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Abstract—Agriculture 4.0 leverages the Internet of Things
(IoT), advanced communication technologies, and artificial
intelligence (AI) to improve agriculture efficiency, optimize
resource utilization, and promote sustainable crop production.
IoT devices continuously monitor environmental conditions and
transmit data to enable real-time decision-making in agricultural
operations. However, the increased connectivity also expands
the attack surface, exposing critical agricultural infrastructures
to diverse cyber threats. Current intrusion detection systems
(IDSs) primarily focus on detecting external attacks at isolated
layers, often neglecting challenges related to data integrity,
such as silent data corruption, sensor inconsistencies, and
cross-layer anomalies. In this paper, we review existing IDS
approaches and emphasize the need for a comprehensive system
design methodology that addresses these challenges across all
layers of Agriculture 4.0 systems. We propose DIVA-IDS, a
cross-layer framework that integrates data integrity validation
and anomaly detection to provide robust security for agricultural
IoT environments. The framework aims to ensure reliable and
secure data transmission, supporting the coexistence of various
agricultural applications with differing security priorities.

Index Terms—Agriculture 4.0, Cross-layer Intrusion Detection,
Anomaly Detection, Internet of Things, Data Integrity.

I. INTRODUCTION

The Internet of Things (IoT) enables the real-time
communication of data from the environment to end users,
supporting informed decision making that can ultimately
save both time and money. One of the primary sectors
that can benefit significantly from IoT is Agriculture
4.0, where real-time data collection replaces manual,
time-consuming, and costly processes, while simultaneously
increasing productivity. Agriculture 4.0 encompasses a wide
range of applications, including precision farming, smart
irrigation, automated harvesting, and predictive maintenance
of agricultural machinery. These applications share the
common goal of improving operational efficiency, enabling
fast and reliable decision-making, and ultimately enhancing
crop yields and sustainability [1]. The performance of these
applications depends on the strategic deployment of sensors
to collect the accurate and critical information necessary for
real-time decisions.

Although the implementation of IoT-based systems in
Agriculture 4.0 involves a considerable investment in both
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hardware and software, the anticipated gains in productivity
and efficiency are expected to outweigh the initial costs.
Depending on the specific application, sensors can include
drones, pH meters, rainfall sensors, and other specialized
devices [1]. These sensors are often used in harsh outdoor
environments, and their performance, including lifespan and
accuracy, is affected by environmental conditions [2].

The data collected from these sensors are transmitted
through wireless sensor networks (WSNs), typically flowing
from sensor nodes to a base station, then to a gateway
or edge device, and finally to the cloud [2]-[4]. There are
three main layers of the pipeline: the perception layer, which
involves sensor readings; the network layer, which handles
data transmission; and the application layer, where data is
used to monitor and manage the environment [5]. Each layer
introduces risks and threats that can change the flow of data.

As with any interconnected system, including legacy
networks and IoT-based infrastructures, security remains a
critical concern. The heterogeneity of IoT devices and the use
of various communication protocols create multiple potential
entry points, which can be exploited by external actors
to disrupt operations, corrupt data, or manipulate system
behavior. As highlighted in [5], the interconnected nature
of these layers also introduces the possibility of cross-layer
attacks, where an intrusion into one layer can compromise the
security and integrity of others.

Intrusion Detection Systems (IDS) have long been proposed
to use Artificial Intelligence (Al) tools to detect unauthorized
intrusions [6]. In Agriculture 4.0, multiple IDS have been
proposed that aim to detect attacks at different layers or
during transmission of the data between the layers [5]. Al
mechanisms are used to detect anomalies in the flow of
data, which will indicate either an attack or even a fault
or malfunction in the line of process. However, a critical
challenge remains: many existing IDS solutions focus on
specific layers or threat types, failing to address the systemic
risks posed by cross-layer attacks and the potential for data
corruption due to both malicious and non-malicious causes
[2].

This paper argues that reliable decision-making in
Agriculture 4.0 requires a new class of IDS frameworks



that integrate cross-layer data integrity validation with
collaborative anomaly detection, ensuring that agricultural
systems are secure, resilient, and trustworthy at every
level of operation. The proposed framework, DIVA-IDS
(Data Integrity Validation and Anomaly Detection Intrusion
Detection System), addresses not only traditional intrusion
attempts but also the equally significant issue of data
anomalies arising from sensor faults, environmental factors,
or hardware degradation. By validating data integrity across
multiple layers and leveraging collaborative anomaly detection
techniques, DIVA-IDS provides a more comprehensive and
robust defense against the diverse threats and challenges facing
Agriculture 4.0 systems.

The rest of the paper is structured as follows: Section
Il discusses the possible cyber attacks in the Agriculture
4.0 layers. Section III presents existing IDS in Agriculture
4.0, their deployment location and techniques used to detect
anomalies. Section IV-C discusses the need for cross-layer IDS
and presents DIVA a generic cross-layer framework that can
be adapted based on the Agriculture 4.0 architecture to be
deployed.

II. CYBERATTACKS IN AGRICULTURE 4.0

Agriculture 4.0 relies on reliable, timely data to make fast
and effective decisions that can yield improved productivity.
To achieve this, the data collected and transmitted must be
protected, starting from the physical layer up to the application
layer. There are three layers of security to consider: the
preventive layer, the detection layer, and the reactive layer
[7]. The preventive layer implements methods to ensure
data integrity and confidentiality. Preventive methods include
physical security, encryption, and firewalls. The selection of
the preventive measure depends on the location in which the
tool will be applied. In the physical layer, encryption can be
used to secure data, whereas firewalls can be deployed at the
edge. However, these preventive measures are not foolproof
and can be bypassed or compromised, especially in a complex,
interconnected environment like Agriculture 4.0.

The detection layer refers to the methods used to identify
the presence of an attack. At this stage, the attacker has
successfully bypassed the preventive layer and launched an
attack. Detecting the attack on time is critical, which requires
continuous monitoring of the area of interest to detect known
or unknown threats at an early stage, thus avoiding potentially
irreversible damage. Once the attack is identified, incident
response procedures should be activated in order to restore
the system and prevent future occurrences. Furthermore, in
Agriculture 4.0, the detection layer must also account for
anomalies that are not necessarily the result of malicious
activity but may result from sensor malfunction, environmental
factors, or data transmission errors [2]. When an attack or
anomaly is detected, the reactive layer engages automated or
manual recovery processes to restore the system to its defined
operational baseline.

The current work is focused on the detection layer, in which
the intruder has managed to penetrate the preventive defenses

and gained access to the network, potentially launching
different types of attacks. The detection layer requires constant
monitoring of the target environment and an understanding of
potential attack patterns. This enables the evaluation of the
activity of the smart device and / or the network, which can
then be analyzed using pattern-based detection, i.e., matching
behavior against known attack signatures, or anomaly-based
detection, which identifies deviations from established norms
and may capture previously unknown or emerging threats. A
critical aspect of the detection layer in Agriculture 4.0 is the
ability to differentiate between malicious intrusions and data
anomalies caused by non-malicious factors, requiring a more
nuanced and context-aware approach than traditional security
models.

Understanding the types of attacks associated with each
architectural layer is essential for designing effective intrusion
detection mechanisms. Each layer introduces different
vulnerabilities and threats [8]. By recognizing the specific
threat landscape at each layer, it becomes possible to select
appropriate detection strategies, improve accuracy, and reduce
the risk of false alarms or undetected attacks. However,
in Agriculture 4.0, the interactions between layers create
opportunities for cross-layer attacks, where an attacker may
exploit vulnerabilities in multiple layers simultaneously to
achieve a more significant impact or evade detection. This
underscores the need for security measures that span across
layers, providing a holistic view of the system’s security
posture.

The remainder of this section presents the different types
of attacks encountered at each Agriculture 4.0 layer that
an IDS is capable of detecting, reinforcing the need for a
cross-layer, context-aware, and adaptive detection approach.
This includes not only traditional cyberattacks but also data
anomalies resulting from sensor failures or environmental
factors. Such an approach is crucial in ensuring data reliability,
which is paramount for the success of Agriculture 4.0.

A. Perception Layer

The perception layer includes the hardware and smart
devices installed in the field to monitor the environment by
gathering data. The choice of hardware and the type of data
depend on the needs of the Smart Application and its aim, as
well as the location of the field.

The primary aim of an attacker at the perception or
physical layer is to manipulate the data. This can be achieved
by altering sensor readings, injecting false data, or even
tampering with the hardware. Data disruption can also occur
through physical corruption of the hardware itself. The limited
lifetime of hardware may cause incorrect readings, and harsh
environments can diminish the quality of the data. In smart
devices, such as drones, anomalies can inevitably occur.
Addressing these vulnerabilities requires a detection approach
that considers both malicious intrusions and non-malicious
data anomalies. Attacks and data corruption scenarios in this
layer include the following:



o Sensor spoofing: Attackers can inject false
environmental data to mislead decision-making processes.

o Side-channel attacks: Attackers may extract sensitive
information from the physical hardware to manipulate the
system.

o Physical tampering or unauthorized access: Physical
access to sensors allows attackers to directly manipulate
or disable them.

o Hardware Trojan attacks: These attacks involve
inserting malicious hardware components into the system.

o Signal jamming/RF interference: Disrupting wireless
communication signals can prevent data transmission.

o Silent Data Corruption (SDC): Data errors caused by
environmental stress, wear, or firmware attacks can go
undetected [2].

« Calibration attacks: Attackers can gradually alter data
output to degrade trust or performance over time.

B. Network Layer

Transmitting data can also cause anomalies that interfere
with proper data transmission. In addition, vulnerabilities
in network protocols and communication channels can be
exploited to disrupt data flow or inject malicious content.
Potential threats in the network layer are:

« Man-in-the-Middle (MitM) attacks: Attackers intercept
and alter communication between devices.

¢ Routing attacks: Manipulating routing protocols can
disrupt data flow and redirect traffic.

o Denial-of-Service (DoS) and Distributed
Denial-of-Service (DDoS) attacks: Overwhelming
the network with traffic to disrupt services.

o Replay attacks: Attackers capture and retransmit
legitimate data to disrupt system operations.

o Traffic sniffing and eavesdropping: Attackers intercept
sensitive data transmitted unencrypted over the network.

C. Application layer

The application layer, where data is processed and decisions
are made, is also vulnerable to various types of attacks that
can compromise the integrity and reliability of agricultural
operations. Weak authentication mechanisms and poorly
secured APIs can provide entry points for malicious actors
to manipulate data, alter system configurations, or gain
unauthorized access to sensitive information. Application-layer
attacks include:

o Unauthorized access: Weak authentication mechanisms
can allow unauthorized users to access sensitive data.

o« Command injection: Attackers can alter or insert
unauthorized commands to manipulate the system.

o Data manipulation: Attackers can tamper with stored
data to disrupt operations.

o API abuse: Exploiting vulnerabilities in APIs can allow
attackers to gain unauthorized access or manipulate data.

III. INTRUSION DETECTION SYSTEMS

IDS have been proposed to capture attacks in Agriculture
4.0 that aim to detect specific layer attacks [5]. However, few
have been used to detect anomalies due to faults and attacks for
every layer. The rest of the section presents the techniques that
are currently being used for the identification of unauthorized
access.

A. Detection Models

The method of constructing a detection model depends both
on the type of data available and on the location where the
model is deployed (see Section III-B). In Agriculture 4.0, the
diversity of sensors, data types, and environmental conditions
requires a flexible and adaptive approach to the design of
detection models.

A simple approach, such as setting static thresholds
for identifying anomalies in sensor data, can often be
misleading. Thresholds must be calibrated based on the
environmental context and the physical location of the sensor,
which may be subject to uncontrolled variables such as
microclimate conditions or soil composition [9]. Furthermore,
static thresholds are vulnerable to adversarial attacks, where
an attacker slowly manipulates data over time to remain within
the threshold bounds while causing significant system damage.

Binary Logistic Regression (BLR) has been shown to
effectively identify anomalies using a minimal set of data
characteristics (features), while maintaining high detection
rates [6]. BLR is particularly useful for detecting binary
outcomes, such as whether a sensor reading is anomalous or
normal, based on a set of input features.

Beyond statistical methods, Al techniques are widely used
for anomaly detection. These models are typically trained
using historical data to construct a behavioral profile of the
monitored environment, which is then used to predict and
detect deviations. Al models can be broadly classified into
supervised and unsupervised learning techniques. However,
in Agriculture 4.0, the dynamic and unpredictable nature of
environmental conditions can make it challenging to build
accurate and reliable Al models.

In unsupervised learning, the model is trained only on
data representing normal behavior (a single label). Any new,
real-time data that significantly deviates from this trained
profile is considered anomalous. While this approach does
not require labeled attack data, a key limitation is its higher
false positive rate when compared to supervised methods
[10]. Unsupervised learning is particularly susceptible to
environmental noise and natural variations in sensor data,
leading to frequent false alarms.

Despite its limitations, unsupervised learning offers the
advantage of not requiring datasets containing both normal
and abnormal behavior. It builds a profile of what constitutes
a “normal” environment and flags anything outside that
range. However, supervised learning models, when trained
on both types of data, generally offer higher detection
accuracy, especially for known attack types. A key challenge
in supervised learning for Agriculture 4.0 is the scarcity of



labeled attack data, making it difficult to train models that
generalize well to new and unseen attack scenarios.

One major challenge in deploying detection models is
the need for customized training for each network or data
environment. Insights gained from other systems can serve
as guidelines, but variations in the physical setup, such as
sensor placement and coverage, necessitate a context-specific
approach. Furthermore, the dynamic nature of agricultural
environments, with constantly changing conditions and
evolving attack patterns, requires continuous model retraining
and adaptation.

Another critical aspect is the validity and security of the
training data. Training may be performed either offline or on
the fly, but in both cases, the integrity of the training dataset
must be ensured. If an attacker performs reconnaissance and
determines that the model is being trained in real time, they
could attempt a data poisoning attack—injecting malicious
data during the training phase to manipulate the model into
accepting abnormal inputs as normal [11]. Data poisoning
attacks are particularly challenging to detect in Agriculture 4.0
due to the complexity of the environment and the potential for
non-malicious data anomalies to mask malicious injections.

B. Location

The location of the detection model significantly influences
the choice of tools and techniques used to implement it
[7]. Resource-intensive detection models cannot be deployed
at the perception layer, as many hardware devices at this
level, such as Programmable Logic Controllers (PLCs), may
lack the processing power or memory required to support
them. Furthermore, the limited energy resources of many
IoT devices in the perception layer necessitate lightweight
detection models that minimize power consumption while
maintaining acceptable detection accuracy. When WSNs are
integrated into the perception layer, some devices may support
lightweight detection models and function as local IDS
agents [2], [6]. These local agents are capable of detecting
anomalies or abnormal behavior in sensor readings or sensor
malfunctions before data is transmitted to higher system layers.
However, the limited processing power and memory of these
local agents can restrict the complexity and effectiveness of
the detection models they can support.

Drones are increasingly employed in smart agriculture
for remote sensing and data collection. Ensuring the
reliability and security of drone-generated data is critical,
and equipping them with on-board detection mechanisms
can help intercept tampering attempts early, preventing the
propagation of compromised data through the system [12].
However, the computational and energy constraints of drones
pose significant challenges to implementing effective on-board
detection mechanisms.

In the network and application layers, IDS agents
can be deployed in either centralized or decentralized
configurations. Decentralized IDS agents can be positioned
to collect data from multiple sources and collaboratively
detect anomalies through distributed analysis. The same
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Fig. 1. DIVA-IDS framework: A cross-layer architecture for data integrity
validation and anomaly detection in Agriculture 4.0.

concept applies at the edge, where cooperative detection
across nearby nodes can enhance early threat identification.
Decentralized configurations offer improved scalability and
resilience compared to centralized approaches but require
careful coordination and communication between distributed
agents.

The location of the IDS agent determines the type of
data it receives as input. At the network layer, IDS agents
typically monitor network traffic, focusing on packet flow,
protocol behavior, and routing anomalies. At the application
layer, IDS agents may analyze both sensor data readings
and application-level traffic, providing a broader context for
detecting malicious behavior or inconsistencies. However,
relying on data from a single layer can limit the effectiveness
of intrusion detection, as attackers may exploit vulnerabilities
across multiple layers to evade detection.

IV. DIVA-IDS: A CROSS-LAYER INTRUSION DETECTION
AND VALIDATION ARCHITECTURE

We propose DIVA-IDS (Data Integrity Validation and
Anomaly Detection Intrusion Detection System), a cross-layer
framework designed to ensure comprehensive coverage and
robust data integrity assurance in Agriculture 4.0 environments
(see Fig. 1). DIVA-IDS is not merely an intrusion detection
system; it is a holistic security architecture that combines
data validation, anomaly detection, and collaborative threat
intelligence to address the unique challenges of modern
agricultural systems.

A. Core Objectives and Design Principles

The primary objective of DIVA-IDS is to ensure that
all automated or human decision-making processes within
Agriculture 4.0 are based on reliable and trustworthy data.
This objective extends beyond traditional security concerns
to include the detection and mitigation of abnormalities
caused by both malicious intent (such as cyberattacks) and
physical or environmental faults (such as sensor degradation
or interference). By providing timely detection and mitigation



capabilities, DIVA-IDS helps prevent further damage, enables
the restoration of both network and agricultural operations to
their intended state, and ensures the long-term resilience of
smart farming systems.

Several key design principles guide the architecture and
implementation of DIVA-IDS:

o Cross-Layer Integration: DIVA-IDS integrates detection
and validation mechanisms across all layers of the
Agriculture 4.0 architecture, from the physical sensors to
the application-level analytics. This cross-layer approach
enables the system to detect and respond to threats
that may span multiple layers, providing a more
comprehensive defense than traditional, layer-specific
security solutions.

o Data Integrity Validation: DIVA-IDS incorporates
mechanisms to validate the integrity of data at each layer
of the system, ensuring that data has not been tampered
with or corrupted. This validation process includes checks
for data consistency, reasonableness, and provenance, as
well as the use of cryptographic techniques to verify data
authenticity.

o Collaborative Anomaly Detection: DIVA-IDS employs
collaborative anomaly detection techniques to identify
deviations from expected behavior across the system.
These techniques leverage both historical data and
real-time inputs to create behavioral profiles of sensors,
network devices, and applications. Anomalies are
detected by comparing current behavior against these
profiles, with alerts generated for deviations that exceed
predefined thresholds.

o Resilience and Fault Tolerance: DIVA-IDS is designed
to operate without a single point of failure, ensuring
that the system remains operational even in the event of
component failures or attacks. This resilience is achieved
through the use of decentralized architectures, redundant
components, and automated failover mechanisms.

B. Layer-Specific Implementation Details

DIVA-IDS integrates detection mechanisms across all
layers of the Agriculture 4.0 architecture, with layer-specific
implementations tailored to the unique characteristics and
vulnerabilities of each layer:

1) Perception Layer: At the perception layer, DIVA-IDS
focuses on ensuring data integrity and detecting physical
anomalies that may indicate sensor tampering or malfunction.
In environments where WSNs are used, decentralized IDS
agents can be deployed on sensor nodes to locally detect
physical anomalies or low-level network-based attacks [6].
This localized approach improves resilience and enables early
response. Specifically, these agents can:

« Validate Sensor Readings: Implement sanity checks to
ensure that sensor readings fall within expected ranges
and are consistent with physical constraints.

e Detect Physical Tampering: Monitor for physical
disturbances or unauthorized access to sensor devices.

e Analyze Communication Patterns: Identify abnormal
communication patterns that may indicate a compromised
sensor node.

2) Network Layer: At the network layer, DIVA-IDS agents
monitor traffic to detect attacks such as routing manipulation,
packet injection, or denial of service. These agents analyze
communication metadata to uncover abnormal patterns that
may indicate an ongoing or emerging threat [13]. Key
capabilities at this layer include:

« Traffic Analysis: Monitor network traffic for anomalies,

such as unusual packet sizes, protocols, or destinations.

o Routing Integrity: Validate the integrity of routing
protocols to detect manipulation or redirection of traffic.

o Denial-of-Service Detection: Identify and mitigate
DoS/DDoS attacks by analyzing traffic patterns and
blocking malicious sources.

Furthermore, DIVA-IDS employs techniques such as deep
packet inspection (DPI) to analyze the content of network
packets and detect malicious payloads or command injections.

3) Application Layer: At the application layer, DIVA-IDS
performs higher-level data analysis, integrating data from
various sources to create a comprehensive view of the
agricultural environment. Here, sensor data profiles are created
over time and used in combination with Al-based models,
either supervised or unsupervised, to detect known and
unknown attacks. For instance, if the system maintains
historical data and also receives contextual input such as
fertilization records or irrigation schedules, it can make
informed predictions about expected sensor behavior. When
real-time data deviates significantly from those predictions,
it may indicate the presence of a compromised sensor or
injected false readings. The application layer is equipped with
mechanisms to:

o Analyze Sensor Data Profiles: Create and maintain
profiles of expected sensor behavior based on historical
data and contextual inputs.

e Detect Anomalies: Use Al-based models to detect
deviations from expected behavior, indicating potential
attacks or faults.

e Correlate Data Across Layers: Integrate data from
multiple layers to identify cross-layer attacks or
anomalies that may not be apparent at a single layer.

In addition to raw sensor readings, DIVA-IDS considers
contextual environmental variables such as weather conditions,
time of day, seasonal cycles, and manually recorded activities.
All of these factors can influence expected outcomes. This
fusion of operational and contextual data helps the system
build more accurate and holistic profiles capable of detecting
complex anomalies.

C. Cross-Layer Coordination and Collaborative Threat

Intelligence

A key feature of DIVA-IDS is its ability to coordinate
detection and response activities across multiple layers of
the Agriculture 4.0 architecture. This cross-layer coordination
enables the system to:
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o Share Threat Intelligence: Exchange threat intelligence
data between layers to improve detection accuracy and
reduce false positives.

e Orchestrate Responses: Coordinate response actions
across layers to mitigate the impact of attacks and restore
system operations.

e Adapt to Changing Conditions: Dynamically adjust
detection parameters and response strategies based on
real-time conditions and threat intelligence.

Each layer in the system incorporates at least one dedicated
anomaly detection component. These detectors can be
implemented locally-installed directly on individual devices-or
in a decentralized manner, collaboratively monitoring a
segment or the entire network. This design ensures that
all devices within the architecture are subject to continuous
monitoring, regardless of their position or function.

The outputs generated by these anomaly detectors, whether
related to sensor readings or network traffic, must be
communicated to the application layer. The application layer is
uniquely positioned to aggregate, interpret, and present these
results to the end user in a meaningful and actionable format
(see Fig.2).

There are three primary strategies for transmitting
anomaly detection results: (a) utilizing the existing network
infrastructure, (b) employing a dedicated communication
channel, or (c) adopting a hybrid approach. Leveraging the
existing network infrastructure is cost-effective compared to
deploying a separate communication channel; however, it
introduces risks of data loss or transmission delays, especially
in the presence of DoS/DDoS attacks or other network-layer
disruptions. While a dedicated channel can reliably transmit
data to the application layer-unless it is directly targeted by
an attack-it still remains susceptible to network disruptions.
In contrast, a hybrid communication solution enhances system
robustness by reducing single points of failure and ensuring
that anomaly reports are delivered reliably to their destination.

By correlating inputs across multiple layers and integrating
detection logic with both historical and real-time behavioral

profiles, DIVA-IDS offers a comprehensive, distributed, and
intelligent intrusion detection strategy tailored to the unique
challenges of smart agriculture systems. This proactive and
adaptive approach is essential for maintaining the security,
reliability, and trustworthiness of Agriculture 4.0 in the face
of evolving cyber threats and operational challenges.

V. REMARKS AND CONCLUSION

Agriculture 4.0 integrates advanced technologies to enhance
productivity across the agricultural sector by enabling
informed, timely decisions that help avoid losses and
inefficiencies. Reliable, real-time data plays a crucial role in
this decision-making process. However, even when data are
encrypted, threats that compromise data integrity remain a
significant concern. These include unauthorized modifications
to sensor readings, denial of data transmission, or the
injection of false information, all of which can lead to flawed
decision-making and reduced productivity.

Early detection of such threats is essential to prevent
irreversible damage caused by decisions based on
compromised data. To address this challenge, DIVA-IDS
introduces a cross-layer intrusion detection framework
capable of identifying data anomalies across different
system levels. The framework utilizes historical profiles,
user and environmental input, and real-time data to detect
inconsistencies that may indicate malicious activity or
system faults. By integrating data integrity validation with
collaborative anomaly detection, DIVA-IDS offers a more
comprehensive and robust defense against the diverse threats
facing Agriculture 4.0 systems.

The limitations of traditional, siloed security solutions in
Agriculture 4.0 highlight the critical need for a cross-layer
approach like DIVA-IDS. Traditional solutions often focus
on specific layers or threat types, neglecting the systemic
risks posed by cross-layer attacks and the potential for data
corruption due to both malicious and non-malicious causes.
DIVA-IDS addresses this gap by providing a unified approach
to intrusion detection across all layers of the Agriculture 4.0
architecture. This cross-layer integration allows the system to
correlate inputs from different layers, share threat intelligence,
orchestrate responses, and dynamically adapt to changing
conditions and evolving threat landscapes.

While building and maintaining such profiles requires
additional computational and memory resources, the benefits
outweigh the costs. In particular, they enhance trust in
data and support precision-based agricultural decisions,
ultimately contributing to greater resilience and productivity
in Agriculture 4.0 systems. Furthermore, the ability to
distinguish between malicious intrusions and data anomalies
caused by non-malicious factors allows for more targeted and
effective responses, minimizing disruptions and maximizing
the efficiency of agricultural operations. The need for such
a cross-layer framework becomes even more pronounced
as Agriculture 4.0 systems become more complex and
interconnected, increasing the potential for cascading failures
and sophisticated attacks.



Future research directions include the development of
adaptive anomaly detection models that can automatically
adjust to changing environmental conditions and evolving
threat landscapes. Additionally, the integration of blockchain
technology for secure data provenance and tamper-proof
audit trails could further enhance the trustworthiness and
reliability of Agriculture 4.0 systems. Finally, field testing
and real-world deployment of the DIVA-IDS framework are
needed to validate its effectiveness and identify potential areas
for improvement.

In conclusion, DIVA-IDS represents a significant step
forward in securing Agriculture 4.0 systems by providing
a cross-layer intrusion detection and validation architecture
that addresses both malicious and non-malicious threats. By
ensuring data integrity and promoting collaborative anomaly
detection, DIVA-IDS can help unlock the full potential of
Agriculture 4.0, enabling more efficient, sustainable, and
resilient agricultural practices.
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