creation threshold and
distances ranging from 1 to 20 kilometers. The simulation
included 100 vehicles and allocated 3 charging stations per
run. Routing algorithms tested included Dijkstra, DQN, Q-
Learning, and DGNNs. For learning-based models, the Deep
Reinforcement Learning (DRL) agents were trained for a
minimum of 50 episodes with early stopping enabled after
10 stagnant episodes. Supervised models were trained using
a dataset of 1000 synthetic graph samples. Key evaluation
metrics collected throughout the simulations included energy
consumption, travel time, hop count, routing distance, and
success rate. These settings ensured a fair and scalable com-
parison across all evaluated approaches.

B. Results of the First Step: Charging Station Placement

Table [I| summarizes the performance of four charging station
placement strategies evaluated on a network with five nodes
and three charging stations. The evaluation considers average
energy consumption, travel time, and distance from non-
station nodes to their nearest station. Among the methods
tested, the DQN placement strategy achieved the best perfor-
mance in terms of energy efficiency, with the lowest average
energy consumption of 1.2387 kWh. The NN-based method
followed closely at 1.2687 kWh, while DGNN and QL
consumed significantly more energy, recording 1.5771 kWh
and 1.7771 kWh, respectively. These results highlight the
clear advantage of DQN and NN in generating station config-
urations that reduce overall routing energy. However, a trade-
off is observed in travel time. DQN recorded an average travel
time of 10.21 seconds—slightly higher than NN (10.00 sec-
onds) and notably above DGNN (6.01 seconds) and QL
(6.67 seconds). This suggests that DGNN and QL prioritize
speed at the expense of higher energy usage, while DQN
and NN favor energy efficiency with modestly longer travel
paths. In terms of spatial coverage, DQN and NN achieved
identical average distances of 6.34 km to the nearest station,
outperforming DGNN (7.09 km) and QL (8.89 km). This
reflects more centralized and accessible station placements
from DQN and NN, reducing the average travel distance
required for charging. Overall, the DQN strategy presents a
balanced and robust solution for planning energy-efficient and
spatially equitable charging infrastructure. While DGNN and
QL provide faster routes, their higher energy costs and poorer
station accessibility make them less suitable for energy-
sensitive deployments. The competitive performance of the
NN model further reinforces the utility of learning-based



placement strategies.
Table I: Step 1: Placement Results of Charging Stations

Placement Strategy | Average  Energy | Average Time () Average  Distance
(kWh) (km)

DQN 1238733 10.212300 6343665

NN 1268733 10.000000 6343665

DGNN 1577071 6.006667 7.085356

QL 1777071 6.666667 8.885356

C. Results of the Second Step: Routing Toward Charging
Stations

Table [l presents the evaluation of various routing strate-
gies based on 25 vehicles navigating toward fixed sta-
tion placements. Metrics include average energy consump-
tion, travel time, distance, hop count, number of successful
routes, and success ratio. The DQN routing model con-
sistently outperformed other methods across all evaluation
criteria. It achieved the lowest average energy consumption
(1.2587 kWh), the highest route success ratio (96.67%), and
a high average of 2.9 successful routes out of 3. Additionally,
the model maintained a low hop count (1.98) and a moderate
travel time (9.95 seconds), confirming that DQN effectively
learns energy-efficient paths while ensuring reliable route
completion. The NN-based model performed similarly, with
an average energy of 1.2787 kWh and a success ratio of
93.33%, though it had a slightly higher hop count (2.19)
and longer distance (7.02 km), reflecting marginally less op-
timized routing paths. DGNN showed moderate performance,
consuming 1.3920 kWh and achieving a 90.00% success
ratio. Its shorter travel time (6.28 seconds) and moderate
hop count (2.03) indicate a tendency toward faster routes at
the expense of increased energy consumption. QL, however,
performed the worst among the models. It consumed the
most energy (1.4252 kWh), had the lowest success ratio
(86.67%), and exhibited the highest hop count (2.24) and
distance (7.36 km). Although its travel time (6.72 seconds)
was relatively low, the overall results suggest that QL favors
speed over energy efficiency and reliability. In summary, DQN
emerges as the most effective routing model, offering the
best trade-off between energy use, route quality, and success
rate. NN and DGNN remain viable alternatives with minor
compromises, whereas QL falls short in balancing efficiency
and performance.
Table II: Step 2: Routing Towards Charging Stations

Approwdrage En- Average Average Dis- Average Average Average Suc-
ergy (kWh) Time (s) tance (km) Hops Successful cess Ratio
Routes
DQN 1.258730 9.950001 6.323660 1.980001 29 0.9667
NI 1.278731 10.050002 7.019751 2.190002 28 0.9333
DGNN.391952 6.282003 7.156142 2.030003 2.7 0.9000
QI} 1425223 6.716604 7.363663 2.242464 2.6 0.8667

Figure [2 illustrates the average energy consumption (in
kWh) per training episode across five routing models: DQN,
Q-Learning, DGNN, NN, and Random baseline. The DQN
consistently outperforms all other methods, rapidly converg-
ing to the lowest energy levels below 70 kWh. Q-Learning
and DGNN show slower convergence and higher steady-
state energy consumption, plateauing around 80 kWh and
75 kWh respectively. The NN model stabilizes above 85 kWh,
while the Random baseline remains the highest with no
learning progression, exceeding 120 kWh throughout. The
results confirm DQN'’s superior energy efficiency and learning
stability over time, highlighting its advantage in optimizing
energy-aware EV routing policies.

Average Energy Consumption per Episode (All Models)

umption (kWh)

Average Energy Cons

o 25 50 75 100 25 50 75 200
Training Episodes

Figure 2: Average Energy Consumption (kWh) per Episode for All
Routing Models

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a two-stage DQN framework for opti-
mizing EV charging station placement and routing. The place-
ment model selected energy-efficient station locations, while
the routing model minimized per-vehicle travel cost using
learned cost-to-go estimates. Evaluations across diverse graph
sizes and vehicle loads showed that DQN consistently out-
performed Q-Learning, Random Walk, neural networks, and
DGNN:Ss, achieving the lowest energy consumption and high-
est route success rates. The placement strategy approximated
optimal deployments via routing-based evaluation, and the
routing model enabled scalable, near-optimal decisions with
Dijkstra-like accuracy. Future work will incorporate dynamic
traffic and demand modeling, explore federated learning for
privacy-preserving collaboration, integrate stochastic battery
and charging models, and validate the approach in digital twin

platforms and real-world testbeds.
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