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Summary 
 
Accurate prediction of thermophysical properties of fluids is crucial for optimising processes involving CO₂-rich 

mixtures, particularly in CCUS. The Soave-Redlich-Kwong equation of state exhibits deviations when modeling 

non-ideal CO2-rich mixtures in the supercritical phase, necessitating advanced optimisation techniques. In this 

study, a novel hybrid SRK-neural network model was developed through integrating a vectorised SRK model 

with deep learning to enhance the accuracy of physical properties predictions, consists of a preprocessing scaling 

layer, a vectorised SRK EoS layer, and one or four hidden layers, trained using the MAPE loss function.The SRK-

NN model was validated against some experimental datasets for CO₂-N₂ mixtures with CO2 mole fraction ranging 

from 0.50365 to 0.9585, and pressure and temperature ranges of 8 – 99.93 MPa and 245 – 673.15 K, respectively. 

The results show reduction in the  average absolute relative deviation (AARD%), from 1.25 to 0.49% at high CO2 

concentrations. The one-hidden-layer SRK-NN variant provides more accurate predictions at various pressures 

compared to deeper architect.These new findings highlight the innovative application of integrating data-driven 

optimisation with classical EoS for accurate estimation of CO2-rich streams physical properties. This work offers 

a promising direction for future thermodynamic modelling of CCUS fluids with introducing a new and reliable 

technique. 
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Introduction 

 

A recommended methodology for reducing the continued risen of atmospheric carbon dioxide (CO2) 

level is to capture and transport it to a geological storage site, resulted in isolating a huge amount of 

CO2 for an extended period of time. The CO2-rich stream may contain a wide range of components 

known as impurities such as non-condensable gases (e.g., N2, O2, Ar, and H2), solvents (e.g., amines), 

light hydrocarbons (e.g., methane and ethane) [Chinello et al., 2024]. Non-condensable components or 

light hydrocarbons may significantly impact the density of CO2-rich mixtures compared to pure CO2. 

Therefore, Understanding the thermophysical properties of CCUS mixtures is critical, especially for 

designers and operators of pipeline transportation networks [Hoopanah et al., 2024]. Soave Redlich 

Kwong (SRK) EoSs as a cubic equation of state is widely used to calculate density due to its simplicity 

and availability in commercial software packages within the oil & gas industry [Péneloux et al., 1982; 

Soave, 1972]. 

 

In recent decades some researchers attempted to investigate the accuracy and applicability of various 

types of equations of state (EoSs) for modelling of thermophysical properties of binary CO2-mixtures. 

As an example, Nazeri et al. employed two cubic EoSs of SRK and PR with modified binary interaction 

parameters as well as the GERG-2008 EoS for modelling of density and phase equilibria of various 

CO2-rich binary mixtures. They found that the predictions by SRK in the gas phase were slightly more 

accurate than PR, while in the dense liquid/supercritical phase, predictions by PR were better than SRK. 

 

There are ongoing research studies on assessment of different EoSs in terms of applicability and 

optimisation of binary interaction parameters (BIPs) for cubic EoSs. Mantovani et al. measured 

experimental data for supercritical CO2 binary systems of nitrogen, oxygen and argon. Subsequently, 

the data were utilised for the calibration of the BIPs using PR, SRK-Peneloux and Benedict-Webb-

Rubin-Starling (BWRS) EoSs. The maximum likelihood algorithm was used to calculate the optimal 

value of BIP for each mixture. 

 

In this work, for the first time we are proposing the integration of artificial neural networks into a 

classical cubic EoS in order to improve the reliability and accuracy of the thermodynamic modelling. 

Firstly, a detailed review was carried out on the available experimental data of the density of CO2 binary 

mixtures in presence of nitrogen as impurity under variety of pressures and temperatures. Then, a new 

framework has been developed for calculation of density in the supercritical phase based on the SRK 

EoS. This novel framework was built based on the deep learning framework PyTorch [Paszke et al., 

2019] and consists in the vectorised SRK equation of state, one or four fully connected hidden layer(s). 

The neural networks (NNs) within the newly developed model are to fine-tune the SRK predictions by 

adjusting the parameters in the equation of state. This paper demonstrates how effective modifications 

of the attractive/repulsive forces between molecules using neural networks will improve the accuracy 

of the modelling outputs on thermophysical properties of complex fluids. 

 

Method and/or Theory 

 

The newly proposed SRK-NN model integrates the SRK EoS with a NN architecture to improve density 

predictions for CO₂-N₂ mixtures. The model pipeline begins with pre-processing of the experimental 

data. The specifications of the density experimental datasets for the binary mixtures of CO2 with N2 at 

supercritical phase have been shown in Table 1. 

We considered three categories involving a specific range of CO2 concentration. The first category of 

study focuses on a 96 datapoints system with a range of concentration below 0.6 mole fraction, the 

second one involves concentrations in the range of 0.6 < xCO2 < 0.8 with 84 datapoints, and the third 

one as more representative of CO2-rich mixtures, which covers compositional space of xCO2 ≥ 0.8, 
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consisted 190 datapoints. In total, there are 369 datapoints under the pressure and temperature ranges 

of 8 – 99.93 MPa and 245 – 673.15 K, respectively. 

 

Table 1. Density experimental data for the binary mixtures of CO2 -N2 at different compositional mole 

fraction and operating conditions within the supercritical phase  

Reference CO2 Concentration  Operating condition 

[Mantovani et al., 2012] 0.9021, 0.9585 
8 MPa - 20 MPa 

303.22 K - 383.14 K 

[Jeffery C. Seitz and 

James G. Blencoe, 1996] 
0.6 – 0.9 

19.94 MPa - 99.93 MPa 

673.15 K 

[Seitz et al., 1996] 0.6 – 0.9 
9.94 MPa – 99.93 MPa 

323.15 K – 573.15 K 

[Brugge et al., 1997] 0.50365 – 0.90921 
8 MPa – 70 MPa 

245 K – 450 K 

 

To continue the model pipeline, we manually vectorised the solution of the SRK EoS, thus, it took as 

inputs 𝑷 = (𝑃1, …,𝑃𝑛), 𝑻 = (𝑇1,…,𝑇𝑛), 𝐳 = (𝒛1,…,𝒛𝑛), Tc, Pc, and Ω where pressure and temperature are 

vectors, mole fraction is a matrix, 𝑛 denotes the number of samples processed concurrently and is often 

referred to the batch dimension, critical temperature, critical pressure, and acentric factor are scalars. In 

this way, the vectorised function can process a batch of inputs simultaneously rather than processing 

them one by one in a loop which result in accelerating modelling computation. Therefore, the input of 

the model includes P, T, z, Tc, Pc, and Ω, undergo pre-processing via a scaling layer and post-processing 

transforming inverse scaling layer, and its output is modelled density (Figure 1). 

 

To train and test the model, the gathered data points were divided into the training 70%, validation 15% 

and test 15% sets. The SRK-NN model has one or four fully connected hidden layer with different 

neurons. All hidden layers use the LeakyRelu activation function to consider nonlinearity with negative 

slope 0.01. Output layer has 8 neurones without activation function. The connection from the SRK layer 

to the output layer through NN layers enables direct learning of fundamental physical trends while 

refining predictions through deep network layers and optimising BIPs. The training process minimises 

the mean absolute percentage error (MAPE) loss to optimise model weights and biases.  

  

Figure 1. The first layer of the network is a vectorised SRK EoS, ensuring a physics-informed 

foundation before deep learning-based corrections. The model architecture consists of one or four fully 

connected hidden layers with Leaky ReLU activation, capturing complex thermodynamic interactions. 

The output layer provides a scaled density prediction, which is then adjusted by an inverse scaling layer 

to recover the physical density value. The model is trained using the Mean Absolute Percentage Error 

(MAPE) loss, and backpropagation updates the weights and biases accordingly. 

 



 

 

 

World CCUS Conference  

1 - 4 September 2025, Bergen, Norway  

Results and Discussion 

 

The comparative analysis of the SRK-NN model against the standalone SRK EoS reveals a substantial 

reduction in absolute relative deviation (ARD%) across varying pressures and compositions. In both 

cases, the SRK-NN model with one or four hidden layers consistently outperforms the SRK EoS, 

particularly in regions of high non-ideality (near critical point e.g., low pressures). Notably, the SRK 

EoS demonstrates large deviations at specific pressure ranges (e.g., ≤ 10 MPa), whereas the SRK-NN 

models effectively smooth these discrepancies (Figure 2). 

 

The model with four hidden layers exhibits slightly higher deviations at select points compared to the 

one-hidden-layer model, indicating a possible trade-off between network depth and overfitting. 

Nevertheless, both SRK-NN models achieve better agreement with expected trends, confirming their 

ability to refine the density predictions (Figure 3).  

 

  

 

Figure 2. Comparison of the absolute relative deviation (ARD%) of density predictions using the SRK 

EoS and SRK-NN EoS models for a CO₂-N₂ mixture at (I) 300 K with xCO₂ = 0.90921, where the SRK-

NN models (both one-hidden-layer and four-hidden-layer variants) exhibit lower deviations across the 

pressure range, demonstrating improved accuracy over the conventional SRK EoS. (II) 303.22 K with 

xCO₂ = 0.9585. where the SRK EoS shows significant deviations at lower pressures (up to 10 MPa), 

while the SRK-NN models substantially reduce errors. The one-hidden-layer SRK-NN model provides a 

more accurate prediction compared  to more complex NN structure(e.g., four hidden layer). 

 

Figure 3. Comparison of the absolute relative deviation (ARD%) of density predictions using the SRK 

EoS and SRK-NN EoS models for a CO₂-N₂ mixture at three categories where (I) xCO2  ≤ 0.6, (II) 0.6 
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< xCO2 < 0.8, and (III) xCO2 ≥ 0.8. The SRK-NN model with one and four hidden layers both 

consistently outperforms the SRK EoS. 

 

Conclusions 

 

This work, for the first time, presented a novel fast and reliable methodology through efficient 

vectorisation of SRK EoS using PyTorch for modelling of the density of two binary CO2-rich mixtures 

at supercritical phase. This integration successfully improves the accuracy of density predictions for 

CO₂-N₂ mixtures, particularly in complex pressure-dependent regimes (near to the critical point). The 

results demonstrate the importance of network architecture selection, with a balance required between 

model depth and generalisation. As the continuation of this research work, we will extend our work to 

vectorise more advanced equation of the state with a focus on optimising the network structure and 

extending this methodology to other gas mixtures relevant for both CCUS and hydrogen applications. 
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