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 A B S T R A C T

Real-time anomaly detection in high-frequency seasonal time series is commonly addressed using prediction-
based methods, which require waiting for new values to perform subsequent predictions and demand 
continuous processing over time. This work introduces a novel framework for real-time anomaly detection 
in seasonal time series, with a practical implementation using Conditional Variational Autoencoders based 
on Multilayer Perceptrons. Our approach eliminates the need for historical time series data at inference 
time, instead generating a one-shot long-term expected time series that enables immediate evaluation of 
streaming data with minimal computational resources. Empirical evaluations on real-world seasonal time 
series demonstrate that the proposed approach achieves state-of-the-art performance compared in both semi-
supervised and unsupervised settings. The framework provides computational efficiency and low energy 
consumption, making it suitable for deployment in commodity hardware and offline environments.
1. Introduction

Recent advancements in computational and storage capabilities, 
together with the explosion of big data availability, have significantly 
highlighted the significance of time series analysis, particularly in 
anomaly detection. Anomaly detection, which identifies data instances 
deviating from expected behavior [1], has become critical across var-
ious sectors, including finance, manufacturing, healthcare, cybersecu-
rity, and earth sciences.

Time series data can be categorized as univariate (UTS) or multivari-
ate (MTS). UTS involve a single variable that changes over time, such as 
temperature readings every 30 min. Conversely, MTS encompass multi-
ple variables per data point, exemplified by simultaneous recordings of 
temperature, humidity, and wind. The proliferation of sensors has led to 
higher-dimensional data, often characterized by noise, non-stationarity, 
and seasonality. These factors complicate the distinction between true 
anomalies and natural variations, making the anomaly detection task 
more challenging.

Anomaly categorization varies across domains, but three primary 
patterns predominate: point, collective, and contextual anomalies.
Point anomalies are individual data instances that significantly deviate 
from the baseline normal pattern, thus appearing abnormal when 
examined in isolation. Collective anomalies, in contrast, emerge from a 
group of related data points that, while potentially normal individually, 
exhibit anomalous behavior when considered collectively. Contextual 
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anomalies are data instances that deviate from the norm only within 
specific contexts, necessitating consideration of both contextual and 
behavioral attributes for identification. The contextual nature of these 
anomalies implies that what constitutes normal behavior in one setting 
may be anomalous in another.

Time series anomaly detection methods can be broadly categorized 
into three principal approaches: prediction-based, proximity-based, and 
reconstruction-based. Prediction-based methods utilize predictive mod-
els to forecast future values in a time series, identifying anomalies when 
observed values significantly deviate from predictions. Common tech-
niques include autoregressive models, recurrent neural networks (RNN, 
LSTM), and linear regression. Proximity-based methods detect anoma-
lies by measuring the distance between data points, flagging those sig-
nificantly distant from their neighbors as anomalous. Key techniques in-
clude K-Nearest Neighbors (KNN) and DBSCAN. Reconstruction-based 
methods employ learning models to reconstruct time series values, 
identifying anomalies when there are substantial differences between 
the original and reconstructed values. Autoencoders, Principal Compo-
nent Analysis (PCA), and clustering models are frequently used in this 
approach.

Prediction-based and proximity-based methods are generally capa-
ble of rapid inference. Proximity-based approaches, such as KNN, do 
not require a temporal window for inference, but may be less effective 
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with complex or high-dimensional data. Reconstruction-based methods, 
while potentially more robust for complex data, often have slower 
inference times and are therefore less suitable for high-frequency time 
series.

We introduce a novel approach for real-time anomaly detection 
(RTAD) in seasonal time series, employing a conditional variational 
autoencoder (cVAE) with a Multilayer Perceptron architecture. Unlike 
conventional sequential prediction-based methods that depend on his-
torical data during inference, the proposed RTAD-cVAE generates new 
time series data by sampling from a conditional probability distribution 
based on time-dependent conditions.

The proposed approach offers enhanced performance over existing 
methods in handling seasonal time series: (1) it enables real-time 
anomaly detection; (2) it is energy efficient in high-frequency data 
streams; and (3) it exhibits robustness to partial or missing data.

The rest of this article is structured as follows. Section 2 provides a 
comprehensive review of anomaly detection approaches, categorizing 
them into proximity-based, reconstruction-based, and prediction-based 
methods, and contextualizing our proposed method within the existing 
landscape of techniques. Section 3 outlines the proposed real-time 
anomaly detection framework based on conditional variational au-
toencoders, detailing the helical encoding, the timestamp trick, and 
the complete architecture for seasonal time series anomaly detection. 
Section 4 describes the experimental setup, including datasets, base-
line methods, evaluation criteria, and implementation details for com-
prehensive performance assessment. Section 5 presents quantitative 
comparisons with state-of-the-art techniques across multiple datasets, 
including ablation studies, sensitivity analyses, robustness evaluations, 
scalability evaluations, and energy efficiency measurements. Section 6 
discusses the performance characteristics, computational advantages, 
operational benefits, and limitations identified through our comprehen-
sive experimental evaluation. Finally, Section 7 concludes this work 
and outlines the directions for future research.

2. Related work

Anomaly detection approaches for time series data can be classified 
according to their training paradigms as supervised, semi-supervised 
or unsupervised. In practical applications, supervised training faces 
significant limitations due to the inherent scarcity of labeled data and 
its ineffectiveness against previously unknown anomalous phenomena. 
Consequently, the proposed model is compared with the models pre-
sented in Table  1 under unsupervised or semi-supervised paradigms. 
Unsupervised training involves training on data that contains both nor-
mal and anomalous observations (unlabeled). Semi-supervised training, 
also known as novelty detection, utilizes only normal-class data during 
training to establish a baseline of typical behavior and evaluates new 
observations against this learned baseline.

2.1. Proximity and isolation approaches

Proximity and isolation approaches identify anomalies through their 
distance from normal data patterns or their ease of isolation, operating 
on the assumption that anomalies exhibit significant deviation from 
typical observations in the feature space.

The one-class support vector machine (OCSVM) [2] is an outlier 
detection method derived from Support Vector Machines, typically 
trained in a semi-supervised manner using only normal data to define 
a boundary around normal observations. Isolation Forest (iForest) [3] 
applies the random forest concept to isolate outliers and can be trained 
with unsupervised learning on mixed data, requiring a preset contam-
ination ratio. Unlike many methods that first profile normal behav-
ior, iForest directly identifies anomalies by exploiting the fact that 
anomalies are typically easier to isolate than normal instances.

Median Absolute Deviation (MAD-AD) [4] provides a statistical 
framework for anomaly detection by calculating deviations from the 
2 
median rather than the mean. This approach offers enhanced robust-
ness to outliers by measuring distances between data points and the 
median in terms of median distance itself, making it particularly ef-
fective for handling skewed distributions where mean-based methods 
might fail.

Deep Isolation Forest (DIF) [5] enhances the traditional isolation 
forest concept by incorporating deep learning techniques. By employing 
deep representation ensembles, it achieves non-linear isolation capa-
bilities in the original data space that surpass conventional tree-based 
approaches. This method bridges the gap between traditional isolation 
techniques and modern neural representations, resulting in improved 
detection performance for complex anomaly patterns.

Calibrated One-class classifier for Unsupervised Time Series
Anomaly detection (COUTA) [6] introduces a neural network archi-
tecture specifically designed for anomaly detection in time series data. 
COUTA learns comprehensive representations of normal patterns and 
incorporates a calibration mechanism to establish more reliable de-
cision boundaries. This approach effectively identifies anomalies as 
deviations from learned normality patterns while minimizing detection 
threshold sensitivity issues common in other methods.

Skyline [7] represents an ensemble approach that combines multiple 
expert detectors to provide real-time anomaly detection by aggregating 
anomaly scores from diverse methods, leveraging the strengths of dif-
ferent proximity-based techniques for improved detection performance.

2.2. Reconstruction-based approaches

Reconstruction-based methods learn a low-dimensional latent repre-
sentation of the data to reconstruct the original input. These approaches 
operate on the assumption that anomalies, being rare occurrences, are 
not effectively captured in the latent space mapping.

Principal Component Analysis (PCA) [8], while effective for di-
mensionality reduction, suffers from limitations in handling non-linear 
relationships and struggles with spatial–temporal correlations in mul-
tivariate settings. Autoencoder methods, such as LSTM-AE [9], use AE 
to learn effective latent space representations, although they require 
careful calibration of latent space dimensionality to balance between 
meaningful pattern generalization and unwanted noise incorporation.

Generative methods, including Variational Autoencoders (VAE) [10]
and Generative Adversarial Networks (GAN), address overfitting chal-
lenges through different mechanisms. VAE approaches such as LSTM-
VAE [11] introduce regularization into the latent space through prob-
abilistic encoders and decoders. GANs apply regularization to recon-
struction errors through adversarial learning frameworks. MAD-GAN
[12] effectively captures non-linear latent interactions by leverag-
ing spatial–temporal correlations. TadGAN [13] enhances stability by 
incorporating cycle consistency loss during training, mitigating the 
overfitting problems common in traditional reconstruction methods. 
BeatGAN [14] further refines these approaches by focusing specifically 
on detecting anomalous beats or segments within time series through 
specialized adversarial reconstruction networks.

The Auto-encoder with Regression (AER) [15] represents a hybrid 
approach that extends reconstruction-based methods by combining an 
auto-encoder focused on reconstruction with a regression component 
aimed at prediction. By employing a joint objective function, AER gen-
erates both reconstruction-based and prediction-based anomaly scores 
concurrently, harnessing the benefits of both methodological families.

Transformer-based architectures offer a computationally efficient 
alternative to LSTM-based models commonly used in VAE and GAN ap-
proaches for time series, leveraging self-attention mechanisms for tem-
poral modeling. Anomaly Transformer [16] utilizes Anomaly-Attention 
to calculate Association Discrepancy between prior-association (bias 
towards adjacent anomalies) and series-association (global associations 
for normal points), combining reconstruction loss with normalized 
association discrepancy for anomaly scoring. TranAD [17] employs 
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Table 1
Overview of baseline anomaly detection methods compared with the proposed approach. Training mode indicates the composition 
of the training dataset: semi-supervised methods use normal data only, while unsupervised methods use mixed normal and 
anomalous data during training.
 Ref. Method Dimensionality Approach Training mode  
 [19] MA Univariate Statistical Semi-supervised 
 [20] SIMA Univariate Statistical Semi-supervised 
 [19] SARIMA Univariate Statistical Semi-supervised 
 [20] MA+SARIMA Univariate Statistical Semi-supervised 
 [20] SIMA+SARIMA Univariate Statistical Semi-supervised 
 [21] Multi-SARIMA Univariate Statistical Semi-supervised 
 [21] MA+Multi-SARIMA Univariate Statistical Semi-supervised 
 [21] SIMA+Multi-SARIMA Univariate Statistical Semi-supervised 
 [22] TBATS Univariate Statistical Semi-supervised 
 [23] Twitter ADVec Univariate Statistical Semi-supervised 
 [7] Skyline Univariate Machine learning Semi-supervised 
 [24] Numenta Univariate Machine learning Semi-supervised 
 [25] NumentaTM Univariate Machine learning Semi-supervised 
 [16] Anomaly Transformer Multivariate Deep learning Semi-supervised 
 [17] TranAD Multivariate Deep learning Semi-supervised 
 [18] TimesNet Multivariate Deep learning Semi-supervised 
 [26] DeepAnT Multivariate Deep learning Semi-supervised 
 [27] Piecewise AD Univariate Statistical Unsupervised  
 [4] MAD-AD Univariate Statistical Unsupervised  
 [28] Prophet Univariate Statistical Unsupervised  
 [2] OCSVM Multivariate Machine learning Unsupervised  
 [3] iForest Multivariate Machine learning Unsupervised  
 [29] LSTM-FD Multivariate Deep learning Unsupervised  
 [30] LSTM-AD Multivariate Deep learning Unsupervised  
 [31] AD-LTI Multivariate Deep learning Unsupervised  
 [13] TadGAN Multivariate Deep learning Unsupervised  
 [6] COUTA Multivariate Deep learning Unsupervised  
 [5] DIF Multivariate Deep learning Unsupervised  
 [15] AER Multivariate Deep learning Unsupervised  
attention-based sequence encoders to capture temporal trends while in-
corporating focus score-based self-conditioning and adversarial training 
to amplify reconstruction errors and improve stability.

However, vanilla attention mechanisms may struggle with anomaly 
detection as they calculate similarity between all temporal point pairs, 
potentially being dominated by prevalent normal patterns. To address 
this limitation, TimesNet [18] transforms temporal data into 2D repre-
sentations based on periodicity, enabling the application of 2D convo-
lutional kernels to model intricate temporal variations more effectively 
while maintaining the benefits of attention-based processing.

2.3. Prediction-based approaches

While generative models aim to solve the more general problem 
of learning a joint distribution over all variables, providing a deeper 
understanding of the data generation process, discriminative models 
focus on learning a predictor based on observations. Prediction-based 
methods for anomaly detection forecast future data points based on 
past patterns, identifying anomalies when substantial differences occur 
between predicted and actual values.

Moving Average (MA) represents a time series as deviations from 
the mean, though it can produce false positives by assuming normally 
distributed data values. Seasonal Integrated Moving Average (SIMA) 
models extend MA by incorporating seasonal differencing to account 
for cyclic trends. Seasonal Autoregressive Integrated Moving Average 
(SARIMA) models [32] offer more complexity to handle both trends 
and seasonality, though with increased computational requirements.

Multi-SARIMA [21] extends SARIMA by incorporating multiple sea-
sonal components, allowing it to model datasets with two or more 
seasonal trends. TBATS (Trigonometric seasonality, Box–Cox trans-
formation, ARMA errors, Trend and Seasonal components) [22] is a 
multi-seasonal forecasting model that handles complex seasonal pat-
terns, including non-integer and high-frequency seasonality. It uses 
Fourier representations and ARMA error correction, making it effective 
for datasets with multiple seasonalities.
3 
Prophet [28] employs an additive regression model that fits non-
linear trends with multiple seasonal components, showing effectiveness 
in business forecasting applications with strong seasonal patterns. It 
works particularly well with time series data that exhibit daily, weekly, 
and yearly seasonality patterns, along with holiday effects. Piecewise 
Median Anomaly Detection (Piecewise AD) [27] processes time series 
data by dividing it into fixed-size windows and detects anomalies using 
a decomposable series model, making it effective for handling local 
context variations. Twitter’s Anomaly Detection (Twitter ADVec) [23] 
is specifically designed to target seasonal anomalies in social network 
data, automatically computing thresholds for anomaly detection in 
periodic time series with strong seasonal components.

Hybrid statistical approaches like MA+SARIMA [20] and MA+
Multi-SARIMA [21] combine the strengths of different models in a 
two-step process. The faster MA model provides initial anomaly labels, 
while the more accurate but computationally intensive SARIMA model 
verifies only those data points flagged as potential anomalies. This 
approach balances speed and accuracy by using the simpler model to 
reduce the workload of the more complex one.

Deep Learning prediction-based methods generally require less do-
main knowledge than statistical models but may result in more false 
detections compared to reconstruction methods [15]. LSTM-based ap-
proaches include LSTM-FD [29], a prediction-driven approach leverag-
ing a frame-to-frame Long Short-Term Memory network that identifies 
anomalies through analysis of prediction error distributions, and LSTM-
AD [30], which employs a multi-source prediction scheme for anomaly 
detection. LSTM-DT [33] employs separate LSTM networks for each 
channel, reducing errors in high-dimensional outputs.

DeepAnT [26] implements a deep learning approach using Convolu-
tional Neural Networks for time series anomaly detection, with separate 
modules for prediction and anomaly detection. AD-LTI [31] calculates 
Local Trend Inconsistency to assess the deviation of a data point from 
predictions generated from multiple previous frames.

Numenta [24] implements Hierarchical Temporal Memory (HTM), 
a biologically-inspired sequence memory algorithm for online anomaly 
detection. HTM learns patterns in streaming data and automatically 
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Fig. 1. Comparison of prediction-based anomaly detection approaches on high-frequency time series. (a) Sliding-window-based methods require continuous 
retraining on recent historical data to generate new forecasts. These methods typically predict only a few steps ahead to avoid error accumulation, necessitating 
frequent model updates as new observations become available. (b) The proposed approach generates long-term predictions (e.g. daily patterns) without requiring 
recent historical observations, enabling immediate anomaly detection from the start of monitoring.
adapts to evolving data distributions. The algorithm predicts future 
values and identifies anomalies by comparing these predictions against 
actual observations. Building on this foundation, NumentaTM [25] ex-
tends the approach to simultaneously detect both spatial and temporal 
anomalies within continuous data streams.

Most deep learning anomaly detection methods for time series use 
sliding windows to transform sequential data into supervised learning 
problems. These methods predict future values based on historical 
observations within fixed-size windows, requiring careful tuning of 
window size and prediction horizon. In real-time applications, sliding 
window methods introduce detection lag as they must wait for suf-
ficient historical data before making predictions. In the presence of 
missing data, the predictive accuracy can degrade significantly until 
the window stabilizes again.

For seasonal time series, we leverage the timestamp trick [34] to 
eliminate historical data dependency at inference. Our approach gener-
ates long-term forecasts by sampling from a learned latent distribution 
conditioned on seasonal context, enabling real-time anomaly detection 
by comparing generated patterns with streaming data regardless of 
missing observations. Fig.  1 compares our generation-based method 
(Fig.  1(b)) with sliding window approaches (Fig.  1(a)). Although sliding 
window methods require warm-up periods and optimal window size 
selection, our approach provides immediate anomaly detection without 
these constraints. The following section provides a detailed explanation 
of the proposed approach.
4 
3. Prediction-based anomaly detection with the timestamp trick

We address the problem of real-time anomaly detection in high-
frequency seasonal time series under the following constraints: inde-
pendence from historical data at inference time, robustness to partial or 
missing streaming data, computational efficiency for commodity hard-
ware, and offline operation capability. Our solution leverages a frame-
work based on helical encoding and the timestamp trick from [34], 
which transforms sequential forecasting into a conditional generation 
problem. This section presents our implementation using a conditional 
variational autoencoder for anomaly detection.

3.1. Data preprocessing

The helical encoding [34] provides an explicit geometric repre-
sentation of seasonal patterns in time series data by positioning each 
observation on a helical trajectory. This encoding enables models to 
learn additional temporal coordinates that, in turn, enable ordering 
relationships to be established among independent outputs of a genera-
tive model. We implement a simplified version of the helical encoding, 
using only the xy-coordinates of the helix.
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Consider a multivariate time series with 𝑛 features and length 𝑇 : 
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where 𝑥𝑡,𝑖 denotes the observation of the 𝑖th variable at time 𝑡. We 
assume the existence of at least one seasonal pattern of known length 
𝜆 within the time series.

Two additional features, 𝐱𝑡,𝑛+1 and 𝐱𝑡,𝑛+2, are incorporated into each 
observation 𝐱𝑡 as follows: 
𝐱𝑡,𝑛+1 = cos𝛩(𝑡), 𝐱𝑡,𝑛+2 = sin𝛩(𝑡). (2)

The function 𝛩 in Eq.  (2) maps the timestamp 𝑡 to radians: 

𝛩(𝑡) = 𝑡 ⋅ 2𝜋
𝜆
, (3)

where 𝜆 represents the length of the seasonal period we intend to be 
made explicit to the model (e.g., daily or weekly seasonality) expressed 
in temporal units.

For complex seasonal patterns, our framework can accommodate 
multiple seasonalities through hierarchical regime modeling. For in-
stance, weekly patterns may exhibit distinct behaviors between week-
days and weekends, or each day may follow a characteristic pattern 
that repeats over time. The model can explicitly represent these dis-
tributional variations by incorporating additional categorical variables 
that capture the relevant temporal context.

Models within our framework are trained on these 𝑛 + 2 features 
and required to predict both the original time series features and the 
temporal coordinate pair 𝐱̂𝑡,𝑛+1 and 𝐱̂𝑡,𝑛+2, with support for multiple 
seasonal patterns. The following section presents a model architecture 
suitable for this purpose.

3.2. Predictions with a conditional variational autoencoder

Let 𝐱 denote a time series observation and 𝑐 a categorical regime 
variable (e.g., weekday/weekend, day-of-week, holiday status). The 
forecasting problem can be formulated as estimating the joint distri-
bution of 𝐱 conditioned on 𝑐. The marginal distribution over observed 
variables 𝑝𝜃(𝐱|𝑐) is expressed as: 

𝑝𝜃(𝐱|𝑐) = ∫ 𝑝𝜃(𝐱, 𝐳|𝑐) 𝑑𝐳 = ∫ 𝑝𝜃(𝐳|𝑐)𝑝𝜃(𝐱|𝐳, 𝑐) 𝑑𝐳, (4)

where 𝐳 the latent vector.
However, Eq.  (4) lacks an efficient analytical solution due to the 

intractability of the posterior distribution 𝑝𝜃(𝐳|𝐱, 𝑐). To approximate 
𝑝𝜃(𝐱|𝑐), we employ a Conditional Variational Autoencoder (cVAE) [35,
36], which extends Variational Autoencoders (VAE) [37] to incorporate 
conditional variables. The cVAE consists of an encoder network that 
approximates the posterior distribution over latent variables, making 
posterior inference tractable, and a decoder network that estimates the 
conditional likelihood.

We propose the architecture shown in Fig.  2, employing Multi-Layer 
Perceptrons (MLPs) with two fully connected layers for both encoder 
and decoder networks.

3.2.1. Training
During training, each observation 𝐱 is associated with a label 𝑐 that 

encodes the seasonal context. For weekly patterns, 𝑐 indicates the day 
of the week; for daily patterns, it may represent the hour of the day. 
This label is not a manual annotation but is deterministically computed 
from the observation timestamp.

At each training step, batches of observations 𝐱 are concatenated 
with their corresponding labels 𝑐 and fed to the encoder network. The 
encoder parametrizes the approximate posterior distribution 𝑞𝜃(𝐳|𝐱, 𝑐)
as a diagonal Gaussian with mean 𝝁 and variance 𝝈2.
5 
Fig. 2. Conditional variational autoencoder architecture for seasonal time 
series generation.

To enable gradient-based optimization, we employ the
reparametrization trick [37] to sample latent vectors 𝐳: 
𝐳 = 𝝁 + 𝝈 ⊙ 𝝐, (5)

where 𝝐 ∼  (0, 𝐈) is random noise, and ⊙ denotes element-wise 
multiplication. The encoder-derived parameters 𝝁 and 𝝈 enable back-
propagation while 𝝐 maintains the stochastic nature of 𝐳.

The decoder network receives the latent vector 𝐳 and condition 𝑐 as 
input, defining the conditional likelihood 𝑝𝜙(𝐱|𝐳, 𝑐). The decoder output 
is the reconstructed observation 𝐱̂.

The training objective combines reconstruction fidelity with latent 
space regularization: 

min
∑

𝑖
rec(𝐱𝑖, 𝐱̂𝑖) + 𝛽

(

KL[ (𝜇𝑖, 𝜎𝑖) ∥  (0, 𝐼)]
)

, (6)

where rec measures reconstruction quality, KL is the Kullback–Leibler 
divergence ensuring well-structured latent representations, and 𝛽 con-
trols the regularization strength [38].

3.2.2. Forecasting
After training, the cVAE generates new observations by sampling 

latent vectors from the prior distribution 𝐳 ∼  (0, 𝐈) and transforming 
them through the decoder conditioned on the desired regime 𝑐.

The generative process produces unordered observations distributed 
along the encoded seasonal pattern of length 𝜆. The timestamp trick 
[34] enables one to reorder these independent observations using the 
predicted xy-coordinates of the helix. The encoded features 𝐱̂𝑡,𝑛+1 and 
𝐱̂𝑡,𝑛+2 allow reconstruction of index 𝑡 via: 

𝑡 = round
(

(

arctan2
(

𝐱̂𝑡,𝑛+2, 𝐱̂𝑡,𝑛+1
)

mod 2𝜋
)

⋅
𝜆
2𝜋

)

mod 𝜆. (7)

Modular operations ensure that the output of arctan 2 falls within 
[0, 2𝜋), which is then rounded and assigned to [0, 𝜆), establishing or-
dering relationships among the predictions.

However, the ordered observations form an irregular time series 
that requires regularization through temporal bucketing for comparison 
with actual data. Since latent space sampling is stochastic, some tempo-
ral buckets may remain empty. We address this by ensuring sufficient 
sample generation to fill all buckets with high probability.

For a seasonal period discretized into 𝑏 = 𝜆
𝜈  buckets (where 𝜈 is the 

sampling frequency), we generate 𝑚 samples such that the probability 
of filling all buckets is: 

𝑃 (𝑚, 𝑏) ≈

(

1 −𝛷

(

−
√

𝑚(𝑏 − 1)
𝑏

))𝑏

(8)

where 𝛷(𝑥) is the standard normal cumulative distribution function.
This probabilistic framework assumes uniform sampling across buck-

ets and independence between bucket occupancy. The approximation 
leverages the normal approximation to the binomial distribution for 
large 𝑚.

Once sufficient observations are generated, we perform temporal 
resampling by aggregating values within each bucket using a suitable 
function (e.g., mean, median). The number of generated samples 𝑚
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Table 2
Datasets used in this study.
 Dataset Dataset origin Dimensions Size Anomaly obs. 
 SynMul16 Synthetic 16 346k 15%  
 Dodgers Loop Sensors Real-world 1 4k 6%  
 Taxi Real-world 1 10k 10%  
 Real Tweets (AMZN) Real-world 1 16k 10%  
 Real Tweets (FB) Real-world 1 16k 10%  
 Real Tweets (GOOG) Real-world 1 16k 9%  
 MIT-BIH Arrhythmia Real-world 14 167k 1%  

also controls the prediction variability through the smoothing factor 
𝑠, where 𝑚 = 𝑏 ⋅ 𝑠. Higher values of 𝑠 increase the likelihood of 
multiple observations per bucket, resulting in more stable aggregated 
predictions with reduced intrinsic variability.

3.3. Anomaly detection

During inference, the model predicts at least one complete seasonal 
period of the expected time series, enabling a real-time comparison 
between incoming observations and their expected values. The anomaly 
score for an observation is computed using distance metrics such as 
Manhattan distance or Euclidean distance, where 𝐱𝑡 represents the 
actual value and 𝐱̂𝑡 the predicted value: 

𝑑1(𝐱𝑡, 𝐱̂𝑡) =
𝑛
∑

𝑖=1

|

|

𝐱𝑡,𝑖 − 𝐱̂𝑡,𝑖|| , (9)

𝑑2(𝐱𝑡, 𝐱̂𝑡) =

√

√

√

√

𝑛
∑

𝑖=1

(

𝐱𝑡,𝑖 − 𝐱̂𝑡,𝑖
)2. (10)

Higher distance values indicate more significant anomalies. Our 
framework is agnostic to the specific thresholding method employed, 
accommodating both simple statistical approaches based on distribu-
tional properties (such as standardized scores, interquartile ranges, 
or robust deviation measures) and more sophisticated adaptive tech-
niques. The simpler statistical methods are particularly well-suited 
for real-time anomaly detection scenarios due to their computational 
efficiency and minimal memory requirements, making them ideal for 
deployment in resource-constrained environments where low latency 
is critical.

4. Experimental setup

We evaluate the RTAD-cVAE model on different datasets using 
comprehensive baseline comparisons and standardized evaluation met-
rics. The following subsections delve into the details of the datasets, 
comparative methods, evaluation metrics, and implementation specifics 
that constitute our experimental framework and anomaly detection 
workflow.

4.1. Datasets

Our experiments involved five univariate seasonal time series ex-
tracted from public datasets containing real-world data. We also con-
sidered a synthetic multivariate seasonal time series to simulate diverse 
scenarios of anomalies. Additionally, we used a time series without ev-
ident seasonality based on a real-world cardiac arrhythmia dataset. Ta-
ble  2 provides an overview of the datasets used during the experimental 
phase.
6 
SynMul16 dataset. SynMul16 is a synthetic multivariate time series 
dataset generated using GutenTAG [39]. The dataset consists of 16 
channels derived from fundamental waveform transformations, sam-
pled at 5-s intervals over a 20-day period (345,600 timestamps). The 
base signal incorporates an electrocardiogram (ECG) pattern with su-
perimposed sinusoidal and cosinusoidal components. The channels ex-
hibit diverse temporal characteristics through systematic transforma-
tions of the base signals, including phase-shifted variants (quarter-
day and half-day lags), amplitude modulations with daily periodicity, 
logarithmic and square-root transformations, moving averages, high-
frequency residual components, seasonal differencing, and non-linear 
transformations. This design ensures representation of various signal 
behaviors commonly encountered in real-world monitoring systems. 
Anomalies were explicitly injected across multiple channels, comprising 
approximately 15% of the dataset. These anomalies represent a com-
prehensive taxonomy of temporal irregularities: mean shifts, amplitude 
fluctuations, variance changes, platform anomalies (constant values), 
extremum anomalies (global minima and local maxima), and frequency 
perturbations.

Dodgers loop sensor dataset. The Dodgers Loop Sensor dataset [40], 
available from the University of California, Irvine (UCI) machine learn-
ing repository, comprises traffic data collected near the Dodgers sta-
dium in Los Angeles. It captures unusual traffic patterns after games, 
spanning 25 weeks with 288 time slices per day (5 min count aggre-
gates).

NYC Taxi dataset. The NYC Taxi dataset from the Numenta Anomaly 
Benchmark (NAB) [24] is a univariate time series containing 10,320 
observations with 30 min frequency from July 1, 2014, to January 31, 
2015. Each observation represents the total number of taxi passengers 
in NYC at a given time point.
Real Tweets dataset. The Real Tweets dataset from the Numenta
Anomaly Benchmark (NAB) [24] comprises Twitter mentions of major 
publicly traded companies. We selected three representative signals: 
GOOG, FB, and AMZN. Each signal records the number of mentions for 
its corresponding symbol every five minutes.
MIT-BIH Arrhythmia dataset. The MIT-BIH Arrhythmia database [41] 
contains 48 half-hour excerpts of two-channel ambulatory ECG record-
ings. These recordings have a sampling rate of 360 Hz, an 11-bit 
resolution, and a range of 10 mV. We selected 14 patients with fewer 
than 30 annotated anomalies. For each patient, we detected R peaks 
to extract fixed-length heartbeat windows (144 samples). Each ob-
servation was labeled as normal or anomalous based on the original 
annotations. Subsequently, we constructed a multivariate time series 
dataset by treating each patient as a separate channel and concatenat-
ing the beats. This resulted in a final multivariate time series with 1163 
beats.

4.2. Baseline methods

We evaluated our proposed RTAD-cVAE method against established 
baseline approaches across multiple datasets, conducting comparisons 
in both semi-supervised and unsupervised settings. The evaluation 
strategy combined the results of previous studies with our own imple-
mentations of established methods to ensure comprehensive coverage.

Our experimental design varied based on available benchmarks. For 
the SynMul16n dataset, we implemented an unsupervised evaluation 
against four methods: MAD-AD [4], Prophet [28], COUTA [6], and 
DIF [5]. We utilized PyOD [42,43] implementations for MAD-AD and 
DIF, while employing DeepOD [5,6] for COUTA. The dataset was 
partitioned using a 5:1:4 ratio for training, validation, and test sets. 
For univariate methods like MAD-AD and Prophet, we trained separate 
models for each signal.
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The Dodgers Loop Sensor dataset evaluation followed a dual ap-
proach. First, we compared against results from [31], which imple-
mented OCSVM [2], iForest [3], Piecewise AD [27], LSTM-FD [29], 
LSTM-AD [30], and AD-LTI [31] in an unsupervised setting. Data 
preprocessing included hourly frequency aggregation and feature stan-
dardization. Additionally, we conducted semi-supervised comparisons 
against MAD-AD, Prophet, COUTA, and DIF, training on the first 3000 
days using only non-game days (1800 observations) and evaluating on 
the final 1000 days.

For the NYC Taxi dataset, we leveraged two existing studies with 
semi-supervised approaches. Williams et al. [21] implemented statis-
tical models that included various combinations of Moving Average, 
SIMA, SARIMA, Multi-SARIMA, and TBATS [22]. We trained our model 
on three weeks of anomaly-free data and evaluated performance on 
the remaining data containing five anomalous windows. The second 
comparison utilized results from [26], which evaluated Numenta [24], 
NumentaTM [25], Skyline [7], Twitter ADVec [23], and DeepAnT [26] 
using a 40%–60% development-test split.

The Real Tweets evaluation compared our unsupervised approach 
against TadGAN [13] and AER [15], two state-of-the-art generative 
methods. We directly compared the results with the Orion 0.6.0 bench-
mark [44,45], aggregating the time series into 10 min intervals with 
z-score normalization.

Finally, for the MIT-BIH Arrhythmia dataset, we conducted semi-
supervised comparisons against TranAD, TimesNet, and Anomaly
Transformer using DeepOD implementations [5,6]. The first 40% of the 
dataset served as the training set due to its anomaly-free nature, while 
the remainder constituted the test set.

4.3. Evaluation criteria

Anomaly detection performance is evaluated using Precision, Recall, 
F1-score, and Area Under the ROC Curve (AUC-ROC) metrics, as these 
metrics have been used in previous studies that we are comparing our 
approach to.

Precision quantifies the model’s ability to avoid false alarms by 
measuring the proportion of correctly identified anomalies among all 
instances classified as anomalous: 
Precision = TP

TP + FP (11)

where TP (True Positives) represents correctly identified anomalies, 
and FP (False Positives) represents normal instances incorrectly clas-
sified as anomalous.

Recall (or sensitivity) measures the model’s effectiveness in identify-
ing actual anomalies by calculating the fraction of anomalous instances 
correctly detected: 

Recall = TP
TP + FN (12)

where FN (False Negatives) represents anomalous instances that were 
incorrectly classified as normal.

The F1-score provides a balanced measure when both false positives 
and false negatives carry similar importance, combining precision and 
recall into a single metric: 

F1 = 2 ⋅ Precision ⋅ RecallPrecision + Recall (13)

In time series anomaly detection, precision and recall have been in-
terpreted differently across various studies. To ensure fair comparisons 
with existing work, we adapted our evaluation methodology for each 
benchmark by aligning our definitions of TP, FP, and FN with their 
respective approaches.

For instance, Wu et al. [31] based anomaly scoring on overlap-
ping segments. They defined a true positive (TP) as the detection of 
at least one anomalous point within an anomalous window, while 
false positives (FP) were points outside anomalous windows classified 
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as anomalous. In contrast, Sperl et al. [20] considered anomalous 
windows as single anomalies.

On the other hand, Munir et al. [26] treated values within the 
outlier window as individual points. Wong et al. [15] counted an 
observation as a true positive when a known anomalous window over-
lapped with any detected window. A false negative was when a known 
anomalous window had no overlap with detected windows, and a false 
positive was when a detected window did not overlap with any known 
anomalous region.

We also considered range-based precision (Precision𝑇 ) and recall 
(Recall𝑇 ) metrics, introduced by Tatbul et al. [46]. These metrics 
extend classical precision and recall by considering anomalies as ranges 
rather than isolated points. They account for partial overlaps between 
predicted and actual anomaly ranges, providing a more comprehensive 
evaluation. This approach can be customized to reflect domain-specific 
priorities regarding detection timing and range fragmentation.

For threshold-independent evaluation, we employed the Area Un-
der the Receiver Operating Characteristic Curve (AUC-ROC), which 
assesses the model’s discriminative ability across various threshold 
settings: 

AUC-ROC = ∫

1

0
TPR(FPR−1(𝑡)) 𝑑𝑡 (14)

where TPR represents the true positive rate and FPR the false posi-
tive rate. This metric facilitates model comparison and performance 
assessment across various operating points.

4.4. Implementation details

We developed two variational autoencoder architectures tailored to 
the complexity of the time series data. For univariate time series, we 
designed a model with seven conditional categories representing days 
of the week. The encoder architecture consists of two dense hidden 
layers with 128 and 64 units respectively, with the decoder employing 
a symmetric structure. We set the latent space dimensionality to 5 
and utilized the Adam optimizer with a learning rate of 0.001. For 
multivariate time series, we adopted a deeper architecture featuring 
three hidden layers (256, 128, and 64 units), expanded the latent space 
to 16 dimensions, and increased the batch size to 64.

The cVAE architecture incorporates inherent regularization via the 
Kullback–Leibler (KL) divergence term, which constrains the latent 
space towards the prior distribution. To prevent posterior collapse and 
promote meaningful representation learning, we apply KL annealing 
during the initial 30 epochs, progressively increasing the KL weight 
from 0 to 𝛽. Models were trained for 300 epochs with a batch size 
of 32, using mean squared error as the reconstruction loss. Training 
stability and generalization were ensured through monitoring of train-
ing and validation losses, with early stopping based on reconstruction 
error on the validation set. The implementation was carried out using 
TensorFlow 2.0 and Python 3.

Anomaly scores were computed using Eq.  (9) across all experi-
ments. We employed dataset-specific thresholding approaches tailored 
to each dataset’s characteristics. For the SynMul16 dataset, we utilized 
the Peaks-Over-Threshold (POT) technique [47] applied to normalized 
anomaly scores for each channel. The NYC Taxi and MIT-BIH Ar-
rhythmia datasets employed z-score thresholding [48], while the Real 
Tweets dataset used signal-specific fixed thresholds (AMZN: 0.7, FB: 
0.3, GOOG: 0.7).

Fig.  3 presents an end-to-end overview of the anomaly detection 
process. During the training phase, the model learns the conditional 
joint distribution of historical data, with conditions such as day-of-week 
derived directly from observation timestamps. The preprocessing phase 
involves data standardization and the addition of engineered features 
as defined in Eq.  (2). During the operational phase, the model generates 
observations independently by taking latent vectors and temporal con-
ditions as input. The generated observations undergo post-processing 
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Fig. 3. End-to-end workflow of the proposed anomaly detection system based on RTAD-cVAE. During training, the encoder–decoder learns the conditional 
distribution of historical data. In the generation phase, the decoder produces samples from latent vectors and conditional labels. The anomaly detection phase 
compares incoming observations with generated baselines to compute anomaly scores and perform threshold-based classification.
through timestamp reconstruction, enabling proper temporal order-
ing and aggregation to obtain the expected time series. Finally, each 
incoming observation is classified as anomalous or normal through 
threshold-based comparison with the generated baseline.

5. Results

Our comprehensive experimental evaluation of RTAD-cVAE encom-
passes quantitative comparisons with baseline methods, performance 
analysis across diverse datasets, ablation studies, thresholding strategy 
exploration, and investigation of architectural design choices.

5.1. Anomaly detection results

We compare the proposed method against baseline approaches 
spanning statistical, machine learning, and deep learning paradigms on 
both synthetic and real-world datasets with diverse seasonal patterns 
and anomaly characteristics. The semi-supervised and unsupervised 
experiments were repeated 30 times to account for stochastic variation 
8 
in the model’s generation process, with results reported as mean values 
accompanied by standard deviations and 95% confidence intervals.

5.1.1. Semi-supervised setting
For the NYC Taxi dataset using window-level evaluation metrics 

(Table  3), RTAD-cVAE achieved perfect detection with 5 true positives, 
0 false positives, and 0 false negatives, resulting in precision, recall, and 
F1-score of 1.0000. The model demonstrated consistent performance 
across all 30 experimental runs (standard deviation: ±0.0).

Using point-level evaluation metrics on the NYC Taxi dataset
(Table  4), RTAD-cVAE achieved an F1-score of 0.394 (±0.003) with 
a 95% confidence interval of (0.393, 0.395). Fig.  4 shows the t-SNE 
(t-distributed Stochastic Neighbor Embedding) projection of the latent 
space into three dimensions for the NYC Taxi dataset.

For the MIT-BIH Arrhythmia dataset (Table  5), the metric eval-
uation was conducted on individual observations. On this dataset, 
RTAD-cVAE achieved an average F1-score of 0.007 (±0.002), with a 
95% confidence interval of (0.003, 0.01).
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Table 3
NYC Taxi dataset semi-supervised anomaly detection results with window-level anomaly detection 
metrics. Best values in bold.
 Method TP FP FN Precision Recall F1-score 
 SARIMAa 2 1464 3 0.0014 0.4000 0.0027  
 SIMAa 3 1587 2 0.0019 0.6000 0.0038  
 TBATSa 3 1391 2 0.0022 0.6000 0.0043  
 Multi-SARIMAa 4 1425 1 0.0028 0.8000 0.0056  
 SIMA+SARIMAa 3 1072 2 0.0028 0.6000 0.0056  
 MAa 2 654 3 0.0030 0.4000 0.0061  
 SIMA+Multi-SARIMAa 3 475 2 0.0063 0.6000 0.0124  
 MA+SARIMAa 2 131 3 0.0150 0.4000 0.0290  
 MA+Multi-SARIMAa 2 93 3 0.0211 0.4000 0.0400  
 NumentaTMa 4 178 1 0.0220 0.8000 0.0428  
 RTAD-cVAE 5 0 0 1.0000 1.0000 1.0000  
a Results from [21]
Table 4
NYC Taxi dataset semi-supervised anomaly detection results with point-level 
anomaly detection metrics. Best values in bold.
 Method Precision Recall F1  
 Twitter ADVeca 0.000 0.000 0.000 
 Skylinea 0.000 0.000 0.000 
 DeepAnTa 1.000 0.002 0.004 
 NumentaTMa 0.850 0.006 0.012 
 Numentaa 0.770 0.007 0.014 
 RTAD-cVAE 0.430 0.363 0.394 
a Results from [26]

Fig. 4. t-SNE projection of the latent space learned from the NYC Taxi dataset, 
reduced to three dimensions. Different colors indicate different days of the 
week (categories 0–6).

Table 5
MIT-BIH Arrhythmia dataset semi-supervised anomaly detection results with 
point-level anomaly detection metrics. Best values in bold.
 Method Precision Recall F1  
 Anomaly Transformer 0.0028 0.5493 0.0056  
 TranAD 0.0056 0.8028 0.0112  
 TimesNet 0.0090 0.8451 0.0179 
 RTAD-cVAE 0.0033 0.9156 0.0066  

5.1.2. Unsupervised setting
On the SynMul16 dataset (Table  6), RTAD-cVAE achieved an F1-

score of 0.1422 (±0.0268) with a 95% confidence interval of (0.1311, 
0.1532). The model obtained a Precision𝑇  of 0.3992 and Recall𝑇  of 
0.0984.
9 
Table 6
SynMul16 dataset unsupervised anomaly detection results. Best values in
bold.
 Method Precision𝑇 Recall𝑇 F1  
 Prophet 0.3636 0.0765 0.1264  
 MAD-AD 0.7941 0.0717 0.1315  
 DIF 0.9091 0.0714 0.1325  
 COUTA 0.9365 0.0714 0.1328  
 RTAD-cVAE 0.3992 0.0984 0.1449 

Table 7
Dodgers Loop Sensors dataset unsupervised anomaly detection results. Best 
value in bold.
 Method AUC-ROC 
 iForesta 0.535  
 OCSVMa 0.591  
 Piecewise ADa 0.751  
 LSTM-FDa 0.829  
 LSTM-ADa 0.859  
 AD-LTIa 0.923  
 RTAD-cVAE 0.980  
a Results from [31]

For the Dodgers Loop Sensors dataset in the unsupervised setting 
(Table  7), RTAD-cVAE achieved an AUC-ROC of 0.9796 (±0.0013) with 
a 95% confidence interval of (0.9791, 0.9801). Fig.  5 illustrates the 
model’s predictions and detected anomalies on this dataset.

On the Real Tweets dataset (Table  8), RTAD-cVAE achieved F1-
scores of 0.667, 1.000, and 0.800 for the AMZN, FB, and GOOG signals, 
respectively.

5.2. Ablation study

Given the intentional simplicity of our model architecture, which 
employs a basic multi-layer perceptron (MLP), the conditional ar-
chitecture and smoothing factor represent the primary enhancements 
distinguishing our approach from a vanilla VAE. We systematically 
removed each component to quantify its individual contribution to 
model performance.

For each ablation variant, we trained the model for 30 epochs on the 
NYC Taxi dataset without early stopping. We evaluated performance 
using Mean Absolute Error (MAE) on the validation set, which contains 
only non-anomalous data. MAE was selected as our evaluation metric 
because it directly measures the model’s reconstruction accuracy of 
normal patterns.

Removing the conditional architecture, which incorporates tem-
poral contextual information (e.g., day of week), resulted in a MAE 
increase of 0.96% (statistically significant, 𝑝 < 10−8, Cohen’s 𝑑 =
−17.74).
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Fig. 5. Anomaly detection results on the Dodgers Loop Sensor dataset. The actual time series is shown in blue, the model’s predicted baseline in red, and detected 
anomalies as red markers. Vertical shaded bands indicate known anomalies.
Table 8
Real Tweets dataset unsupervised anomaly detection results. Best values in bold.
 Signal Method FP FN TP Recall Precision F1  
 
AMZN

TadGANa 0 3 1 0.250 1.000 0.400 
 AERa 1 1 3 0.750 0.750 0.750 
 RTAD-cVAE 0 2 2 0.500 1.000 0.667 
 
FB

TadGANa 4 0 2 1.000 0.333 0.500 
 AERa 3 0 2 1.000 0.400 0.571 
 RTAD-cVAE 0 0 2 1.000 1.000 1.000 
 
GOOG

TadGANa 0 1 2 0.667 1.000 0.800 
 AERa 0 1 2 0.667 1.000 0.800 
 RTAD-cVAE 0 1 2 0.667 1.000 0.800 
a Results from [45]
Table 9
Baseline hyperparameter configuration for RTAD-cVAE model derived from 
TPE optimization. These values represent the starting point for sensitivity 
analysis across different time series datasets.
 Hyperparameter Value  
 Encoder units 256, 128 
 Decoder units 128, 256 
 Latent space size 16  
 Learning rate 0.0002  
 KL annealing epochs 15  
 KL annealing factor 1.0  
 Smoothing factor 𝑠 20  

Removing the smoothing factor 𝑠 caused a substantial 59.32% in-
crease in MAE (statistically significant, 𝑝 < 10−47, Cohen’s 𝑑 = −53.90). 
The smoothing mechanism serves two critical functions: ensuring no 
empty buckets in predictions (as 𝑠 is a factor of the parameter 𝑚 in Eq. 
(8)) and controlling prediction variability. To handle NaN values during 
evaluation, we assigned infinity values to null predictions, providing 
a consistent comparison framework. Fig.  6 illustrates the relationship 
between smoothing factor values and prediction stability.

All ablation results demonstrate statistical significance with large 
effect sizes, confirming that both conditioning and smoothing compo-
nents contribute substantially to model performance.

5.3. Sensitivity analysis

We conducted a sensitivity analysis to examine how key param-
eters influence model performance, offering practical guidelines for 
practitioners. We analyzed critical hyperparameters including latent 
space dimensionality, network architecture, learning rate, and KL an-
nealing settings. Additionally, we investigated data efficiency by eval-
uating performance with varying training set sizes and assessed in-
ference parameters, including smoothing factor impact and threshold 
determination methods.
10 
5.3.1. Training hyperparameter sensitivity
We conducted training hyperparameter sensitivity analysis of RTAD-

cVAE architecture on SynMul16 and NYC Taxi datasets. We established 
a baseline model configuration (Table  9) derived through hyperparame-
ter optimization using Tree-structured Parzen Estimator (TPE) [49,50], 
which navigates the parameter space by modeling distributions of 
hyperparameters that yield promising results.

The parallel coordinates plots in Figs.  7 and 8 visualize how differ-
ent hyperparameter combinations affect Mean Absolute Error (MAE), 
with darker blue lines representing better-performing configurations.
Latent space dimensionality. The model trained on a multivariate
dataset achieves the best performance with a latent dimension of 16, 
while the model trained on a univariate NYC Taxi dataset performs 
better with dimensions 2 to 4.
Network architecture. A larger model [256,128,64] × [64,128,256] 
units has proven to perform better on a multivariate time series, while 
a smaller model [128,64] × [64,128] has achieved better results on a 
univariate time series.
Learning rate. The model trained on multivariate data performs better 
with a lower learning rate (approximately 3.89E−04) compared to the 
model trained on univariate data (approximately 1.05E−05).
KL annealing parameters. Models trained on multivariate datasets ben-
efit from a higher annealing factor, typically over 0.9. In contrast, 
models trained on univariate datasets perform best with a much lower 
annealing factor, usually around 0.01.

5.3.2. Training set size sensitivity
We evaluated data efficiency by testing RTAD-cVAE performance 

with varying portions of the NYC Taxi dataset, ranging from 10% to 
50% of available training data. Fig.  9 presents violin plot visualization 
of reconstruction error (MAE) distributions.

Using 10% of training data yields MAE ≈ 0.37. Increasing to 25% 
produces substantial improvement (MAE ≈ 0.33, 10.8% reduction). 
Further increase to 50% achieves MAE ≈ 0.305 (additional 7.6% re-
duction). The conditional architecture requires exposure to at least one 
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Fig. 6. Ten different generations of the same seasonal period of a time series with different smoothing factors. A higher smoothing factor 𝑠 reduces forecast 
variability, resulting in a more stable baseline for anomaly detection. (a) Forecasts with smoothing factor 𝑠 = 10. (b) Forecasts with smoothing factor 𝑠 = 100.
example of each defined conditional category to produce meaningful 
predictions for that class. The narrow violin plot distributions indi-
cate consistent performance across experimental runs, demonstrating 
approach stability even with reduced training data.

5.3.3. Inference parameters sensitivity
We analyzed two key inference parameters using the SynMul16 

dataset: smoothing factor (𝑠) and anomaly threshold determination 
methods.

Smoothing factor. The smoothing factor regulates the number of sam-
ples drawn from latent space during inference to estimate reconstruc-
tion distribution. Fig.  10 shows smoothing factor impact on detection 
performance and computational requirements. F1 score remains rela-
tively stable across most smoothing values, with modest improvements 
around 𝑠 = 20 and 𝑠 = 140.

Threshold determination. We evaluated five linear-complexity threshold 
calculation approaches suitable for high-frequency time series applica-
tions:

• Decomposition-based (DECOMP) [51]: Applies PCA to decom-
pose cumulative distribution function of reconstruction errors, 
setting threshold at maximum decomposed matrix value.
11 
• Z-Score [48]: Normalizes reconstruction errors, calculating devi-
ation from mean in standard deviation units.

• Inter-Quartile Region (IQR) [52]: Sets threshold at 𝑄3+1.5⋅𝐼𝑄𝑅
where 𝑄3 is third quartile and IQR is quartile difference.

• Median Absolute Deviation (MAD) [53]: Establishes thresholds 
based on median deviation from median.

• Peaks-Over-Threshold (POT) [47]: Based on Extreme Value The-
ory [54], models error distribution tail using Generalized Pareto 
Distribution parameters.

Fig.  11 compares methods using F1 scores across multiple exper-
imental runs. Decomposition-based and Z-Score approaches demon-
strate superior performance (median F1 scores ≈ 0.21) with low vari-
ance. IQR method shows moderate performance (median F1 ≈ 0.15). 
POT exhibits greater variance, while MAD consistently underperforms 
(median F1 ≈ 0.125).

5.4. Robustness evaluation

To evaluate the resilience of RTAD-cVAE to real-world data imper-
fections, we conducted experiments assessing model robustness against 
two common challenges: measurement noise and missing data. All 
experiments were performed on the SynMul16 dataset with smoothing 
factor 𝑠 = 20.
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Fig. 7. Parallel coordinates plot of hyperparameter sensitivity analysis on the univariate NYC Taxi dataset. Darker blue lines indicate configurations with lower 
MAE (better performance).
Fig. 8. Parallel coordinates plot of hyperparameter sensitivity analysis on the multivariate synthetic dataset (SynMul16). Darker blue lines indicate configurations 
with lower MAE (better performance).
Measurement noise. We evaluated the impact of measurement noise 
by applying Gaussian perturbations to test data at three intensity 
levels: 10%, 30%, and 50% of the feature standard deviation. Fig.  12 
shows model resilience to noise interference. At 10% noise intensity, 
the model maintains consistent F1 score distribution with median 
performance ≈0.13 and limited variance. When noise increases to 
30%, median performance remains stable, though distribution exhibits 
greater variability with occasional performance spikes reaching F1 
scores of 0.28. At 50% noise level, median F1 score increases slightly 
to ≈0.14, though with substantially higher variance.

Comparable median performances across noise levels indicate sta-
ble core detection capability. The wider performance distribution at 
higher noise levels demonstrates reduced consistency under severe 
perturbations.
12 
Missing data. We assessed resilience to data sparsity by randomly 
removing observations at three levels: 5%, 15%, and 25% of values. 
Missing values were imputed using feature-wise mean substitution 
before model training.

Fig.  13 illustrates the detection performance response to increas-
ingly incomplete data. The model maintains relatively stable perfor-
mance until the 25% threshold, where reliability begins to degrade, 
particularly evident in the extended lower tail of the distribution and 
increased variance. Performance remains stable through moderate data 
loss (5%–15%), with median F1 scores maintaining consistency. At 25% 
missing values, both median performance and distribution consistency 
deteriorate, suggesting a critical threshold for reconstruction quality.

The model maintains relatively stable performance until the 25% 
threshold, where reliability begins to degrade, particularly evident in 
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Fig. 9. Impact of training set size on model performance for the NYC Taxi 
dataset. Violin plots show the distribution of Mean Absolute Error (MAE) 
across multiple experimental runs as the percentage of available training data 
increases from 10% to 50%. Lower MAE values indicate better reconstruction 
performance. The results demonstrate significant performance improvements 
when increasing from 10% to 25% of training data, with more modest gains 
when further increasing to 50%.

Fig. 10. Impact of smoothing factor 𝑠 on model performance metrics. F1 
score remains relatively stable across most smoothing values, with modest 
improvements around 𝑠 = 20 and 𝑠 = 140.

Fig. 11. F1 score distribution comparison across different threshold determi-
nation methods.
13 
Fig. 12. Impact of measurement noise on anomaly detection performance. Box 
plots show F1 score distributions across noise intensities of 10%, 30%, and 
50% of feature standard deviation.

Fig. 13. Model resilience to missing data across different sparsity levels. Box 
plots show F1 score distributions for 5%, 15%, and 25% missing values.

the extended lower tail of the distribution. This suggests that while 
RTAD-cVAE exhibits reasonable tolerance to moderate data loss, there 
exists a critical threshold beyond which reconstruction quality and 
anomaly detection capability become increasingly unpredictable.

These experiments demonstrate that RTAD-cVAE maintains func-
tional detection capability under challenging data conditions, with 
performance degradation occurring gradually rather than catastrophi-
cally. The conditional architecture likely contributes to this robustness 
by leveraging temporal context to compensate for local data imperfec-
tions. These characteristics make the approach suitable for industrial 
applications where sensor noise and occasional missing measurements 
are common operational challenges.

5.5. Scalability

We conducted a comprehensive scalability analysis to evaluate the 
computational characteristics of our model across varying data dimen-
sionality, seasonal period length 𝜆, and smoothing factor. All experi-
ments employed the SynMul16 dataset as the base configuration, with 
systematic modifications to assess scalability properties. The experi-
ments were carried out on a MacBook Air (2020) with an Apple M1 
chip and 8 GB RAM to evaluate the deployment characteristics in 
resource-constrained environments.
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Fig. 14. Impact of data dimensionality on processing times for a seasonal 
period of one day. (a) Training time versus data dimensionality. (b) Inference 
time versus data dimensionality.

Data dimensionality. We evaluated computational scalability across 
varying input dimensionalities by systematically replicating channels 
from the original 16-dimensional SynMul16 dataset to achieve target 
dimensionalities of 32, 64, 128, 256, and 512 dimensions. This repli-
cation approach provided controlled scaling of dimensionality. The 
seasonal period 𝜆 was fixed at 17,280 timestamps (corresponding to 
one day at 5-s sampling intervals), and no smoothing factor was applied 
(𝑠 = 1). The dataset length was maintained at 345,600 timestamps (20 
days) for training consistency across all dimensionality experiments.

Fig.  14 shows the relationship between input dimensionality and 
both training time and inference time. Training time increases pro-
gressively from approximately 3.8 s at 32 dimensions to 8.1 s at 512 
dimensions. Inference time remains relatively stable across dimension-
alities, ranging from 0.13 to 0.23 s, with a notable increase in variance 
at 512 dimensions.
Length of the seasonal period 𝜆. We assessed computational require-
ments across different seasonal period lengths 𝜆 by testing values of 
4320 (6 h), 8640 (12 h), 17,280 (1 day), and 120,960 (1 week) 
timestamps at the original 5-s sampling frequency. The dimensionality 
was maintained at the original 16 channels, and no smoothing factor 
was applied (𝑠 = 1).

The seasonal period length affects only the inference phase, as it 
modifies only the value of the additional variables used for the heli-
cal encoding while keeping the training dataset size constant. During 
inference, longer seasonal periods require generating more samples 
to fill the entire prediction window, thus increasing the number of 
generations proportionally to the period length.
14 
Fig. 15. Impact of the seasonal period 𝜆 on the inference time.

Fig.  15 demonstrates the impact of seasonal period 𝜆 on inference 
time. Inference time increases from approximately 0.1 s for 6-h periods 
to 1.95 s for weekly periods, showing a near-linear relationship with 
seasonal period length.
Smoothing factor. We analyzed the computational impact of varying 
smoothing factors 𝑠 from 20 to 160 using the original SynMul16 
dataset configuration (16 dimensions, 𝜆 = 17,280). Figs.  16(a) and
16(b) demonstrate the processing time implications. Post-processing 
time exhibits linear growth from approximately 0.2 s at 𝑠 = 20 to 
1.6 s at 𝑠 = 160. Prediction time increases exponentially, rising from 
approximately 1 s at 𝑠 = 20 to 12–14 s at 𝑠 = 160. The sharp increases 
beyond 𝑠 = 120 indicate potential memory pressure as the number of 
latent samples approaches 2.7 million for the one-day seasonal pattern 
configuration.

5.6. Anomaly detection in streaming data

To evaluate computational efficiency of RTAD-cVAE in real-world 
conditions, we designed a controlled streaming simulation experiment 
comparing our approach against an Autoregressive Long Short-Term 
Memory (AR-LSTM), selected as a representative prediction-based deep 
learning method. All experiments were conducted on a MacBook Air 
(2020) with Apple M1 chip and 8 GB RAM.

We simulated continuous operation with predictions executed at 5-
s intervals, approximating deployment conditions for high-frequency 
time series. Resource monitoring was performed at 500 ms intervals, 
tracking CPU utilization, memory consumption, and energy usage. 
Carbon emissions were measured via the CodeCarbon library [55].

Fig.  17 presents a comparison of cumulative energy consumption 
between models. The fundamental architectural difference produces 
substantially different efficiency patterns. AR-LSTM exhibits linear 
growth in energy consumption due to the sliding window approach 
(requiring predictions every 5 s), while RTAD-cVAE generates forecasts 
for entire seasonal periods in single forward passes.

After 15 min of operation, AR-LSTM consumed 0.00108 kWh com-
pared to 0.00016 kWh for RTAD-cVAE. Projected daily consumption 
shows 0.1037 kWh versus 8.257 ⋅ 10−5 kWh respectively, representing a 
1255-fold efficiency improvement.

Fig.  18 reveals corresponding differences in carbon emissions. AR-
LSTM’s recurring predictions generate linearly increasing CO2 emis-
sions, reaching 0.00036 kg after 15 min and projecting to 0.0343 kg 
for full day operation. RTAD-cVAE’s one-shot approach results in 2.731⋅
10−5 kg of CO2 for equivalent temporal coverage.

Fig.  19 illustrates operational differences between approaches.
RTAD-cVAE exhibits a single significant CPU spike during initial in-
ference, followed by minimal computational activity for anomaly de-
tection. AR-LSTM shows recurrent CPU utilization spikes every 5 s, 



L. Porcelli et al. Applied Soft Computing 184 (2025) 113761 
Fig. 16. Impact of smoothing factor 𝑠 on processing times for a seasonal period of one day. (a) Prediction time versus smoothing factor. (b) Postprocessing time 
versus smoothing factor.
creating sustained resource pressure. Memory utilization reveals that 
while RTAD-cVAE initially consumes more memory, it steadily de-
creases as operations complete. AR-LSTM maintains relatively consis-
tent memory usage between 2–3.5% throughout monitoring period due 
to continuous sliding window operations.

6. Discussion

Results demonstrate RTAD-cVAE’s effectiveness for real-time
anomaly detection in seasonal time series data, with particular oper-
ational advantages in terms of performance and air-gapped network 
deployment compared to prediction-based anomaly detection methods. 
This section discusses the key findings, implications, and limitations of 
our approach.

6.1. Anomaly detection performance

Across all seasonal time series, RTAD-cVAE demonstrated detec-
tion performance comparable to state-of-the-art methods in both semi-
supervised and unsupervised settings. In semi-supervised scenarios on 
15 
the NYC Taxi dataset, the method outperformed all baselines regardless 
of window-level or point-level evaluation. On the Dodgers Loop Sensors 
dataset, the model achieved the highest AUC-ROC score.

In unsupervised settings, RTAD-cVAE matched or exceeded exist-
ing techniques depending on dataset characteristics. On SynMul16, 
it yielded the highest F1-score, despite lower precision compared to 
threshold-based baselines. On the Dodgers dataset, it obtained the best 
AUC-ROC, surpassing both statistical and deep learning-based methods. 
On the Real Tweets dataset, RTAD-cVAE results aligned with two 
state-of-the-art generative methods.

However, performance degrades on non-seasonal time series. With-
out identifiable patterns to encode and utilize for prediction, the 
method achieved results below other state-of-the-art approaches, as 
demonstrated on the MIT-BIH Arrhythmia database. This limitation 
reflects the framework’s design specificity for seasonal time series, 
leveraging the helical encoding and the timestamp trick for baseline 
generation.
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Fig. 17. Cumulative energy consumption of RTAD-cVAE (one-shot day-ahead) 
versus AR-LSTM (5-s sliding window) over 15 min of continuous operation. 
The graph demonstrates AR-LSTM’s linear growth in energy requirements 
due to recurring predictions, while RTAD-cVAE’s energy consumption remains 
nearly constant after initial inference.

Fig. 18. Cumulative CO2 emissions from RTAD-cVAE and AR-LSTM during 
15 min of continuous operation. The substantial difference in environmental 
impact results from RTAD-cVAE’s ability to generate complete day-ahead 
forecasts in a single inference step versus AR-LSTM’s requirement for repeated 
sliding window predictions.

6.2. Computational efficiency and scalability

Since the model does not require historical data buffering, it ex-
hibits significant resource usage advantages. Computational load oc-
curs as a single burst during seasonal period prediction, which is 
typically larger than sliding window sizes but eliminates continuous 
processing overhead. This advantage becomes more pronounced in 
less dynamic contexts, making RTAD-cVAE particularly suitable for 
applications requiring extended temporal forecasting horizons.

The scalability analysis reveals favorable computational character-
istics for practical deployment on commodity hardware. Training time 
scales sub-linearly with dimensionality, while inference time remains 
largely independent of input dimensions. The linear relationship be-
tween seasonal period length and inference time provides predictable 
computational costs for different temporal scales.

The primary computational bottleneck emerges from the smoothing 
factor 𝑠. While prediction is performed in advance for multiple periods 
without dependency on real-time data arrival, large smoothing factors 
in high-dimensional time series increase memory pressure. This can 
cause performance degradation when resources are constrained, though 
production-level code optimizations can mitigate this issue.
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6.3. Energy efficiency and environmental impact

The windowless prediction capability eliminates computational
overhead associated with maintaining and updating sliding windows, 
resulting in substantial energy advantages. Resource monitoring shows 
that RTAD-cVAE exhibits a single significant CPU spike during initial 
long-term forecasting, followed by minimal computational activity. 
After generating predictions, anomaly detection requires only distance 
calculations rather than continuous neural network inference.

Quantitative measurements demonstrated a 1255-fold reduction 
in energy consumption compared to AR-LSTM sliding window ap-
proaches, with daily consumption of just 8.257 ⋅ 10−5 kWh versus 
0.1037 kWh for sequential prediction-based methods. Environmental 
impact assessment showed a corresponding 1255-fold reduction in CO2
emissions—just 2.731 ⋅ 10−5 kg for full-day operation versus 0.0343 kg 
for sliding window approaches.

6.4. Model robustness and adaptability

Model robustness evaluation revealed RTAD-cVAE’s resilience to 
common data imperfections. The model maintained consistent me-
dian F1 scores across increasing noise levels, demonstrating that la-
tent representations capture fundamental data patterns rather than 
superficial features. Performance remained stable with up to 15% 
randomly missing observations, with reliability degrading only at the 
25% threshold.

The hyperparameter sensitivity analysis reveals fundamental differ-
ences between univariate and multivariate processing requirements. 
Univariate data benefits from simpler architectures with lower regular-
ization, while multivariate data requires higher-capacity models with 
stronger regularization to capture interdependencies effectively. The 
smoothing factor serves dual purposes: ensuring mathematical stability 
by preventing empty prediction buckets and controlling prediction 
variability to establish reliable baselines for anomaly detection.

6.5. Operational advantages

Beyond performance benefits, RTAD-cVAE delivers substantial op-
erational advantages through its one-shot prediction approach. The 
modest resource requirements enable deployment on edge devices, fa-
cilitating anomaly detection directly at data sources without requiring 
constant communication with centralized servers. By not storing or 
requiring access to previous real-time data streams, the approach limits 
the attack surface for data breaches, enhancing privacy and security.

The windowless prediction capability provides several significant 
advantages over sequential prediction-based approaches: elimination of 
window size selection parameters, resolution of the latency-accuracy 
tradeoff inherent in sliding window methods, and reduced error prop-
agation compared to autoregressive long-term prediction approaches. 
The timestamp encoding enables both accurate prediction and zero-
latency detection by decoupling context requirements from detection 
latency.

6.6. Explainability considerations

While RTAD-cVAE’s latent representations lack direct physical inter-
pretation, the model provides meaningful explainability at the decision 
level. By generating complete seasonal baselines that can be directly 
compared with incoming observations, it produces transparent anomaly 
scores derived from observable differences between real and generated 
data. The generated baseline serves as a visual explanation tool, allow-
ing users to immediately understand why specific points were flagged 
by observing their deviation from expected patterns.
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Fig. 19. Resource utilization comparison between RTAD-cVAE and AR-LSTM during one minute of streaming inference on the SynMul16 high-frequency 
multivariate time series dataset. The top panel shows CPU utilization patterns, with RTAD-cVAE exhibiting a single processing spike followed by minimal activity, 
while AR-LSTM demonstrates recurring computational demands. The bottom panel displays memory usage over time, showing how RTAD-cVAE releases most 
allocated memory immediately after initial forecast, resulting in steadily declining footprint, whereas AR-LSTM maintains sustained memory utilization throughout 

the inference period.
6.7. Limitations and future work

The proposed anomaly detection framework is specifically designed 
for seasonal time series. This represents a design choice rather than a 
technical shortcoming, as the framework’s advantages emerge specifi-
cally from seasonal pattern exploitation for training lightweight gener-
ative models based on multilayer perceptrons.

RTAD-cVAE is designed to detect anomalies representing devia-
tions from expected seasonal patterns learned during training. The 
model operates on representations derived from the training data and 
does not incorporate real-time adaptive mechanisms or online learn-
ing capabilities. Consequently, concept drift — where the underlying 
data distribution changes — presents a significant challenge. Struc-
tural breaks in time series that cause permanent shifts or changes to 
seasonal patterns may invalidate the model’s learned representations. 
This limitation currently necessitates periodic retraining on updated 
data after concept drift has been identified, since the model cannot 
autonomously adapt to distributional shifts without retraining inter-
vention. Future research should develop adaptive mechanisms that 
enable the framework to automatically adjust to distributional changes 
without requiring complete retraining, thereby providing more robust 
long-term deployment capabilities in evolving contexts.

Although the model can automatically learn multiple seasonal pat-
terns simultaneously (e.g., weekly and intra-day patterns as demon-
strated with the NYC Taxi demand dataset), the current framework’s 
applicability to multivariate time series is limited to cases where signals 
share at least one common seasonal pattern. This constraint arises from 
the need to provide an explicit value for the seasonal period parameter 
17 
𝜆 for helix encoding representation, which is subsequently utilized for 
calculating the indexes that allow reordering of the generated obser-
vations. When common seasonality across dimensions is not present, 
superior results would be obtained by training individual models for 
each seasonal signal within the multivariate series. Future research 
should address enhancing multi-seasonal pattern handling to allow 
simultaneous capture of hierarchical temporal patterns across multiple 
timescales in multivariate series without assuming uniform seasonality 
across dimensions.

The current version of RTAD-cVAE presents a partial implemen-
tation of the helical encoding, utilizing only the 𝑥 and 𝑦 coordinates 
that are exploited by the timestamp mechanism for reconstruction. 
A complete implementation incorporating the 𝑧-axis of the helix as 
an additional conditioning mechanism could enable trend learning 
capabilities, potentially enhancing the model’s representational capac-
ity. Such an extension would implement native trend modeling and 
eliminate the current dependency on external trend preprocessing by 
developing integrated mechanisms within the architecture.

The method currently requires hyperparameter tuning adapted to 
the complexity of each time series, as indicated by the hyperparame-
ter analysis showing dataset-specific configuration requirements. The 
selection of appropriate seasonal period length 𝜆 for the helical en-
coding and conditional labels currently requires domain expertise, and 
these parameters can significantly impact model classification quality. 
Agent-based automated hyperparameter optimization guided by dataset 
characteristics and application context would make the method ac-
cessible to practitioners without deep domain expertise, reducing the 
manual tuning burden currently required for optimal performance.
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7. Conclusions

We introduced a novel generative framework for real-time anomaly 
detection in seasonal time series that fundamentally reimagines the 
prediction-based anomaly detection paradigm by eliminating the de-
pendency on historical data buffering during inference. Through a 
conditional Variational Autoencoder architecture enhanced with heli-
cal encoding and timestamp conditioning mechanisms, the proposed 
RTAD-cVAE model generates long-term seasonal baselines without re-
quiring historical data input at inference time.

The experimental evaluation across diverse datasets demonstrates 
that RTAD-cVAE achieves state-of-the-art performance while delivering 
superior computational efficiency. This paradigm shift enables efficient 
anomaly detection that maintains competitive accuracy while dramat-
ically reducing computational overhead. These characteristics position 
RTAD-cVAE as particularly valuable for large-scale deployments, IoT 
applications, and scenarios where environmental impact and resource 
efficiency are paramount concerns.

The primary limitation of the proposed method is its applicability 
exclusively to seasonal time series. While we recognize the value of gen-
eralizable approaches, we chose to prioritize performance excellence in 
this specific, yet important, domain rather than developing a one-size-
fits-all solution. Future work could explore adaptations for trending 
data, though non-seasonal time series would require fundamentally 
different techniques than the proposed framework based on timestamp 
conditioning and helical encoding mechanisms.
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