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MuhammadWaqas Rehan 1 & Muhammad Maaz Rehan 2

The emergence of SARS-CoV-2 (COVID-19) has demonstrated the severe impact of infectious
diseases on global society, politics, and economies. To mitigate future pandemics, preemptive
measures for effectively managing infection outbreaks are essential. In this context, Societal Digital
Twin (SDT) technology offers a promising solution. To the best of our knowledge, this survey is the
premier to conceptualize an SDT framework for infection containment under a novel systematic
taxonomy. The framework categorizes infection management into five stages, namely infection
initiation, spread, control, combat, and recovery. It provides an overview of SDT approaches within
each category, discussing their validation strategies, generalizability, and limitations. Additionally, the
survey examines applications, data-driven design issues, key components, and limitations of DT
technology in healthcare. Finally, it explores key challenges, open research directions, and emerging
paradigms to advanceDT applications in the healthcare domain, highlighting smart service paradigms
such as SDT as a Smart Service (SDTaaSS) and Healthcare Metaverse as a Smart Service (HMaaSS).

COVID-19 outbreak served as a significant moment for digitization1 and
underscored the importance of digital technologies in pandemic manage-
ment.TheDigital Twin, closely resemblingCyberPhysical Systems (CPS), is
a digitization technology that is instrumental in realizing the vision of
Industry 4.02. The paradigm “Digital Twin”was initially coined byMichael
Grieves in 2003 and is pivotal in the product life cycle for promoting cost-
effective manufacturing of high-quality products3. The paradigm gained
prominencewhenadopted as a long-termstrategic visionbyNASAandU.S.
Air Force4. DT technology is expected to become ubiquitous soon and is
estimated to reach a market size of $269 billion by 20325.

Technically speaking, the core of DT embodies a model or blueprint
that simulates a physical-world object or system. Data represents a fact, a
measurement, or an observation that is fed into the DT framework to
replicate or emulate the dynamics of the real-world entity or structure.
Consequently, a DT may be characterized as the virtual replica of a living
creature, non-living entity6, or adigital system from the real-world.Through
seamless bidirectional communicationwith the real-world entity, aDTmay
continuously collect up-to-date knowledge about the processes and func-
tions of the real-world object. Coupled with built-in intelligence and pre-
diction capabilities of the inherent technologies, aDTmay forecast potential
issues and send early warnings to the corresponding physical-world entity
using a feedback mechanism as shown in Fig. 1. In the healthcare context,

maintaining such a close-loop interaction between a DT and a real-world
object may ensure the predictive well-being and safety of humans.

DT technology has been serving as a catalyst for revolutionizing
healthcare7. It has exhibited numerous applications in various health sectors
such as neuroscience8,9, cardiology10,11, diabetes12, and so on, thereby playing
a significant role in serving humanity. Beyond enhancing human well-
being,DT technologyhas great potential in animalwelfare and conservation
as well. By facilitating experimentation on digital animal models, DT
technology may save around 200 million animals per year13, enabling
health-related institutions to allocate budget to other significant areas of
healthcare.

The recent technological advancements in sensors, the Internet of
Things (IoT)—the online connectivity of smart devices with the cap-
ability to sense, process and share data over the internet14, the Internet of
Everything (IoE)—the online networking of data, process, people and
things15, Automation of Everything (AoE) – the autonomous execution of
basic processes without human intervention or external control16, Virtual
Reality (VR)—creating a simulated three-dimensional (3D) environ-
ment, observable using 3D displays and allowing pose tracking to provide
an immersive experience17, Augmented Reality (AR)—combining real-
world surroundings with computer-generated 3D models to enable an
interactive experience18, Mixed Reality (MR)—blending real-world
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environments with the simulated virtual world, allowing both to coexist
and interact in real time19, data-driven analytics, intelligent & automated
learning systems, and cloud computing are continuously expanding the
capabilities and scope of DT technology in healthcare.

These advancements have further matured DT technology, enabling it
to play an increasingly intelligent and pivotal role in personalized and
societal healthcare. For example, aDTmay facilitate personalized treatment
by offering real-time patientmonitoring, optimizedmedical care or surgical
planning, proactive disease forecasting, and furnishing tele-medicine &
consultation services by considering customized patient models. Likewise,
medical training, virtual disease treatment, drug discovery & development,
device engineering & testing, hospital and clinical processes optimization
are some of the relevant areas for supporting personalized healthcare
through DT technology.

The societal aspects of DT technology are evident from the numerous
approaches targeted for the well-being of the community at large, such as
predicting and combating infectious diseases. Although this survey
emphasizes emergency-oriented SDT applications such as infection control
and pandemic forecasting, the term societal digital twin highlights a broader
vision. It refers to a digital twin framework designed to promote not only
reactive measures during outbreaks, but also proactive, society-wide health
services—such as immunization planning, long-term public wellness
modeling, and infrastructure resource optimization. Thus, SDT covers the
full spectrum from emergency healthcare to sustained societal well-being.

Some of these techniques to restrain the COVID-19 pandemic include
a city DT20, SARS-CoV-2 spread forecast21, social distancing22, population
vaccination23, human immune system modeling24,25, and so on. The devel-
opment of such techniques in the recent past exhibits a growing interest
within the research community in SDTs. However, to the best of our
knowledge, there exists a significant gap in comprehensively categorizing
and analyzing the available SDT approaches. To bridge this gap, this survey
takes a pioneering step in exploring the SDT landscape for infection man-
agement by introducing a novel taxonomy—Rehan’s Taxonomy. The
acronyms used in this survey are listed in Table 1, and the organization and
contents of this manuscript are depicted in Fig. 2.

This effort is timely and aligns with the increasing global focus on
scalable, ethical, and intelligent digital health preparedness. The key con-
tributions of this paper are summarized as follows:
• A structured review of existing SDT-related literature, organized using

an application-oriented methodology informed by PRISMA princi-
ples, helping to identify gaps and trends across digital health domains.

• The introduction of new service-oriented concepts that enable
dynamic and accessible deployment of SDT ecosystems through
smart, on-demand models.

• A forward-looking classification model (Rehan’s Taxonomy) that
contextualizes SDT applications along the infection response
continuum.

• Practical insights into data-driven design challenges, enabling
technologies, and application-specific considerations critical to the
real-world implementation of healthcare-oriented Digital Twins.

• A synthesis of emerging paradigms—such as AI-aided, federated, and
human-centric DTs—and a vision for future research, including the
proposed Healthcare Metaverse as a Smart Service.

Survey methodology
This study adopts a structured survey methodology, inspired by systematic
review practices—particularly the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) framework26. While PRISMA is
primarily intended for medical and clinical meta-analyses, we apply its core
principles—transparency, reproducibility, and systematic filtering—to
guide our review of literature related to SDTs.

Scope and objective
Our aim is to systematically identify, classify, and analyze academic andgray
literature at the intersection of Digital Twins, Artificial Intelligence, public
health preparedness, and emergency response systems.

Databases and sources
We searched across multiple scientific databases, including IEEE Xplore,
ACMDigital Library, Scopus, PubMed, and Google Scholar. Searches were
conducted between January 2024 andMay 2025, including both recent and
foundational literature.

Search strategy
We used combinations of relevant keywords such as “Digital Twin”,
“Societal Digital Twin”, “Health Digital Twin”, “Generative Digital Twin”,
“AI-aided DT”, “public health”, “epidemic”, “pandemic modeling”, and
“resilience planning”. Boolean connectors (AND, OR) were used to
combine terms.

Inclusion and exclusion criteria
We included papers that (i) focused on population-scale or public-oriented
DTs, (ii) applied or discussed AI techniques in DT contexts, and (iii) pro-
vided technical or conceptual insights relevant to emergency response,
health modeling, or infrastructure resilience. Articles not available in Eng-
lish, lacking full-text access, or unrelated to DT or public health were
excluded.

Filtering and classification
After initial identification, duplicate entries were removed. Titles and
abstracts were screened, followed by full-text reviews. A total of 70 studies
were shortlisted and organized thematically using the proposed Rehan’s
Taxonomy, which was iteratively refined during synthesis.

PRISMA alignment
Although not a clinical review, our process aligns with PRISMA principles
in terms of clearly defined eligibility criteria, transparent search protocols,
and structured synthesis of findings. A simplified PRISMA-style diagram
summarizing the selection process is provided in Fig. 3.

Literature review of prior digital twin surveys and sig-
nificance of this survey
The primary focus of this section is to exhaustively and conclusively review
previous healthcare-related DT surveys, and subsequently highlight the
significance of this survey. The motivation is primarily influenced by the
General Survey Design Framework (GSDF)27.

Digital Twin 
Visualization

Real World 
Data

Analysis/
Simulation

Predictive
Results

Feedback
Information

Digital Twin 
Model

Physical 
Data Source

Digital Twin 
Prediction

Fig. 1 | Schematic representation of digital twin life cycle.
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Literature review of prior digital twin surveys
The authors in ref. 7 discuss the role of DT technology in optimizing
activities across various healthcare sectors, such as early disease diagnosis,
personalized treatment planning, optimizing hospital processes, advancing
the pharmaceutical industry, and enabling digital monitoring using wear-
able technologies. Furthermore, the survey discusses relevant projects in
each healthcare domain and briefly summarizes the results. Finally, it pre-
sents future insights emphasizing the role of DT technology in surgical
planning, physiotherapy treatment, precision medicine, organ transplan-
tation, and resource management in hospitals.

In28, the authors discuss the prospects of DT technology in medicine.
Theyhighlight numerous implementations ofDT technology across various
medical fields including orthopedics, cardiovascular disease, and pharmacy.
The article underscores the capability of DT technology for precise diag-
nosis, risk prediction, personalized treatment, and real-time monitoring of
patients. It emphasizes numerous challenges associatedwithDT technology
regarding data collection and fusion, simulation accuracy, and socio-ethical
concerns. The article proposes that advancements in Big Data, IoT, and
Artificial Intelligence (AI) may further exploit the technological advantages
of DT technology. In the future, a thorough DT framework for the human
body could facilitate early disease prediction for humans, especially for
elderly people.

The authors in ref. 29 discuss the conceptualization and utilization of
DT technology in various areas of healthcare, such as personalized treat-
ment, clinical trial design, and hospital process optimization. They outline a
brief conceptualization, working mechanism, data generation methodolo-
gies, and technologies for realizing DT technology in healthcare. Further-
more, numerous ethical and technical concerns regarding data bias, data
privacyand security, data gathering, datahandling, anduser interfacedesign
are discussed. Finally, some social challenges regarding DT accessibility,
equal representation, and healthcare staff downsizing are presented.

In30, the authors discuss the potential of DT in administering health-
care systems. They outline key findings regarding DT technology from
numerous healthcare domains, such as safety oversight, operational
supervision, data governance, healthcare administration, and individual
welfare enhancement. The article argues that DT technologymay provide a
viable solution for real-time monitoring, distant user testing, and devising
patient-centric care approaches. However, it may suffer from numerous
challenges, such as data privacy, security, sharing, and ownership. Finally,
the review emphasizes the necessity of interdisciplinary research to explore
the viability of, andaddress obstacles in, implementingDT technology in the
medical sector.

The authors in ref. 31 introduce a DT model for providing
healthcare assistance across various stages of life such as preconception
care, lifetime healthcare, and the afterlife stage. They give a historical
overview and clarify misinterpretations about DT technology. The survey
proposes Digital Twining everything as a healthcare service model
enabling Industry 4.0. It discusses the role of DT in carrying out equality,
resource management, and research in healthcare. The survey outlines
future challenges associated with DT technology, such as digital disparity,
equitable availability, privacy, security, interoperability issues, and dis-
parate standards. Finally, the necessity of uniform standards and legis-
lation for the resilient advancement of DT technology in the medical
domain is emphasized.

In13, the authors discuss numerous DT applications in personalized
treatment. The survey aims to explore the methods and data sources for
building DT systems for numerous medical sectors. To understand foun-
dational methodologies, several case studies pertaining to the artificial
pancreas, cardiology, single-cell flux analysis, protein-DNA interplay,
oncological clinical findings, medication efficacy, and therapeutic reposi-
tioning for COVID-19 are presented. The survey outlines the challenges of
DT applications and emphasizes solutions for issues such as data collection,

Table 1 | Listing of acronyms with description

Acronym Description Acronym Description

AI Artificial Intelligence ABM Agent Based Model

AR Augmented Reality CA Cellular Automaton/Automata

CDSDT Clinical Decision Support Digital Twin CDT Cloud Digital Twin

CPDT Comprehensive Personalized Digital Twin CPS Cyber Physical Systems

CT scans Computed Tomography scans DBMS Database Management Systems

DT Digital Twin DTaaS Digital Twin as a Service

EDT Edge Digital Twin EHR Electronic Health Records

EP Electrophysiology FDT Fog Digital Twin

FHIR protocol Fast Healthcare Interoperability Resources protocol FL Federated Learning

GSDF General Survey Design Framework GUI Graphical User Interface

HTTPS Hypertext Transfer Protocol Secure HMaaSS Healthcare Metaverse as a Smart Service

ICTs Information and Communication Technologies IDT Intelligent Digital Twin

IoMT Internet of Medical Things IoT Internet of Things

ML Machine Learning MR Mixed Reality

MRI Magnetic Resonance Imaging NPIs Non-Pharmaceutical Interventions

PDT Personalized Digital Twin PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses

R&D Research and Development RMDT Resource Management Digital Twin

SDL Specification and Description Language SDLPS Specification and Description Language Parallel Simulator

SDT Societal Digital Twin SDTaaSS Societal Digital Twin as a Smart Service

SDTICom SDT for Infection Combat SDTICon SDT for Infection Control

SDTII SDT for Infection Initiation SDTIR SDT for Infection Recovery

SDTIS SDT for Infection Spread SHM Societal Healthcare Metaverse

SQL Structured Query Language SEIR(D) model Susceptible Exposed Infected Recovered (Deceased) model

TCN Time Convolutional Network VR Virtual Reality
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computation, integration, and patient data privacy to achieve digital
transformation.

The authors in ref. 32 discuss numerous applications and challenges of
DT technology in medicine. They recommend the role of DT models’
synergy in optimizing clinical processes and integrating new technologies.

The survey highlights numerous clinical applications of DT technology
involving cardiovascular disease, surgery, pharmacy, orthopedics, and
COVID-19 management. The survey suggests the potential of DT tech-
nology in dynamic monitoring, precision prognosis, personalized treat-
ment, and forecasting health-disease states. It argues that advancements in

Fig. 2 | Organization of the manuscript.
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IoT, Big Data, and AI have enhanced DT applications in medicine. How-
ever, numerous technical and ethical concerns still require attention.

In33, the authorsdiscusswide-ranging applications ofDT technology in
various healthcare domains, including personalized treatment, pandemic
handling, bio/pharmaceutical manufacturing, and resource management.
They describe how DT carries out personalized treatment by developing
patient-oriented models for early disease forecasts and treatment schedul-
ing. Pandemic handling requires pandemic initiation and spread prediction
for planning effective response mechanisms proactively. DT optimizes the
process for bio and pharmaceutical manufacturing by developing biologi-
cally engineered products and drugs, respectively. Healthcare resource
management involves the efficient assignment and operation of hospital/
clinical resources. Besides that, the survey discusses Machine Learning
(ML), security, and ethical issues of DT technology in the medical domain.
Finally, it outlines future challenges, namely efficient computing, privacy,
integration, regulations, and stakeholder involvement.

The authors in ref. 34 explore the potential of DT technology in revo-
lutionizing healthcare in themetaverse era. They discuss DT in personalized
and precisionmedicines. The survey examines cutting-edge approaches and
datasets, along with various online platforms for creating DTs across dif-
ferent domains. The review highlights numerous future research challenges
regarding data privacy, security, interoperability, scalability, validation, and
ethical/regulatory concerns. Byovercoming these challenges, the real benefits
of DT technology in the healthcare sector may be ensured.

In35, the authors explore applications of DT technology in improving
personalized treatment, predictive analytics, clinical operations, and facil-
itating training and simulation. DT ensures individualized care by pre-
scribing treatments based on comprehensive patient profiles. It may lead to

effective personalized treatment strategies that achieve promising results.
Through predictive analytics using real-time and historical data of patients,
a DT may achieve early disease forecasting. It may enable healthcare pro-
fessionals to adopt preventive measures proactively to address health-
related issues. DT technology may optimize clinical operations by stream-
lining hospital processes, resource demand patterns, and identifying lim-
itations inmanaging healthcare resources effectively. By facilitating training
and simulation, the skills and decision-making abilities of healthcare pro-
fessionals may be improved, leading to better treatment for patients.

Surveys categorization and conclusion. The aim of this section is to
highlight the use case domains of previously discussed health-related
surveys under three main categories, i.e.:
1. Comprehensive Personalized Digital Twin (CPDT):ACPDT embodies

the capabilities of Personalized Digital Twin (PDT) and Clinical
Decision Support Digital Twin (CDSDT). It employs prognostic
analytics and medical expertise to make sophisticated decisions about
patient well-being. Like PDT, it performs immediate decision-making
for day-to-day personalized treatment, e.g., predicting insulin dosage
adjustments for a patient based on glucose levels. FollowingCDSDT, it
supports healthcare professionals in making informed decisions for
long-term patient well-being, such as prescribing medical dosage
adjustments. Likewise, it streamlines personalized health-related
resources for managing patient treatment during routine and
emergency situations, such as planning surgical procedures.

2. Resource Management Digital Twin (RMDT): An RMDT aims to
optimize healthcare operational resources or streamline workflow
processes for the benefit of the community. For example, optimized
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Fig. 3 | PRISMA-style literature filtering and selection process.
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resource management in hospitals may be achieved by effective fore-
casting of patient influx management, staff scheduling, and parking
allocation during routine and emergency situations.

3. Societal Digital Twin: Given the global devastation of SARS-CoV-2
(COVID-19), the concept of a comprehensive SDT framework is
initially conceptualized in this paper with the core purpose of
deploying DT technology to elevate societal well-being on a broader
scale, such as analyzing social interactions to predict the outbreak of
infections at local or global levels and suggesting measures for
controlling and combating infections, e.g., promoting vaccination
campaigns or developing response systems for managing infectious
disease outbreaks.

Considering the scope of the above-mentioned application areas,
such as CPDT, RMDT, and SDT, the survey literature is organized in
Table 2. A critical analysis reveals that the majority of existing surveys
focus on DT applications belonging to the CPDT and RMDT categories.
However, to the best of our knowledge, only a few surveys13,30,33 address
limited DT applications targeting infectious diseases, providing only
partial coverage of this critical area. This survey is unique compared to
the above-mentioned surveys, as it exclusively focuses on Societal Digital
Twin (SDT) approaches and comprehensively reviews them under a
novel taxonomy. Given the profound socio-economic and political
impacts of COVID-19, both during and after the pandemic, there is a
pressing need for a thorough review in this area of research. To bridge
this gap, this survey aims to provide a solid foundation and inspire the
research community to explore SDT approaches to promote healthcare
innovation using DT technology and proactively address future health-
care challenges, such as those posed by COVID-19.

Significance of this survey
This survey provides a comprehensive review of digital twin technology in
healthcare, with a primary emphasis on societal digital twins. The key
insights of this review are summarized as follows:
• Systematic Literature Organization: This survey systematically orga-

nizes and evaluates recent healthcare-related digital twin survey
literature using an application-oriented methodology. It categorizes
existing survey literature into three classes, as presented inTable 2. This
structured classification highlights the scarcity of existing surveys
addressing SDT-related approaches and underscores the need for a
comprehensive review in this emerging area of healthcare innovation.

• Novel Taxonomy of SDTs:To the best of our knowledge, this is the first
comprehensive review to examine a significant number of SDT
approaches under a novel taxonomy, classifying SDTs into five cate-
gories, namely infection initiation, spread, control, combat, and
recovery. To enhance clarity, the scope of each category is defined, and

relevant approaches are briefly analyzed in terms of functionality,
validation strategies, generalizability, and limitations, thereby identi-
fying key challenges.

• SDT as a Smart Service (SDTaaSS):This survey introduces the concept
of a smart, dynamic societal digital universe for pandemic containment,
termed SDTaaSS. As a forward-looking healthcare innovation,
SDTaaSS represents a smart service-oriented paradigm that shifts the
complexity of system development to service providers. It empowers
non-technical stakeholders to deploy SDTs on demand via a smart
subscription-based model.

• Applications, Data-Driven Design Issues, and Key Components of DT:
The review offers an in-depth exploration of DT applications in the
medical domain, highlighting practical implementations in healthcare.
It further discusses data-driven design issues and addresses challenges
related to effective data utilization in healthcare-related DTs.
Additionally, it reviews core DT components and emphasizes the role
of enabling technologies in developing functional healthcare DT
systems.

• Future Research Directions and Emerging Paradigms: The survey
presents a detailed discussion of open challenges and future research
directions in healthcare-related DTs. It highlights key issues such as
interdisciplinary coordination, ethical considerations, and regulatory
compliance. Moreover, it explores emerging innovations in AI-aided
digital twins and proposes the concept of theHealthcareMetaverse as a
Smart Service (HMaaSS).

Applications of digital twin
DT technology exhibits awide range of applications across nearly every area
of the medical industry, ranging from personalized healthcare and clinical
digital support to hospital resource management and societal well-being.
This section discusses the significant applications of healthcare-related DT
technology, as depicted in Fig. 4 and briefly described below:

Ever-present healthcare trainer/consultant
DT may serve as an ever-present healthcare trainer, supporting both the
maintenance of a healthy lifestyle and the rehabilitation or recovery of
patients. Based on the past history and current habits of users, it may
recommend suitable diet plans, daily exercise routines, and leisure activities
accordingly. Being readily available, users may even discuss minor health-
care concerns with their personalized DT and receive immediate feedback
or suggestions within the given context. Consequently, users may feel more
cared for, valued, and secure, ultimately improving their overall experience
andwell-being. In the case of aminor issue, a personalizedDTmay instantly
suggest changes to diet or exercise plans, whereas inmore critical situations,
it may automatically notify a physician about potential risks to proactively
enable preventive interventions.

Table 2 | Digital twins in the various areas of digital healthcare

Survey Year DT area(s) of interest CPDT RMDT SDT

T. Erol et al.7 2020 Digital patients, pharmaceutical industry, hospital processes, and wearable technologies ✓ ✓

T. Sun et al.28 2022 Precise diagnosis, real-time monitoring, and personalized treatment ✓ ✓

P. Armeni et al.29 2022 Personalized medicine, clinical experimentation, and hospital operations management ✓ ✓

S. Elkefi et al.30 2022 Safety oversight, operational supervision, data governance, healthcare administration, and individual welfare
enhancement

✓ ✓ ✓

H. Hassani et al.31 2022 Digital patients, precision medicine, hospital processes, and wearable technologies ✓ ✓

C. Meijer et al.13 2023 Personalized/precision medicine ✓ ✓

T. Sun et al.32 2023 Medicine, patient dynamic monitoring, and precision healthcare ✓ ✓

S. Ghatti et al.33 2023 Precision healthcare, pandemic response, pharmaceutical industry, and machine learning/modeling ✓ ✓ ✓

M. Turab et al.34 2023 Personalized and precision medicine ✓ ✓

A. Vallée et al.35 2023 Personalized treatment, clinical operations, and healthcare professionals’ training ✓ ✓

CPDT Comprehensive Personalized Digital Twin, RMDT Resource Management Digital Twin, SDT Societal Digital Twin.
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Precision healthcare and personalized treatment
Precision healthcare focuses on prescribing precision medicine for perso-
nalized well-being rather than recommending a one-size-fits-all treatment,
as carried out in traditional standardized medical treatment. More specifi-
cally, precisionmedicine aims toprescribe the appropriate treatment to each
individual at the optimal time9. By embodying genetic makeup, historical
health records, living habits, and current health conditions of an individual,
DT may identify numerous biomarkers for better understanding and
diagnosing the cause of a disease. Such a decision support systemmayhelp a
physician prescribe precision medicine to the patient.

Predictive modeling has an important role in personalized preventive
interventions. Using predictive modeling in the DT environment, disease
advancement patterns may be identified preemptively, and preventive
measures may be applied proactively35. By doing so, physicians can custo-
mize treatment strategies to restrain or halt disease advancement, thereby
minimizing health risks for patients. Another example of personalized

treatment is the cloud healthcare system, CloudDTH36, which is designed to
examine, diagnose, and estimate health metrics for elderly individuals.

By predicting and evaluating potential outcomes, healthcare risks may
be avoided, and healthcare quality can be improved33. In critical situations,
DT can initially be used to test drug delivery or surgical treatments7,33.
Another compelling application of DT is in organ donation, whereby sui-
table organ recipientsmaybematched throughDT-based testing,matching,
and simulations31. Such advancements may significantly enhance the suc-
cess rate of organ donation, thereby contributing to saving countless lives.

Drug research and development
Drug Research andDevelopment (R&D) is often a complex task. It involves
numerous clinical trials that are often slow-moving and costly, partly
because enrolling participants requires both the availability of suitable target
groups and theirwillingness to participate29. Thanks to theDTparadigm for
running tests, analyzing data, and verifying test theories35, thus providing
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Fig. 4 | Digital twin applications in healthcare. This figure illustrates the data flow
in various application areas within the healthcare domain. a Represents numerous
physical world systems such as precision healthcare, building adaptation, drug
research and development, parking allocation, and warehousemanagement sending
digital data for predictive analytics and visualizations. bDigital TwinWeb Server(s):
Depicts a gateway for routing information to the central Digital Twin web server(s)
for storing and processing the digital information for prediction and simulation.

c Digital Twin Data Scientist: Represents a Digital Twin data specialist who uses AI
and ML approaches to visualize the future behaviors of real-world entities, under-
stand healthcare challenges, fine-tune the Digital Twin model for improved pre-
dictive analytics, and validate these future behaviors of real-world healthcare
systems. d Digital Twin(s): Shows the Digital Twin of the physical world systems.
e Feedback Information: Displays response metrics containing real-time insights to
better equip the physical-world systems to tackle future healthcare challenges.
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robust solutions to speed updrugR&D. For instance, the target population’s
DTmaybe consulted for enrollment in the clinical trials of drug exploration.
Being readily available 24/7 and easily replicable, selected DTs may accel-
erate the drug exploration process.

Furthermore,DT technologymayenable theuseofDigital Information
from the deceased to understand the exact cause(s) of death and facilitate
further research in drug development to address those causes. Doing somay
also assist in enhancing the drug-related knowledge base, deciphering
complex, refractory, and intractable diseases, and developing innovative
medications to facilitate personalized treatment in the future.

Healthcare resource(s) management
Under normal conditions, healthcare-related resources (e.g. staff, beds,
equipment, pathways, and parking) are managed using pre-allocated
schedules, which systematize when and how these resources are employed.
This may make complex processes and procedures more straightforward
and orderly in both hospitals and clinics. However, during emergency
situations, a surge in patients often requires reallocating healthcare-related
resources and creating or adjusting schedules more quickly, often in real
time. Therefore, healthcare-related resource allocation may become ten-
uous, compromising, and challenging. To handle such complexities, DT
may provide a reasonable solution for hospital resource management7. It
may assist in healthcare professionals training35, emergency resource
scheduling37, pathways prediction38, facility management39, building
operations40,41, and so on.

Outlined below are the significant applications of DT in medical
resource management:
• Patients Management: DT may assist in intra-hospital patient

management such as organizing patient flow30,31. However, during a
crisis situation, such as pandemic, managing patients in hospitals
becomes highly challenging. A viable solution to address such a
situation may be provided by a City-RMDT. A City-RMDT may
embody RMDTs of numerous hospitals in a city and would be
intelligent enough to predict patient influx at a given time across
different hospitals in a city. By considering various factors such as
pandemic situation, traffic movement, and historic information, a
City-RMDT may provide public guidance beforehand regarding
increased waiting times at various hospitals and alternative solutions,
such as visiting the best hospital nearby based on user preferences.

• Employee/Equipment Organization: A DT may be modeled based on
the skill sets of the hospital staff or the operational status and perfor-
mance of medical equipment33. Using AI andML techniques, DTmay
predict the best possible staff allocation in hospitals and preemptively
revise the staff roster. Likewise, through predictive maintenance, DT
may forecast potential issues in medical equipment35 and suggest
replacing devices to achieve optimal performance in hospitals and
clinics.

• Personnel Training: The seamless availability of DT technology may
provide a valuable resource for equalizing access tomedical education31

and producing skilled healthcare professionals, regardless of geo-
graphical location. Providing hands-on, state-of-the-art training inDT
environment may enhance the confidence and expertise of healthcare
professionals, preparing them to contribute to patient safety35 and the
proper functioning of hospitals and clinics. Being a one-time
investment, the role of DT in leveraging repetitive training for
healthcare workforces may have far-reaching implications in saving
human resource training budgets. During the pandemic scenario, DT
may offer robust solutions for training paramedic teams on an
emergency basis. By doing so, any shortage of healthcare professionals
may be efficiently and urgently met, thereby strengthening and
optimizing the healthcare processes.

• Building Adaptation: In the modern era, it is crucial to construct
hospitals in a manner such that the building structure can be easily
adapted to accommodate the growing demand for patient care in
emergency situations. A DTmay provide a reasonable solution in this

regard andmay assist in creating a flexible building informationmodel
of ahospital.Consequently, itmayaccommodate the risingdemand for
patient care in a hospital through small localized architectural adjust-
ments within the hospital premises.

• Warehouse Management: Effective healthcare services require a con-
tinuous flow of medical supplies, such as gloves, bandages, syringes,
surgical instruments, drugs, and diagnostic machines. Proper pro-
curement andmanagement ofmedical supplies in hospital warehouses
are crucial for managing supply shortages that were readily observed
during global pandemics like COVID-19. By enabling real-time
monitoring and coordination between hospitals andmedical suppliers,
DTs may predict and mitigate imbalances between supply and
demand, thus ensuring efficient healthcare delivery to society at large.

• Parking Allocation: Each hospital has a limited parking space to
accommodate visitors. However, during emergencies or pandemic
situations, patient and guest influx increases tremendously in hospitals.
It may cause a rush and traffic congestion on hospital premises. Such a
situationmay critically impact the associatedmanagement processes in
hospitals. A DT may preemptively predict the occurrence of any such
congestion situations in the vicinity of ahospital.As a result, the visitors
may be guided beforehand about alternate solutions for streamlining
the hospital operations.

Healthcare synthetic data generation
Properly modeling the physical environment may enable DT technology to
deeply understand the complexities of real-world systems and effectively
predict solutions for unknown use cases. Considering the potential of DT
technology, it may serve as a promising resource in healthcare-related
synthetic data generation. Such valuable artificial data may serve as a viable
source for training ML models on prospective scenarios experiencing data
unavailability or insufficiency. For example, in a cardiovascular DT42, syn-
thetic PhotoPlethysmoGram (PPG) data is generated using varying blood
flow and pressure measurements that may replicate the cardiovascular
system and help in training machine learning models.

Design issues of digital twin: data driven aspects
The digital twin is a data-oriented methodology where data plays a crucial
role inmodeling and simulating real-world objects or systems. Therefore, it
is paramount to navigate through the main data-driven design issues, such
as data collection, interoperability, integration, processing, computing,
privacy, security, availability, and scalability. A brief overviewof data-driven
challenges in healthcare-related DT is outlined below:

Data collection, interoperability, and integration
Digital data in healthcare exists in numerous forms, including Electronic
Health Records (EHR), data fromwearable and IoT devices, patient reports,
Magnetic Resonance Imaging (MRI), cardiac Electrophysiology (EP), and
Computed Tomography (CT) scans. Data collection and integration from
such heterogeneous data sources are critical obstacles13. This is because each
data type has distinct challenges in terms of integration, interpretation, and
standardization13, thereby making operations on diverse data an arduous
task29. Therefore, creating a coherent data source (frommultiple sources) to
provide a uniform data view within a DT environment is a daunting issue.
To accomplish this, it is crucial to establish common data standards that
may facilitate seamless communication and achieve interoperability, inte-
gration, and compatibility among various data sources and DT environ-
ments. A prominent standard for electronically sharing medical
information is the Fast Healthcare Interoperability Resources (FHIR)43

framework, specified by HL744. The FHIR standard enables data inter-
operability betweenDTandmedical systemsbyproviding anAPI to retrieve
data from EHRs in a standardized format.

Data processing
DT holds significant promise as a future healthcare resource, facilitating
seamless data processing and enabling the forecasting ofmedical conditions
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for users. However, when serving solely as a centralized resource, a DT
frameworkmay exhaust network resources in terms of network bandwidth,
data processing, and storage. It may induce network delays, privacy and
security concerns, and challenges in real-time data analysis. Hence, it is
essential to employ a hierarchical methodology for data storage and pro-
cessing within the DT architecture, tailored to the unique nature of
healthcare applications and the availability of network resources. A pro-
mising solution is to classify healthcare-related DT systems into edge-, fog-,
and cloud-based network architectures, as depicted in Fig. 5 and summar-
ized below:
• Edge Digital Twin (EDT): An EDT operates in close proximity (Edge)

to the data source, ensuring low latency for network communication,
real-time predictive analytics, high security/privacy, and network
bandwidth conservation. For example, data on a patient’s daily water
intake can be processed and stored on the EDT on the patient’s
mobile phone.

• Fog Digital Twin (FDT): An FDT resides within the intermediate
network for decentralized data processing. With more computing
power than EDT, FDT can process and analyze data from numerous
edge data sources in more complex structures. Additionally, it may
preprocess, filter, or compress the data (e.g., medical images trans-
mitted to the network core) to conserve network bandwidth. An FDT
provides greater computing power, faster data processing, and
enhanced prognostic analytics than an EDT, while still preserving
network bandwidth. For instance, data from sensors, IoT devices, or
wearables canbe analyzedon theFDTvia thepatient’smobile phoneor
a home area network gateway. However, residing in the intermediate
network, FDT may experience higher communication delays and
increased bandwidth consumption compared to EDT.

• CloudDigital Twin (CDT):ACDT is centrally located at the core of the
network and remotely performs health-related data storage, manage-
ment, and processing activities. It embodies fast data computing power
andmay conduct data analytics on the overall network data. However,
it may experience more communication delays and consume more
network bandwidth than both FDT and EDT. Additionally, sending
data to a CDT requires proper implementation of encryption and
security measures. A CDT may provide insights into population
growth rates as well as the proliferation of communicable diseases or
epidemics within the community.

Data privacy and security
To avoid information exploitation and facilitate information
exchange34, a DT must ensure high standards of privacy and security
for handling sensitive healthcare information. It is paramount to
establish data protection measures at the organizational level33 and to
keep users well-informed about the intrinsic privacy and security
measures for enhancing their trust in the DT system. Achieving this
requires sophisticated encryption algorithms34 (to safeguard data
during transfer and storage), robust access control mechanisms34 (to
restrict unauthorized retrieval of sensitive information), anonymiza-
tion techniques (to protect patient identities), regular software updates
(to mitigate evolving threats), and routine security audits (to identify
vulnerabilities in the DT systems). Additionally, various techniques,
such as Hypertext Transfer Protocol Secure (HTTPS), blockchain-
based Hyperledger Fabric technology45, trusted computing environ-
ments like Intel’s SGX46, Homomorphic Encryption47, advanced AI,
and Federated Learning (FL) techniques33, may be used to enhance
data security and privacy.

Fig. 5 | Data processing-oriented methodologies
in healthcare digital twin. This figure depicts
hierarchical data processing and storage methodol-
ogies based on healthcare application requirements
and resource availability. a Layer 1: Users and
medical devices send data to Edge, Fog, and Cloud-
based network architectures. b Layer 2: The EDT
operates in close vicinity to data sources, providing
real-time data analytics with minimal processing
and low communication delays. Local processing
allows EDT to conserve bandwidth and offer the
highest data security and privacy against threats.
c Layer 3: The FDT resides at the intermediate net-
work level and involves the collaborative analysis of
data from various EDTs. It also performs data pre-
processing, filtering, and compression before send-
ing refined information to the network core,
conserving network bandwidth. FDT requires more
processing power, introduces communication
delays and necessitates higher security/privacy
measures than EDT.dLayer 4: TheCDT is located at
the network core, providing centralized data pro-
cessing and storage. While it offers the fastest data
processing, it introduces higher communication
delays and consumes the most network bandwidth.
Furthermore, stronger security and confidentiality
measures are needed to safeguard information sent
to the CDT.
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Data scalability
The enormous healthcare benefits of DT technology will soon make it an
integral part of futuristic healthcare.The growing adoptionof healthcareDT
technology will simultaneously induce a high volume of data generation,
requiring faster data exchange between the physical and digital worlds. This
may render the prevailing resources scarce to accommodate the technology
shift, potentially inducing network performance bottlenecks in terms of
bandwidth, storage, and processing. As a result, employing traditional DT
systems at thenetwork core or in the cloudmay result in slowdownsorhalts.
It may induce delayed responses to healthcare applications and undermine
the core DT value of providing real-time predictive analytics to healthcare
systems.

Data scalability and resource scarcity issues in the DT environment
may be addressed by decentralized data processing (edge/fog computing),
intelligent compression (data deduplication), data archiving, advanced AI
analytics, and FL approaches. Implementing these strategies may provide
bandwidth conservation, effective data storage andmanagement, intelligent
resource allocation, and parallel computing, thereby enabling real-time
analytics and forecasting in next-generationDT systems. Therefore, there is
a need to devise new approaches for resource optimization and workload
distribution to handle inherent issues and achieve optimized communica-
tion in next-generation healthcare DT systems.

Key components of digital twin technology: a brief
overview
Modeling and simulating a digital duplicate of a physical-world entity is a
complex and arduous task. It involves extensive system development
intricacies and requires hands-on system implementation skills. Discussing
complex system-level engineering of a healthcare-related DT is beyond the
scope of this work. However, it is essential to summarize the basic com-
ponents of a healthcare-related DT as depicted in Fig. 6. Some of these
components are discussed below:

Data collectionmethods: sensors, wearables and graphical user
interface (GUI)
Sensors are either embedded in the medical devices or integrated into
wearables (such as smartwatches), facilitating the tracking of essential
wellness indicators like heart rate, blood pressure, and body temperature,
both in the clinical settings and during routine life. They can seamlessly
collect digital biomarkers, including sleeppatterns, breathing patterns, voice
patterns,movement patterns, and so on, representing real-time information
about a patient’s physiological and behavioral condition. Such data is critical
in empoweringpatients tomaintain ahealthy lifestyle. It also aids physicians
in understanding disease progression, implementing preventive measures
more effectively, and customizing treatment plans.

However, many times, automated data collection needs to be com-
plemented with manually entered procedural data, within both clinical and
individual patient settings. To achieve this, well-designed and interactive
Graphical User Interfaces (GUIs) provide a viable solution. On the one
hand, GUIs empower patients in their health journey by enabling them to
input essential health details,monitor, and analyze their personalized health
records. On the other hand, they assist physicians in visualizing, analyzing,
and making informed decisions about preventive measures and persona-
lized treatments.

Internet of medical things (IoMT)
IoMT corresponds to the network of medical devices connected to the
internet. These devices are equipped with sensing and processing cap-
abilities and are capable of communicating with each other over the
internet. IoMT devices serve various purposes, including patient health
monitoring (such as tracking blood glucose levels or measuring blood
pressure) and delivering treatment in remote or underdeveloped areas.
Additionally, a web form that allows the entry and transmission of
healthcare-related data over the internet may be considered a loosely
coupled form of IoMT.

Communication and networks
Numerous communicationprotocolsmay be employed to facilitate efficient
communication in healthcare-relatedDTnetworks. Some of the commonly
used protocols may include Message Queuing Telemetry Transport
(MQTT) for real-time healthcare data exchange45, Constrained Application
Protocol (CoAP) for communication in healthcare IoT networks, and
HTTPS for securely transmitting healthcare information over the internet.
These communication protocols can operate over both wired and wireless
networks, such as Zigbee, Bluetooth, Ethernet, orWireless-Fidelity (Wi-Fi),
depending on the specific application requirements.

Optimizingnetworkperformance is crucial forhealthcare applications.
It requires efficient management of network resources and effective reso-
lution of network challenges related to bandwidth, storage, latency,
throughput, and security. To achieve network efficiency, both centralized
Cloud DTs at the network core and Edge/Fog DTs on local/intermediate
networks may be deployed based on application requirements. This
approach can enable load balancing, congestion avoidance, and bandwidth
conservation, thus facilitating robust healthcare delivery in next-generation
DT networks.

Efficient and reliable communication relies on maintaining high
standards of network security and privacy. DT networks can be secured
using advanced encryption and access control mechanisms. Meanwhile,
network privacy may be ensured through advanced authentication and
anonymization techniques. To facilitate interoperability among network
devices, protocols like FHIR and Data Distribution Service may provide a
reasonable solution.

Data processing and storage
Digital twinsmay receive data from diverse sources, such as sensors, patient
reports, IoMT, cardiac EP devices, and medical imaging equipment,
including MRI and CT scans. Given the substantial variation in the form
and structure of digital data, effective and inclusive data processing is
essential. By employing common data standards, integration methodology,
normalization, and cleaning approaches, data fromdifferent sourcesmay be
converted into a uniform format within a coherent data source. Doing so
may enable DT systems to perform comprehensive data analysis and help
healthcare professionals make more informed decisions about patients’
health conditions. Various Database Management Systems (DBMS), such
as Oracle DBMS, Microsoft Structured Query Language (SQL) Server,
PostgreSQL, MySQL, Google Cloud Storage, MongoDB, Amazon Simple
Storage Service (Amazon S3), Neo4j, and InfluxDB,may be utilized for data
storage in DTs. Database administrators may be instrumental in imple-
menting privacy and security measures to prevent information leakage.

Systemmodeling and simulation
Amodel serves as the computer-generated blueprint of a tangible entity or
system, simulating its intrinsic properties, processes, and behaviors. The
precision of amodel is determined by its ability to imitate the characteristics
and functional behaviors of the real-world object. However, properly
modeling a real-world entity or system can be a challenging task, requiring
sound expertise and a significant time frame to execute. Additionally, real-
world objects or systems typically exhibit a variety of independent and
dependent behaviors.

Dependent behavior is usually a response to internal or external sti-
muli, making it more complex to model. Especially when the stimuli are
generated by the external system, itmay necessitate either parallelmodeling
of the associated system or artificially modeling stimuli generation
mechanisms, which is really a challenging task in the healthcare domain.

Various approaches exist for modeling healthcare-related physical
systems in the virtual realm of DTs. These techniques may include Agent-
Based Modeling (ABM)22,48, discrete event simulation49, ML/AI-based
modeling20,24,50, hybrid modeling approaches20,21,25,50–52, and statistical
modeling13,23,24,53. Given the intrinsic complexities, a DT system’s architect
should carefully analyze the modeling requirements of healthcare-related
DT systems.
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Predictive analytics, validations and visualizations
In the realm of healthcare-related DTs, predictive analytics plays a pivotal
role. It involves a series of steps, such as data collection, cleaning, analysis,
and forecasting, to ensure effective information visualizations. Data scien-
tists leverage AI-based statistical techniques and machine/deep learning
approaches to forecast future behaviors of the real-world systems for
understanding healthcare challenges and suggesting preventive measures
accordingly. By continuously validating DT forecasts against the physical-
world healthcare system, theDTmodel can be refined to improve predictive
analytics and thereby enhance the medical usage of healthcare systems34.

Visualizing the future behavior of DT models is invaluable for proac-
tively providing insights regarding future patterns and trends of healthcare-

related data. Numerous techniques are used to visualize healthcare-related
forecasts in DT environments, such as graphs, charts, andmaps. Commonly
used visualization tools includeGrafana,Microsoft Excel, andGoogleCharts.

Societal digital twin: a novel taxonomy, scope, and
classification of existing models
Societal digital twins empower healthcare authorities to implement proac-
tive and preventive strategies for community well-being. These strategies
include predicting the spread of infectious diseases, initiating healthcare
campaigns, and planning vaccination programs, as well as facilitating pre-
liminary drug development and immune response assessments to combat
outbreaks.
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Fig. 6 |Key components of digital twin technology in healthcare.Thisfigure shows
the key components of DT technology in healthcare. Data Collection Methods
involve gathering digital biomarkers or procedural data using sensors, wearables and
GUIs. The Internet of Medical Things creates an online network of medical devices,
enabling real-time and remote healthcare. Communication and Networks describe
various data communication protocols and technologies that facilitate robust, safe
and secure healthcare services within the SDT ecosystem. Data Processing and

Storage concentrate on converting diverse datasets into a standardized form for
comprehensive data analysis and storage. SystemModeling and Simulation focus on
generating digital blueprints of real-world systems, replicating their intrinsic
behaviors and responses. Predictive Analytics, Validations and Visualizations entail
forecasting and visualizing future behaviors of real-world systems to effectively
handle healthcare challenges.
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Based on operational complexity, SDTs can be classified into five cate-
gories, i.e., infection initiation, spread, control, combat, and recovery, as
illustrated in Fig. 7. An overview of key characteristics and technological
aspects of the SDTsdiscussed in this section is summarized inTables 3, 4. The
following sections explore the scope andkey techniqueswithin each category.

SDT for infection initiation (SDTII)
Scope: A SDT for Infection Initiation may predict the onset and origins of
infections within society by considering vectors such as mosquitoes, con-
taminated food or water, and infected individuals.

Approaches: In exploring this area of research, a clear scarcity of
techniques is observed. Further brainstorming and innovative solutions are
required to bridge this research gap.

SDT for infection spread (SDTIS)
Scope:ASDT for Infection Spreadmay forecast themechanisms of infection
transmission in society, such as overcrowding, travel, and social interac-
tions. It may also anticipate infection proliferation mechanisms, including
respiratory droplets, face-to-face contact, and exposure to polluting
substances.

Approaches:This section explores numerous SDTIS approaches, along
with their validation strategies, generalizability, and limitations. Among
these, extensions of the Susceptible Exposed Infected Recovered (SEIR)
model are discussed, such as SEIRD21 and the extended SEIRD51.

1. In20, the authors propose a joint framework for a collaborative city DT
that employs Time Convolutional Networks (TCNs) and a federated

Fig. 7 | Rehan’s taxonomy and classification of
societal digital twin.
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learning solution. TCNs leverage causal and dilated convolutions to
ensure robust sequence modeling and memory efficiency, utilizing
temporal and historical data for infection prediction. Concurrently, an
FL server iteratively updates and refines a global model centrally based
on shared parameters from local models, ensuring privacy during
infection prediction andmanagement. The proposed architecture aids
in understanding infection spread and outlines response strategies for
effective infection management. Training occurs locally at each city-
level DT, where the data resides, ensuring data privacy. Instead of
sharing rawdata, each localDT transmitsmodel updates orparameters
to the FL-based central server in a collaborative manner. This enables
the FL-server to refine the global model and establish relationships
between infection dynamics and management strategies, contributing
to pandemic management at the city level. Experiments using real
datasets from various U.S. States (i.e., COVID-19 Tracking Project
Dataset and COVID-19 State Actions Dataset) demonstrate the
effectiveness of the proposed solution. However, generalizing the
model to cities with diverse infrastructures and socio-political contexts
remains a challenge. The proposed solution is validated by its
superiority over existing counterparts in pandemic forecasting,
management, decision-support capabilities, and privacy protection.

2. The authors in ref. 21 employ aDTmethodology to virtually represent
three dynamic models illustrating the spread of COVID-19 in
Catalonia. These models include: (1) a SEIRD-based System Dynamic
(SD) model for preliminary system analysis, rapid prototyping,
defining forecast boundaries, and testing assumptions; (2) a Python-
based model optimized using a dual annealing algorithm to estimate
transmission rates, containment coefficients, and reproduction
numbers of the disease, enabling the evaluation of containment
strategies and pandemic trend shifts; and (3) a Specification and
Description Language (SDL) model employing a Cellular Automaton
(CA) strategy for spatial analysis of infection spread, facilitating the
adoption of preventive measures, advanced forecasting, and vaccina-
tion analysis across different health regions. The dynamic models are
validated using a model comparison approach and a Verification and
Validation (V&V) loop. The former refines model assumptions to
ensure consistency among the behaviors of the SD, Python-based and
SDL models, while the latter adjusts parameters daily by comparing
real-world data (digital shadow) with simulation outputs. This process
aids in understanding the impact of Non-Pharmaceutical Interven-
tions (NPIs), such as lockdowns and mask distribution, in controlling
the pandemic, and demonstrates predictions accuracy through
comparisons with physical-world scenarios. For accurate assessment
of the pandemic situation, themethodology highlights the importance
of continuous validation and monitoring. The approach supports
informed decision-making by understanding the causal relationships
in pandemic dynamics and appropriately adjusting model assump-
tions for effective pandemic management. However, the methodology
relies on datasets from different countries, which have inherent
inconsistencies due to geospatial diversity, making its universal
application a challenging task.

3. The author in ref. 51 have developed a DT model for predicting true
infection trends and analyzing the effect of NPIs on the COVID-19
spread in Catalonia. The proposed model extends the SEIRD
framework to the SCVEIRIDRHUD, encompassing cellular automata,
compartmental modeling and optimization algorithms alongside
vaccination dynamics, infection identification rates, and containment
measures. Each cell of the CA represents a geographic region, with
populations divided into compartments, each indicating a distinct state
derived from the SEIRD model. A python-based optimization
algorithm validates model parameters by comparing Catalonia
Healthcare data (digital shadow) with simulated data (digital master)
to enable pandemic forecasting and model validation. Model
assumptions are defined using the SDL and implemented with
Specification and Description Language Parallel Simulator (SDLPS)

software, facilitating easy implementation and effective collaboration
across disciplines. Validation is achieved through model comparison
and solution validation mechanisms, with SDL ensuring continuous
verification of assumptions against real-time data, while CA enables
regional validations.Although, themodel is calibratedusingCatalonia-
specific data, which limits generalization, the SDL-based design and
modular approach make the model adaptable to diverse datasets and
contexts, thereby enhancing its suitability for broader applications. The
forecast model offers insights into infection dynamics, such as
predicting saturation points or endemic trends, enabling decision-
makers to monitor infections effectively and implement appropriate
pandemic response measures across diverse regions.

4. The authors in ref. 53 propose a DT framework for pandemic simu-
lation using healthcare and wastewater data to forecast and verify the
spread of COVID-19 in Catalonia. Healthcare data pertains to
symptomatic or tested individuals, whereas wastewater data provides
insights from a broader population perspective, including asympto-
matic cases. The proposed DT framework comprises a three-pronged
model-based paradigm encompassing: a basic SEIRD-based system
dynamic model for testing initial assumptions, developed in Insight
Maker; an optimization model implemented in Python to capture
variations in infection dynamics influenced by NPIs; and a graphical
SDL model employing CA for regional predictions, developed in
SDLPS software. The DT framework includes a continuous time-
series-enabled weekly validation mechanism designed to correct
prediction discrepancies between synthetic and real-world data
(sewage and clinical) for enabling model recalibrations. Validation is
further enhanced by relying on multiple data sources (i.e. sewage,
clinical), particularly through the aggregation of wastewater samples
frommultiple treatment plants. This approach employs a wastewater-
based validation system to address prediction inaccuracies caused by
factors such as insufficient data, subclinical infections, variants, or
behavioral changes in response to public health interventions, thereby
enhancing accuracy and reliability of long-term COVID-19 spread
predictions in society. Reliance on clinical and sewage data comes with
numerous limitations aswell. For instance, healthcare data reliability is
affected by under-reporting or infrequent testing, while wastewater
data reliability is affected by sampling errors and varying viral loads
influenced by population density. Additionally, SDL model’s predic-
tions are tailored to Catalonia-specific datasets, which may limit its
performance when applied to regions with different infrastructure and
data quality. The generalization of model assumptions (e.g., NPIs,
vaccination rates, and variant dynamics) to other regions is not
guaranteed.

SDT for infections control (SDTIC)
Scope: A SDT for Infection Control may anticipate infection management
strategies, such as quarantine, physical distancing, or organizing public
health and awareness campaigns to promote vaccination plans and
encourage preventive behaviors for regulating infection control.

Approaches: In this section, numerous SDTIC techniques are sum-
marized, along with their evaluationmethodologies, broader relevance, and
challenges. These include some SEIR-based extension such as SEIR-V23 and
the modified SEIR52.
1. In22, the authors present a navigation-based immersive system using

DT andVR technology to visualize the role of interpersonal spacing in
controlling the dissemination of SARS-CoV-2. The system uses Unity
game engine to implement Social Distancing Algorithm in Virtual
Reality (SoDAlVR). For this purpose, the ground floor of Markeaton
St. campus at the University of Derby is visualized in an immersive 3D
environment to study social distancing under crowd dynamics. The
simulated environment contains numerous agents, each following one
of the eleven navigation patterns to reach their goal waypoints using a
graph-based waypoint navigation system tailored to Dijkstra’s
algorithm. Upon arriving at a goal waypoint, each agent progresses
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to a new state in a state machine model. The agents are clearly
differentiated based on their speed and goals. Using VR controllers, a
user navigates the simulated crowded environment and gets warning
via a Spatial UI element for breaking social distancing rules. This
provides real-time visual feedback, validating the system’s function-
ality. The approachenforces the social distancingpolicy ofmaintaining
a 2-meters distance by monitoring users in this multi-agent
environment. Future plans include monitoring disease spread among
agents and extending the system from VR to AR paradigm. However,
the current simulation is limited to a specific use-case scenario of the
University of Derby, predefined navigation patterns of agents, and the
absenceof epidemiological data formodeling infection spreadpatterns.
Therefore customizations are required to generalize the system for
other environments and applications.

2. In23, a novel statistical extension of the SEIR model is proposed for
simulating and analyzing voluntary vaccination strategies during the
COVID-19 spread. This model may be considered for possible
inclusion into DT models. The proposed model is a two-layer graph-
based SEIR-Vmodel where the contact layer represents individuals (as
graph nodes) and their contacts (as weighted edges), with the weight
indicating a susceptible individual’s affinity for being infected after
contact with an infectious individual. Additionally, the information
layer represents the medium for receiving knowledge about the virus,
either locally (through personal interaction) or globally (throughmass
media). Furthermore, each node employs a game-theoretic approach
to make voluntary vaccination decision based on a cost-benefit
analysis, aiming to maximize gains (e.g., protection from infection)
minimize losses (e.g., vaccine side affects). The outcome of repeated
Monte-Carlo simulations show that vaccination decisions based on
global information lead to crowding and overloading of healthcare
systems, while decisions based on local information result in evenly
distributed vaccination efforts and reduced infection peaks. Addition-
ally, prioritizing elderly population decreases mortality but increases
infection rates,while prioritizingyouth leads to theopposite effect. This
research may provide valuable insights for policymakers in designing
effective vaccination campaigns to control pandemics. The proposed
model is evaluated with real COVID-19 data from Belgrade and
exhibits satisfactory accuracy under the initial assumptions. However,
relying solely on local data and not accounting for inter-city travel
dynamics, health policy variability, and individuals at higher
vaccination risks (e.g., pregnant women, chemotherapy patients)
limits the model’s applicability to other regions and its generalizability
to broader population.

3. The authors in ref. 48 develop an agent-based city DT framework to
assess the socio-economic and public health impact of NPIs in
managing the COVID-19 pandemic. The framework employs an
agent-based modeling simulator trained on real-time data from city
administration, incorporating details about individuals, locations,
movement patterns, infection attributes, social preventive measures,
andprotective strategies tomanage outbreaks. This enables the cityDT
to robustly forecast infection spread, predict features of affected
individuals, and estimate burdens on healthcare and quarantine
centers. The DT framework employs an iterative human-in-the-loop
simulation strategy. It uses ESL based agent/actor technology to
conduct simulations, which are interpreted using human decision-
making and reinforcement learning-based what-if analysis. This
approach allows the simulator to identify optimal intervention strategy
for effectively managing the pandemic, thereby restoring social well-
being, health, and the economy. The validity of themodel assumptions
is ensured by local demographic and epidemiology experts. The
simulated results are validated by iteratively comparing themwith real-
time epidemic data provided by city authorities to ensure predictive
accuracy andmodel convergence. The systemholds promise for aiding
pandemic-related decision-making. However, reliance on real-world
data for validation presents challenges due to the limited availability of

high-fidelity socio-demographic data. The proposed model evaluates
the effectiveness of preventive measures in controlling infection and
predicts the impact of protective measures. However, inaccuracies in
model outputs may arise from oversimplified assumptions. Con-
textualizing the framework for Pune city limits its generalizability to
other cities without significant adjustments. Finally, scaling the ESL
technology infrastructure for state or national level implementation is
computationally infeasible under the current scenario.

4. In49, the authors introduced a DT framework for infection control and
management, focusing on optimizing large-scale COVID-19 vaccina-
tion centers. The framework aims to efficiently vaccinate a large
number of individuals while minimizing time and resource utilization,
particularly healthcare staff. This is achieved through a combination of
a mobile application and a discrete event simulator. Clinical operators
use smartphones equipped with Near Field Communication (NFC)
readers to scan NFC badges of visitors, measuring time-stamped data
on individualflow andphase durations during the vaccination process.
The mobile app relays this data (e.g., queue lengths, resource
utilization) for analysis and visualization via a dynamic dashboard
designed for policy makers. The time-stamped data is analyzed at the
DT, where a discrete event simulator processes around 100 time-
stamped data points for each phase of the vaccination process. A data-
fitting software is used for statistical distribution fitting (triangular,
gamma, andWeibull) on the incoming data points. The validity of the
model is ensured by measuring realistic variations in phase durations
and through beta-testing in a smaller clinic. Using model parameters,
the discrete event simulator models the vaccination process under
various scenarios to optimize patient flow and address potential
bottlenecks. The DT framework facilitates real-time data collection,
analysis, performance tracking and improvement to enhance opera-
tional efficiency in vaccination centers. However, the framework has
some limitations, including the exclusion of initial data points during
the operator learning curve tomaintain system accuracy. Additionally,
being designed for specific walk-in clinic configurations reduces its
immediate applicability to alternate settings.

5. In50, the authors created a virtual reality-based DT for remotely
observing people and ensuring compliance with social distancing in a
laboratory space. The DT was built using the Unity game engine and
ProBuilder modeling tool, while laboratory occupants were detected
using the YOLOv3model trained on a dataset containing 2022 labeled
images of individuals. The approach utilized the PyTorch Key-
pointRCNN model, with a ResNet50 backbone to estimate human
body positions by calculating key joint angles and pairwise Euclidean
distances, ensuring compliance with social distancing policies. The
authors validated their approach using real-time images captured from
the laboratory and synthetic images generated using VR. Although
synthetic data is helpful formodel training, itmaynot fully replicate the
environmental variability of the real-world. Therefore, relying on a
specific dataset may reduce themodel’s generalizability and prediction
effectiveness in diverse real-life scenarios. The results showed high
accuracy in detecting people and predicting bodypostures. Specifically,
a person-detection accuracy of 91% and 94%was observed for real and
synthetic images, respectively. Whereas posture estimation achieved
accuracies of 83.82% for real data and 84.73% for synthetic data.
Furthermore, the correlation coefficient for Euclidean distances
between real and synthetic images was 0.82, demonstrating a strong
alignment.

6. In52, the authors employ an extension of the SEIRmodel to discuss the
potential of DT in mitigating the spread of COVID-19. The modified
SEIR model considers other population-specific parameters, such as
the basic reproduction number (Ro), average incubation duration (Y),
and recovery duration (D), to predict infection spread trends during
the 3rd wave of COVID-19 in Pakistan. The framework suggests that
reducing social contact and enforcing social distancing can signifi-
cantly decrease the spread of infection. Furthermore, DT models can
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predict infection spread while addressing four levels of infection
management, enabling policymakers to plan effectively for lockdown
measures and infection control. The validity of the framework is
demonstrated by simulating infection spread under strict, partial, and
no lockdown scenarios during the 3rd wave of COVID-19. The
predictions alignwith observed trends and suggest that a gradual lifting
of lockdowns is an appropriate strategy for effectively managing the
disease spread. The model is based on a dataset from Pakistan,
therefore generalizing it to other demographic regions with diverse
socio-economic and political conditions may pose challenges.
Additionally, since the model relies on the timeliness of officially
released data, its predictions may deviate from real-world values if the
data is not updated promptly with actual infection records.

7. In54, the authors present a collaborative framework integrating
blockchain, DTs, and AI to establish secure medical cyber physical
systems. The proposed framework aims to issue decentralized epi-
demic alerts for predicted risks and provide decision support to
authorities by suggesting preventive measures such as quarantine,
lockdown, and limiting social interactions to mitigate disease spread.
The decentralized conceptual framework comprises four layers: (1) the
physical layer–representing network nodes (i.e., humans and devices)
contributing system data; (2) the blockchain-enabled DT
layer–facilitating secure, distributed communication via a ledger
among DTs (virtual network nodes); (3) the data analytics
layer–featuring a ledger-oriented predictive model employing AI/ML
techniques, providing offline and online predictions to support
decision making; and (4) the decision-making layer–using
consensus-driven coordination to issue alerts formanaging pandemics
effectively. Blockchain technology ensures distributed storage, direct-
node communication, data integrity, and openness. The ledger-based
predictive model integrates a database to record historical commu-
nication between DTs. In the offline phase, stored ledger information
trains predictive models, which are refined through K-fold cross-
validation and hyperparameter optimization, and validated with
performancemetrics like accuracy, precision, recall, and F1-score. The
online model processes live streaming data for outbreak predictions
and proposes decision strategies for pandemic containment. However,
relying heavily on historical and live data may reduce prediction
performance in cases of incomplete or biased datasets. Additionally,
ensuring seamless connectivity and compatibility among nodes can be
challenging. Generalizing the proposed framework to diseases beyond
COVID-19 may require significant reconfigurations.

8. The authors in ref. 55 discussed a DT of Singapore General Hospital
(SGH) developed for visualizing health data in a virtual environment.
The conceptual 3-Dimensional Disease Outbreak Surveillance System
(3D-DOSS) is designed to identify and respond to infectious diseases,
focusing on the integration of medical information into a virtual
hospital model to support effective disease monitoring and healthcare
management. To create the virtual DT environment, the 3D-DOSS
system employs the Unity game engine for spatiotemporal virtual
mapping of SGH, AutoCAD for generating detailed floor plan
templates, and SAP patient management data for spatial analysis of
patients movements. By tracking patients, the DT system facilitates
contact tracing, outbreak mapping, and cluster detection within the
hospital. The validity of the system was demonstrated through its
ability to outperform traditional methods in surveillance, contact
tracing, and outbreak mapping. For instance, it traced inpatient
COVID-19 exposures linked to an infected healthcare worker in April
2021, mapped OXA-48 outbreaks in 2020, and identified influenza
(2018) and klebsiella pneumoniae (2018 and 2019) clusters among
hospitalized patients. However, the 3D-DOSS system has certain
limitations, including its reliance onmanual data input, the absence of
real-time data flows, and the unavailability of discharged patient
information, which are critical factors in designing a robust disease
surveillance system. Furthermore, its customization to SGH-specific

infrastructure and data, along with the unavailability of predictive
modeling features, limits the generalizability of this proof-of-concept
prototype for outbreak detection and response in hospitals with
different operations frameworks.

SDT for infection combat (SDTICom)
Scope:ASDT for InfectionCombatmay predict preliminarymethodologies
for actively engaging with infections, such as medical diagnostics, antiviral/
antibacterial drug development, andunderstanding host immune responses
to directly confront and defeat infections.

Approaches: This section discusses numerous SDTICom techniques,
along with their verification approaches, generalizability, and constraints.
1. In24, the authors introduced a DT prototype for human immune sys-

tem to address various diseases. The article highlights that developing
such a system poses significant challenges due to the intricacy of the
human immune system and the issues surrounding data availability
in vivo. However, the authors proposed a four-step strategy to address
these challenges, which includes goal setting, adopting tailored
approaches, thorough validation, and iterative enhancements. Goal
setting involves specifying a use case, such as treatment forecasting or
drug development, and constructing a general immune DT model
template around it. A tailored approach involves customizing the
general template with personalized data to address a patient’s specific
scenario. Validation ensures thorough testing of model outcomes to
address forecast uncertainties. Iterative enhancement signifies con-
tinuous refinement to improve model performance over time.
Although no particular model or AI technique is presented for the
anticipated immune DT, the paper emphasize the potential of hybrid
approaches combining mechanistic, AI, ML and data-driven models
for effective predictions. Additionally, platforms such asCell Collective
may be used for collaborative modeling, simulation and validation.
Due to uniqueness of immune responses, generalizing such DTs build
for one immune application to others would be a challenging task.
However, extending common elements from a core model may
expedite the development of specific immune applications. The
authors emphasize the need for model and dataset repositories,
however no particular datasets are discussed.

2. The authors in ref. 25 presented a DT blueprint modeling the human
immune system at the cellular level to simulate immune defense
mechanisms against infections. The blueprint comprises 27 immune
cells (both innate and adaptive), 31 cytokines and immunoglobulins,
and 9 distinct pathogens. It highlights cellular components and
interactions among cells,molecules and pathogens, achieved through a
comprehensive Systems BiologyGraphical Notation (SBGN)map and
multi-scale logical model. The immune model employs a rule-based
methodology where biological components are discretized to depict
ongoing activity, with logical rules characterizing interactions or state
changes among them. The model is visualized using a layered SBGN
map created in the CellDesigner editor, and uses theMinerva platform
to support visualizations. The map organizes immune components
into five levels, i.e., pathogens, non-immune cells, innate immune cells,
adaptive immune cells, and secreted molecules. The validity of the
model is ensured through its predictions of immune response to
pathogens, as confirmed by experimental data, and its ability to
simulate complex scenario, such as coinfections. To promote
community-based validation, the proposed blueprint is openly
accessible on the Cell Collective platform for further experiments
and enhancements. The generalizability of the model is supported by
its online availability, facilitatingbroader researchand interdisciplinary
coordination. However, its reliance on existing knowledge, the
exclusion of certain immune components and cell movements, and
its qualitative nature restrict its ability to capture the exhaustive
immune response dynamics. Nevertheless, the proposed immune
framework constitutes a remarkable contribution to the advancement
of a comprehensive immune DT and fostering precision medicine.
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SDT for infection recovery (SDTIR)
Scope: A SDT for Infection Recovery may forecast recuperation and reha-
bilitation mechanisms, including effective planning, monitoring, and
response systems, to restore societal norms following the containment or
suppression of infections.

Approaches: Upon scrutinizing this field of research, a shortage of
methodologies is evident. Innovative approaches are needed to address this
research deficiency.

Discussion
The proposed Rehan’s taxonomy of societal digital twin provides a novel
framework for classifying digital twin strategies for infection containment
across various stages of infectionmanagement, including initiation, spread,
control, combat, and recovery. Based on the presented classification, SDT
approaches targeting infection initiation and recovery remain largely
unexplored, necessitating further research to bridge this gap. While limited
strategies exist for infection combat, extensive investigation is necessary to
develop robust immune response models and long-term recovery
frameworks.

In contrast, several DT approaches have been developed for infection
spread and control, including SEIR-based epidemiological models, TCNs
and FL-based approaches, VR-based simulations, agent-based models, and
blockchain-based DT implementations. While these approaches exhibit
higher validation maturity, they often rely on region-specific datasets (e.g.,
Catalonia, Pakistan, Pune, Singapore), lack real-world environmental
variability, or address highly specific use cases–such as visualizing the
ground floor of Markeaton St. campus at the University of Derby or cus-
tomizing SDTs for specific hospital infrastructures (Singapore General
Hospital). Such constraints hinder the universal applicability of SDTs,
emphasizing the need for scalable and adaptable implementations in diverse
healthcare environments.

SDT models are data-driven AI/ML systems, requiring sophisticated
infrastructure for data storage, processing, model training, and commu-
nication. Once trained, an SDT model necessitates continuous updates to
mitigate algorithmic biases, ensure fairness, and maintain adaptability to
evolving healthcare landscapes. However, healthcare dynamics vary sig-
nificantly across regions,makingcross-border validation essential to achieve
both local accuracy and global scalability.

While current SDT strategies provide significant support for predictive
modeling and healthcare decision-making, further advancements are
necessary to enable personalized treatments, interdisciplinary adaptability,
and seamless collaboration. Developing continuous validation frameworks,
scalable SDT architectures, and universally adaptable solutions are
imperative to establishing robust, flexible, and globally deployable SDT
ecosystems for the future of healthcare.

Limitations of societal digital twin
While applying SDTs has the potential to revolutionize the healthcare
sector, however numerous limitations of SDT technology exist, including:
1. Infrastructure Requirements: Applying DT technology is an ongoing

challenge that requires sophisticated sensor networks, secure com-
munication protocols, high computational power, secure data storage,
and advanced modeling, prediction and simulation techniques. As an
advanced version of DTs, SDTs necessitate even greater infrastructure
to process DT knowledge and efficiently predict infection-related
decisions.

2. Technological Co-existence: SDTs encompass numerous technologies
that are required to coordinate and collaborate in real-time to achieve
the common goal of pandemic containment. Maintaining seamless
communication demands compatibility, co-existence and interoper-
ability amongmultiple technologies, which is critical for the successful
realization of SDTs in healthcare.

3. Secure Communication and Storage: Transmitting patient data over a
network is vulnerable to numerous challenges, such as eavesdropping,
man-in-the-middle attacks, and denial of service attacks. SDTs are

required to deploy robust safety mechanisms, such as encryption,
authentication, firewalls, and intrusion detection systems. Likewise,
secure storage can be ensured through encryption at rest, authentica-
tion, regular backups, and vulnerabilitymanagement to address threats
like ransomware, SQL injection, and malware.

4. Performance Efficiency: Efficient execution of tasks under throughput
and response time constraints is indispensable for real-time commu-
nication in SDTs. It requires optimizing resource usage (e.g.,
computational power, storage, and network bandwidth) and imple-
menting load-balancing mechanisms to prevent performance
bottlenecks–a particularly challenging task in the highly data-centric
SDT environment.

5. Data Integration and Interoperability: SDTs rely on clean and stan-
dardized data for optimal functioning. However, healthcare data is
often fragmented across disparate systems and originates from diverse
sources (e.g., sensors,MIoT,CT scans, andMRI, etc.). The inconsistent
and fragmented nature of this data frequently renders it unsuitable for
direct processing, posing significant challenges in SDT environments.

6. Fairness and Dynamic Adaptability: SDTs rely on AI/ML models for
future predictions, which are trained on specific datasets. If these
models are not properly trained, regularly updated, or if the datasets
lack representative diversity or fail to adapt to emerging healthcare
trends, prediction biases can occur. Such biases can severely impact the
accuracy and reliability of SDT predictions. Therefore ensuring con-
tinuous retraining with the validated and unbiased data is a critical
challenge to be properly addressed for maintaining accuracy and
fairness in SDT-based predictions.

7. Reliability: Ensuring the stability and availability of SDT systems
requires adopting mature technologies during implementation. It also
involves ensuring that system operations can continue with reduced
functionality (i.e., graceful degradation) in the event of hardware or
software failures, as well as maintaining backups to enable recovery
processes.

8. Scalability: Given the inherent complexities of SDT technologies and
the vast volume of healthcare data, scaling SDTs across various societal
levels (e.g., community, state, national, and global) introduces addi-
tional challenges, including cross-border standardization, interoper-
ability with heterogeneous healthcare infrastructures, and the ability to
integrate SDTs into multi-institutional frameworks for pandemic
monitoring and response. These include managing interactions
between SDTs and accommodating variations in healthcare regula-
tions and ethical considerations, which can significantly influence
infection management decisions.

9. Adoption and Sustainability:WhileDTs and SDTs represent emerging
trends with enormous healthcare benefits, promoting these technolo-
gies as mature solutions requires widespread awareness campaigns.
Additionally, the economic viability of SDTs demands substantial
funding, posing a significant challenge to their long-termsustainability.

SDT as a smart service—a smart, dynamic societal
digital universe for pandemic containment
DT technology holds immense potential for improving personalized
treatment, precision medical care, optimizing hospital resources, and
facilitating drug R&D. However, creating a standalone DT is a highly
complex task requiring specialized technical and medical expertise,
advanced infrastructure (for data gathering, communication, networking,
secure management, modeling and simulation), and seamless system
management. These requirements make standalone DT deployment an
expensive, time-consuming and arduous endeavor for independent entities
(such as patients or physicians) and even for large organizations (such as
clinics or hospitals).

To overcome the previouslymentioned limitations, a viable solution is
to adopt a service-oriented paradigm, where the service provider:
1. Manages all the underlying technical, data and infrastructure related

complexities at the network core.
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2. Ensures efficient processes for seamless bi-directional communication
between users and the service backbone.

3. Provides on-the-fly and on-demand service availability to ensure real-
time service and alert mechanisms.

4. Ensures scalability both vertically (enabling individual users to add or
remove resources) and horizontally (to accommodate a growing
number of users).

5. Innovates smartness by charging users based on various use case sce-
narios such as difference in the amount of uploaded and downloaded
data, social status, demography, and so on.

In brief, the SDT as a Smart Service (SDTaaSS) paradigm incenti-
vizes users who share valuable data through a subscription-based model,
creating an adaptive and mutually beneficial healthcare ecosystem. This
service-oriented approach enables patients, physicians, clinics, and hos-
pitals to seamlessly input healthcare records into the system and receive
real-time predictions, fostering greater adoption. Such a flexible, cost-
effective, and efficient solution may foster an ecosystem for a smart,
dynamic societal digital universe. The extensive health benefits of
SDTaaSS could encourage customers worldwide to subscribe for the
promotion of their well-being, making SDTaaSS adoption location-
agnostic. Ultimately, it would enable the collection of global health data
for efficiently predicting and managing pandemics such as SARS-CoV-2
(COVID-19) in the future.

SDT: use cases and actionable insights
Thedeadly impactofCOVID-19 across the globe has highlighted the urgent
need to better prepare for any future healthcare calamity. In this context,
SDTaaSS has substantial potential for analyzing, predicting and managing
healthcare challenges in future. Below, a brief discussion of various use cases
and actionable insights is presented to address future pandemics.
1) Standalone Healthcare Entities:

a) Use Cases:
• Individuals: are the data sources using wearables such as smart
watches, pulse oximeters and heart pacemaker. These devices
automatically collect data regarding temperature, blood oxygen
level and heart rate and relay it to individual’s DT. Patients may
manually input data (e.g. measurements from self-test kits for
COVID-19 or daily water intake) into DT-enabled mobile apps.

• Physicians: input patient health records through interactive DT
dashboards after identifying symptoms (e.g., cough, fever, sore
throat) and performing diagnostic tests (e.g., blood tests for
bacterial infections or PCR tests for viral infections like COVID-
19 or influenza).

b) Actionable Insights: Once relevant information is collected,
SDTaaSS can generate health predictions that are accessible to
patients (via basic graphs) or physicians (via sophisticated graphs).
In critical situation, the systemmay issue safety alerts to physicians
or emergency department for taking timely measures to ensure
patient well-being.

2) Large Healthcare Entities:
a) Use Cases:

• Clinics and Hospitals: may use interactive DT GUIs, allowing
hospital staff to enter patient symptoms and admission details
during normal operations and pandemic outbreaks. Further-
more, surveillance cameras at the hospital entry and exit points
may send patient influx information to the DT via wired and
wireless networks.

b) Actionable Insights: SDTaaSS may predict the severity of
healthcare emergencies based on reported cases and visitor
information. During pandemics, it can predict ICU occupancy,
ventilators shortage, and issue alerts for staff scheduling and
resource management. Additionally, public health authorities
can receive alerts about infection hotspots to implement pre-
cautionary measures.

3) Healthcare Policy-Making Entities:
a) Use Cases:

• Public Health Authorities:monitor ongoing healthcare situations
across community, state, national, and global levels through
electronic, print, and socialmedia. The interactive SDTGUIs and
prediction forecasts assist them to make swift decisions during
pandemic outbreaks.

b) Actionable Insights:Under the directionof public health authorities,
SDTaaSS may issue alerts for smart lockdowns, travel quarantine
monitoring, infection contact tracing, and vaccination and hygiene
awareness campaigns to contain pandemics.

Future challenges and research directions
DT technology is still in its early stages within the healthcare domain. There
is a significant journey ahead to develop fully functional personalized,
resource management, and societal DTs tailored to human healthcare
needs. Addressing this task involves dealing with a myriad of issues, chal-
lenges, and research directions that require further brainstorming and
exploration. Outlined below are the key areas of healthcare-related DT that
demand significant investigation:

Prognostic analytics and modeling
Forecasting the progression of medical conditions is crucial for effective
disease management. However, effective prediction requires careful mod-
eling of disease development patterns. It requires representative historical
and ongoing health data, alongside behavioral, environmental, and biolo-
gical factors, such as genomics, transcriptomics, proteomics, and metabo-
lomics. Additionally, effective forecasting requires iterative tuning of model
parameters to minimize the gap between model predictions and real-world
observations.

Dynamic predictive models may anticipate health issues and disease
development trends, thereby enabling informed decisions regarding
prevention and cure methodologies in advance. Likewise, personalized
physiological models can estimate future behaviors derived from col-
lected data. However, implementing these models to replicate the intri-
cate functionality and interactions of human organs in a DT
environment presents a formidable challenge, requiring the refinement of
AI-driven SDT models to enhance their adaptability to real-time epi-
demiological data. Addressing this challenge requires the development of
robust mechanisms for constructing and refining dynamic predictive
models. Achieving this goal entails thorough investigation and innovative
solutions.

Personalized treatment
The seamless availability of DT can provide an interactive environment. It
may enable users to get insights into their personalized health conditions
and suggestions to improve their well-being. However, developing perso-
nalized DT for predicting medications based on a patient’s age, health
condition, comorbidities, and the genetic makeup (mutations and bio-
markers) is a complex task that requires further investigation. A future
challenge is to utilize machine and deep learning approaches to understand
personalized patient profiles based on biological signatures and clinical
phenotypes. It may enable physicians to prescribe personalized treatment
and precision healthcare to patients.

Personalized training
Medical treatments usually follow an established set of procedures and
protocols to ensure safe treatment. A DT modeling and simulation envir-
onment can provide an ideal solution to implement complex medical
procedures optimally. In doing so, it may provide an interactive, hands-on,
and evidence-based training environment to medical professionals, where
trainees may get 24/7 access to virtual medical resources, enhancing their
competence and interdisciplinary knowledge.Moreover, DTmay provide a
flexible environment for skill evaluation by incorporating rigorous assess-
ment, appraisal, and gauging procedures. A DT may serve as a resilient

https://doi.org/10.1038/s41746-025-01737-5 Review

npj Digital Medicine |           (2025) 8:520 19

www.nature.com/npjdigitalmed


resource even in emergency conditions, allowing paramedic staff to receive
fast-paced 24/7 training for dealing with critical situations or pandemics.

Despite the numerous advantages of DT technology in leveraging
medical training, it may suffer from critical challenges as well. For example,
modeling evidence-based training and adaptability mechanisms based on
cutting-edge research and best practices in a DT environment is very
challenging. Furthermore, complying with legal, ethical, and safety stan-
dards, alongwith cultural sensitivity issues, to leverage effective personalized
training throughDT is a future challenge. Therefore, there is still a long way
to go to create personalizedDT trainers that can provide professional-grade
training comparable to that of experienced healthcare professionals for
effectively handling crisis situations.

Interdisciplinary coordination
As a multidisciplinary field, SDT requires effective communication among
stakeholders (e.g., patients, data scientists, bioinformatics specialists, and
healthcare professionals) to ensure seamless development, integration, and
innovation in the healthcare domain. Facilitating such collaboration pro-
motes actionable insights and knowledge transfer among stakeholders,
which is crucial for effective SDT implementation.

Furthermore, standardizing communication protocols can streamline
structured data sharing and role-based access control, both of which are
essential for fostering a collaborative environment that integrates diverse
expertise from healthcare and technology. Therefore, modeling a versatile
interdisciplinary SDT framework in the healthcare domain, where all sta-
keholders achieve a win-win scenario, remains a significant challenge.

Key actionable steps for interdisciplinary coordination among experts
from data science, medicine, and engineering include:
1. Shared Goals: Define actionable goals aligned with the priorities and

objectives of relevant stakeholders.
2. Standardized Communication Protocols:Develop protocols tomitigate

communication gaps and foster a culture of diversity and
collaboration.

3. Advanced Healthcare Platforms: Leverage cutting-edge technologies
such as AI, ML, AR, VR, ER, DT, and blockchain to create advanced
healthcare metaverse platforms for seamless collaboration in the
digital world.

4. Training andWorkshops:Organize interdisciplinary sessions to equip
stakeholders with essential interdisciplinary knowledge and expertise.

5. Feedback Mechanism: Establish regular channels to highlight and
coordinate unfinished tasks, improving workflow efficiency and pro-
gress tracking.

6. Appointing Facilitators: Consult interdisciplinary leaders to resolve
communication gaps by streamlining shared workflows and fostering
team cohesion.

7. Key Performance Indicators (KPIs) Metrics: Utilize KPIs to evaluate
interdisciplinary coordination and refine objectives and strategies
accordingly.

User experience
For effective human-computer interaction, a DT may embody properties
such as responsive web design, fast loading web apps, easy access and
navigation, personalized dashboards, browser compatibility, and custo-
mer feedback mechanisms. Moreover, user experience can be improved
by creating intuitive user interfaces and informative graphs. This may aid
in an increased understanding of data. It may empower patients, tech-
nologists, and healthcare professionals to make more informed decisions
about ongoing medical conditions. However, devising effective
mechanisms for capturing and understanding user preferences and
leveraging them to enhance user experience in the digital arena is a
significant challenge.

Digital twin availability
Like many other new and demanding technologies, initial DT products
are likely to be costly, considering general market trends. Due to financial

disparities, life-changing and life-saving DT technology may only be
accessible to wealthy patients, thereby promoting social inequality and
unfairness32 and further exacerbating socio-economic disparities29,32.
Henceforth, it is imperative for governments, non-profit organizations,
and health insurance companies to invest in the R&D of DT technology.
Doing so may help make DT technology available to the general popu-
lation. Additionally, it may potentially mitigate the trend of healthcare
technology usage being contingent on social status and economic
well-being.

Digital twin scalability
DT ranks among the most demanding technologies of the information era,
which is presumed to be readily adopted by future healthcare systems.
Achieving this requires the development of expandable and adaptable
approaches for creatingmore robust and flexibleDT solutions in the future.
A scalable DTmay scale up horizontally or vertically, thereby aligning with
the Digital Twin as a Service (DTaaS) paradigm. In the case of horizontal
expansion,DTaaSmay facilitate the emergence of newDT(s)within theDT
ecosystem, whereas vertical expansion refers tomaturing the existingDT(s)
by adding new functionality under the DTaaS mechanism. In any case,
scalability would increase the amount of data received, processed, and
analyzed by the DT ecosystem.

However, ensuring efficiency while accommodating increasing user
requirements is paramount for implementing scalable DT architecture in
themedical domain34.Achieving this entails rigorous research into futuristic
DT systems capable of accommodating the growing functionality and
demand of society at both local and global levels, while addressing corre-
sponding scalability-related bottlenecks. However, enhancing scalability
would introduce complexities in DT systems, necessitating more robust
solutions for data storage, processing, networking, and communication. By
proactively planning and addressing such challenges, data scalability issues
may be properly addressed, and the optimized performance of SDTsmay be
ensured in the future.

Digital twin—a decision support system
Information and Communication Technologies (ICTs) have been pivotal
in the digitization and automation of industries, including healthcare.
Thanks to ICTs for significantly contributing to materializing the con-
cept of social distancing during the COVID-19 outbreak, thereby saving
millions of lives during the pandemic. In the prevailing scenario, there
may be variability between the outcomes of DTs and real-world
healthcare systems. Therefore, ICTs still have a long way to go in imi-
tating complex natural processes of the human body and realizing the
idea of a fully functional humanoid DT7.

Since DT technology is in its early stages of adoption within the
healthcare sector, it may be considered more suitable for decision support
rather than decision making29. Establishing trust in the decision-making
capabilities ofDTsdependson their ability to accurately predict earlydisease
diagnosis and suggest preventive measures accordingly. Closing the dis-
parity between DTs and physical-world healthcare systems is imperative to
optimize the capabilities of DTs in enhancingmedical decision-making and
represents a significant research challenge to tackle.

Intelligent digital twin (IDT)—hospital process optimization
ecosystem
By conducting predictive analyses, a DT can serve as a valuable resource for
streamlining hospital processes, such as patient influx management, staff
scheduling, medical equipment maintenance, parking allocation, and
building infrastructure adaptation. However, within the evolving landscape
of digital healthcare, there is a growing demand for an IDT ecosystem. Such
an ecosystem can comprehensively address the complex challenges of
process optimization in the healthcare domain, offering end-to-end solu-
tions for these critical areas.

The proposed IDT architecture may comprise four layers of DTs to
ensure hospital process optimization. At the grassroots Layer-1,
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departmental DTs may exist to execute basic departmental-specific pro-
cesses within a hospital. Building upon this foundation, Layer-2may consist
of inter-departmental DTs, focusing on process optimization and seamless
coordination across various departments in ahospital environment. Layer-3
may include inter-domain DTs, facilitating cross-domain process optimi-
zation, such as forwarding an inventory shortage request from a hospital to
the corresponding supplier’s domain. Finally at Layer-4, a central core DT
may orchestrate end-to-end problem-solving and collaboration among
various hospitals to achieve healthcare optimization across regions, coun-
tries, and continents globally.

The central hub of the IDT may critically analyze data, identify bot-
tlenecks, and disseminate optimized solutions to bottleneckedDTs through
a feedback-looping mechanism. Such a DT clustering approach can
empower human experts tomake informed decisions and tackle worldwide
societal issues, including starvation, water crises, climate change, and so on.
However, unlocking the full potential of IDTs demands extensive investi-
gation to overcome the complexities of such a sophisticated architecture. By
harnessing advanced technologies and fostering interdisciplinary colla-
boration, the IDT ecosystem has the capacity to revolutionize service
delivery, enhance patient care, and address complex healthcare challenges
on a global scale.

Digital twin—development cost and time
AhealthcareDT system requires a combination of various technologies and
skill sets. Designing such a system necessitates healthcare domain knowl-
edge as well as technological expertise in various areas such as big data
analytics, machine/deep learning, AI, IoT, cloud/edge computing, database
management, data visualization, and VR/AR/Mixed Reality (MR). Devel-
oping DTs using diverse technologies and skill sets may result in robust
system design and development.

However, the downside is increased cost, complexity, and time con-
sumption. Therefore, it is the key responsibility of the DT designer to
proactively assess the aims and outcomes of theDTmodel, so that aDT can
be devised usingminimal efforts and resources. Building robustDT systems
with minimal cost and time is another research challenge pertaining to DT
system architecture.

Ethical considerations
Ethical considerations in healthcare demand transparency and respect for
patient autonomy within the DT environment. Transparent communica-
tion about the purpose of data usage and storage fosters trust between
patients and healthcare providers, encouraging and motivating patients to
share information confidently.ADTsystemmayensurepatient autonomy34

by empowering patients with control over their data, including the ability to
manage and revoke consent at any time. Furthermore, a DT may facilitate
informed consent34 by notifying patients about the usage, storage, and
analysis of their data while emphasizing the associated benefits for their
well-being.

Additionally, informingpatients abouthigh standards of dataprivacy–
such as encryption (e.g., Advanced Encryption Standard56, Homomorphic
Encryption47, Elliptic Curve Cryptography57), access control (e.g., Role
Based Access Control58, Attribute Based Access Control59), and anonymi-
zation (e.g., Differential Privacy60, l-diversity61), – is crucial for achieving
customer satisfaction.However, integrating all these requirements into aDT
environment is a challenging task that requires further investigation.

Ethical considerations may also involve promoting demographic
diversity. This can be achieved by encouraging equitable representation and
respecting cultural sensitivity in collecting, storing and examining data.
Such practices may enable equal and easier participation of diverse groups,
ensuring data authenticity, fairness and preventing biases. Moreover,
maintaining ahigh level of data fairness in decision-making is essential. This
can be achieved by training DT models on diverse, representative and
balanced datasets29. However, achieving data fairness while considering
demographic diversity poses a significant challenge and requires further
investigation.

Regulatory compliance
Regulatory compliance involves ensuring thatDT technology complieswith
relevant laws, procedures, and standards for regulating patient data. The
primary objective is to uphold high standards of security, integrity, con-
fidentiality, privacy, availability, and protection of health-related data.
Regulatory compliance fosters transparency in data usage and storage,
guarantees patient rights, and promotes innovation34. It instills confidence
among patients in sharing their personalized information readily, thereby
streamlining data collection processes and enabling the availability of vast
volumes of real-time healthcare information for conducting disease analysis
and innovating treatment methodologies.

Currently, a multitude of laws governing healthcare-related data pro-
cessing has been promulgated worldwide. These include the E.U.-based
General Data Protection Regulation (GDPR)29, the U.S.-based Health
Insurance Portability and Accountability Act (HIPAA)62, the Japan-based
Act on the Protection of Personal Information (APPI)63, and the Australia-
based Privacy Act 198864. Additionally, regulations from governing bodies
like the European Medicines Agency and the U.S. Food and Drug
Administration (FDA) play a crucial role. Furthermore, the International
Medical Device Regulators Forum65 is a key player in establishing common
healthcare device-related regulatory standards to promote cross-border
collaboration and healthcare innovation.

Given the growing influence of AI technology in the healthcare sector,
the European Artificial Intelligence Act (AI Act)66 has recently been intro-
duced to regulate the safe and sensible deployment of AI within healthcare
applications. Likewise, the FDA is actively outlining guidelines for incor-
porating AI/ML technology into medical devices. Furthermore, standards
for information securitymanagement systems, such as ISO 27001, exist and
may serve as valuable resources for supporting future innovations in the
healthcare sector.

To summarize, navigating regulatory compliance remains a complex
challenge in the realm of healthcare-related DT. However, in the growing
era of AI technology, there is an urgent need to expedite the drafting of new
regulations (e.g., regarding data protection, dissemination, and patient
approval33) to keep abreast of state-of-the-art innovations in healthcare-
related R&D. It is also proposed to create an International Societal Digital
Twin Regulatory Organization and Global Healthcare Metaverse Regula-
tions Authority for drafting effective laws and procedures for resolving the
regulatory issues among regions, bringing the stakeholders to one platform,
and meeting the demands of healthcare-related Digital Twin technologies
and the metaverse for welcoming futuristic healthcare innovations in the
medical field.

Emerging paradigms in societal digital twins
This section explores next-generation paradigms advancing SDTs toward
proactive, intelligent, and human-centric systems across public health and
future smart societies.

Innovations in AI-aided digital twins
The convergence of Artificial Intelligence, cognitive systems, distributed
learning, and human-centric modeling is redefining the capabilities of DTs.
This evolution is producing intelligent, collaborative, and personalized
systems that go far beyond traditional simulation. SDTs now operate across
public health, education, mobility, and governance to anticipate needs,
coordinate large-scale interventions, and support ethically aligned decision-
making. In this section, we synthesize five key paradigms-Generative,
Cognitive, Explainable, Federated, and Human-Centric Digital Twins-that
are shaping the next generation of SDTs, supported by recent advancements
in deep learning, affective computing, and edge-to-cloud orchestration.

• Generative Digital Twins: Generative Digital Twins are realized
through deep generative models such as variational autoencoders, dif-
fusion models, and generative adversarial networks, which enable the
synthesis of high-dimensional, time-dependent, and realistic data. Unlike
conventional simulation models, these systems learn from real-world
data to reproduce and forecast complex phenomena. In healthcare,
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generative twins are already transforming clinical trials by simulating
virtual control arms, patient trajectories, and counterfactual outcomes,
thereby reducing the cost and time required for patient recruitment. In
drug discovery, generative twins can replicate biological systems at
multiple levels-from single cells to whole organs-and perform in silico
perturbation experiments, supporting biomarker identification and
toxicity prediction. These models operate bidirectionally: initialized with
real patient or biological entity data, they generate predictions that feed
back into decision-making loops. As computational capacity and bio-
medical datasets grow, generative Digital Twins are expected to underpin
future large-scale, ethically compliant simulations in precision medicine
and societal-scale public health forecasting67.

• Cognitive Digital Twins: Cognitive Digital Twins extend traditional
digital twins by incorporating three intelligent layers: access, analytics, and
cognition. These layers enable real-time data communication, embedded
edge analytics, and complex decision-making capabilities. Unlike conven-
tional twins, cognitive twins act as autonomous agents that interpret con-
text, learn from interactions, and collaborate with other twins. In smart
manufacturing, they can self-diagnose anomalies, correlate operational data
with environmental and product-specific factors, and initiate adaptive
actions or seek assistance from peer twins. This distributed intelligence
enables predictive maintenance, process optimization, and cross-machine
learning. Translated to public health, cognitive twins could autonomously
assess evolving epidemiological trends, simulate interventionoutcomes, and
coordinate responses across digital health agents. Over time, their con-
tinuous learning feeds into a shared knowledge graph, enabling cumulative
intelligence and resilience across societal systems68.

• Explainable Digital Twins: Explainable Digital Twins embed princi-
ples of interpretable and trustworthy machine learning to ensure trans-
parency and auditability of AI-driven decisions. These systems use model-
agnostic techniques and inherently interpretable algorithms to clarify how
predictions aremade andwhich features influence outcomes. This is critical
in high-stakes domains such as healthcare and infrastructure, where
explainability fosters trust and regulatory compliance. For example, in
public health, explainable twins can justify risk forecasts for vulnerable
populations during pandemics. In critical infrastructure, they support
predictive maintenance by linking component degradation to specific
sensor signals. In governance, they enhance accountability by clarifyingwhy
certain interventions are prioritized during emergencies69.

• Federated Digital Twins: Federated Digital Twins are evolving into
interconnected networks that transcend isolated systems by forming a
unified, cyber-physical fabric-referred to as the Internet of FederatedDigital
Twins (IoFDT). These systems enable real-time cooperation between
diverse and distributed DTs through both horizontal (peer-level) and ver-
tical (hierarchical) interactions. In public health, this allows the integration
of lifestyle DTs with hospital systems for preventive care. In smart mobility,
autonomous vehicle twins can interoperate with traffic and city infra-
structure twins forpredictive routing. IoFDTs ensure scalability, low-latency
analytics, and context-aware coordination through AI-native networks and
edge-cloud orchestration. This shift from isolated DTs to federated intelli-
gence offers a resilient digital backbone for Society 5.0, enabling globally
coordinated yet locally autonomous services70.

• Human-Centric Digital Twins: These extend traditional digital twin
frameworks by integrating physiological, psychological, and cognitive
models to create personalized, adaptive digital replicas of humans. These
twins are particularly valuable in smart societal systems where human
well-being, learning, and participation are prioritized. In healthcare,
Human-Centric Digital Twins (HCDTs) can assist in real-time ergonomic
monitoring and mental health support through emotion-aware modeling.
In education, they can adapt teaching pace and content to individual cog-
nitive traits and learning preferences. In workforce development, HCDTs
support up-skilling and safe task delegation through dynamic capability
modeling. Enabled by real-time sensing, bidirectional feedback, and
knowledge-sharing frameworks, HCDTs bridge physical and virtual spaces
to enhance individual agency and systemic resilience71.

Metaverse arena: a futuristic approach for designing healthcare
metaverse as a smart service (HMaaSS)
Ametaverse is a fully connected digital universe, encompassing immersive
3D visual graphics (or virtual projections) of real world spaces. Each virtual
projection mimics the behavior of its corresponding physical-world object.

A user (represented as an avatar) may enter the fully immersive
environment of a metaverse using VR, AR, or MR headsets. They can
navigate the virtual world and interact immersively with virtual objects or
participants at a 360-degree angle in a multi-sensory manner (e.g., using
sight, sound, and sometimes touchviahaptic feedback).The environmentof
a metaverse can be categorized as either static or dynamic, as follows:

• Static Metaverse: The environmental constructs of a static metaverse
are rendered based on pre-designed visualizations. Therefore, users
experience the same immersive environment during each entry. For
example, virtual tours of amuseumwithfixed artifacts are a staticmetaverse
application, thereby making it suitable for training purposes.

• Dynamic Metaverse: The environmental constructs of a dynamic
metaverse are seamlessly updatedbasedon real-time communication and the
changing states of physical-world objects. Therefore, dynamic metaverse
incorporates DT technology. For instance, watching a hockey, cricket or
football match immersively in a virtual playground where avatars of players
update their movements based on the real-time actions of physical-world
players.

A static healthcare metaverse can serve as a cost-effective tool for con-
ducting training sessions for healthcare staff, where users can observe pro-
cedures from a 360-degree perspective. On the other hand, a dynamic
healthcaremetaversemayenable a teamofphysicians to interact immersively,
regardless of their physical location, for advanced healthcare delivery to
patients. For example, physicians canwearAR,VRorMRheadsets to inspect
a 3Dmodel of a patient’s heart (as aDT) from all angles in a virtual operation
theater. They can also predict outcomes of procedures, such as operating on
arteries or inserting stents, based on the prevailing health conditions of a
patient, such as blood flow or oxygen levels in the physical world.

A Societal Healthcare Metaverse (SHM) can be an efficient tool for
addressing infections at the societal level. For this purpose, a team of phy-
sicians, data scientist and decision makers from around the globe can meet
in a spatially-independent, fully immersive SHM environment to share
collaborative insights on managing infections and predicting their social
impact. Using simulations within the SHM, physicians can brainstorm
across geographical boundaries to analyze infection patterns at both local
and global scales. In the metaverse settings, data scientists can provide
predictive visualizations, and physicians can collaborate to suggest coun-
termeasures. Based on these recommendations, decision-makers can
implement quick action plans in real time.

A fully functional HMaaSS would provide a smart, cost-effective, and
flexible platform to deliver all healthcare-related services, including SDTaaSS,
as a modular offering, as depicted in Fig. 8. This would enable customers to
create customized, cost-effective, and on-demand solutions while avoiding
implementation complexities. Furthermore, HMaaSS could drive public
health innovation by facilitating novel healthcare solutions to protect
humanity against deadly diseases, especially infectious ones like COVID-19,
by integrating individual patient care with comprehensive societal strategies.
It could serve as a valuable resource for supporting global health efforts (e.g.,
international vaccination campaigns, real-time pandemic data monitoring)
and containing deadly pandemics like SARS-CoV-2 (COVID-19). By
enabling real-time tracking and response to pandemic dynamics (such as
infection initiation, spread, control, combat, and recovery), public health
campaigns could be effectively organized to contain and manage infections.

Although there is a growing trend in DT development, the metaverse
concept is still in its inception stages. Unlocking the full potential of
healthcare metaverse requires substantial research to establish intelligent
immersive environments that seamlessly integrate patient healthcare data
between virtual and physical counterparts. However, implementing the
metaverse demands specialized skill sets to efficiently integrate foundational
technologies such as DT, IoT, AI/ML, 5G/6G, cloud/edge computing, VR,
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AR,MR, and blockchain. Due to limited expertise inmetaverse integration,
ensuring seamless connectivity, compatibility, co-existence, interoper-
ability, and real-time synchronization among various technologies–without
introducing millisecond-level delays–remains a significant challenge.
Achieving such precise connectivity and compatibility is essential for rea-
lizing the true potential of themetaverse and presents an important area for
future research.

Conclusion
Digital twin technology presents enormous potential for revolutionizing the
healthcare sector. This survey explores its role in infection containment and

response by conceptualizing societal digital twin technology within a
structured framework. This survey contributes in many ways. It con-
ceptualizes SDT for infection control under a novel structured taxonomy
(Rehan’s Taxonomy) that categorizes SDTs into five categories, namely
infection initiation, spread, control, combat, and recovery. The proposed
classification can help to manage pandemics through different infection
response stages. By organizing numerous SDT approaches, this survey
highlights their validation strategies, generalizability, and limitations,
therebyunderscoring state-of-the-art developments in various areas of SDT.
Beyond classification, this survey examines various applications, data-
driven design issues, key components, limitations, potential challenges,
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Fig. 8 | Conceptualization of the interaction among DT, SDT, SDTaaSS, and
HMaaSS. This figure conceptualizes different levels of healthcare-related innovations
supporting the implementation of DT technology in the healthcare sector. aRepresents
various DTs encompassing different regions (i.e., Region#1, Region#2, and Region#3).
bDepicts multiple SDTs at the regional level. Here, the SDTs of Region#1 and Region#2
are governed by national, international, or global organizations based on a smart service

model.Meanwhile, the SDT ofRegion#3 operates as a standalone system,managed by a
regional organization. c Highlights various smart services paradigms, including the
SDTaaSS, which extends smart societal services for pandemic control to Region#1 and
Region#2. d Showcases the HMaaSS, which is designed to empower communities at
large by providing state-of-the-art healthcare services to enhance public well-being and
foster a globally healthy society.
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research opportunities, and evolving paradigms of DT technology in
healthcare. Additionally, it introduces the smart service-oriented concepts
of SDTaaSS andHMaaSS, which are expected to become viable soon, driven
by the growing demand for DT technology in healthcare. The impact of
these contributions is multi-fold. Its viability will be further supported by
advancements in sensors, IoT, communication networks (5G/6G), AI/ML,
data storage, cloud/edge computing, VR/AR/MR, and blockchain tech-
nologies. The availability of SDTaaSS and HMaaSS has the potential to
empower communities, enhance societal well-being, and contribute to the
creation of a healthier society and a promising future. It may help advance
healthcare innovation and assist in effectively combating pandemics (such
as COVID-19) across various levels of the social fabric, including local,
communal, regional, and global levels. Ultimately, the adoption of SDTs in
healthcare could drive transformative change, enabling data-driven deci-
sion-making, enhancing pandemic preparedness, and strengthening global
resilience against future outbreaks.

Data availability
No datasets were generated or analysed during the current study.
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