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ABSTRACT
Advancements in artificial intelligence (AI) predictive models have emerged as valuable tools for predicting survival outcomes in 
allogeneic haematopoietic stem cell transplantation (allo-HSCT). These models primarily focus on pre-transplant factors, while 
algorithms incorporating changes in patient's status post-allo-HSCT are lacking. The aim of this study was to develop a predic-
tive soft computing model assessing survival outcomes in allo-HSCT recipients. In this study, we assembled a comprehensive 
database comprising of 564 consecutive adult patients who underwent allo-HSCT between 2015 and 2024. Our algorithm selec-
tively considers critical parameters from the database, ranking and evaluating them based on their impact on patient outcomes. 
By utilising the Data Ensemble Refinement Greedy Algorithm, we developed an AI model with 93.26% accuracy in predicting 
survivorship status in allo-HSCT recipients. Our model used only seven parameters, including age, disease, disease phase, cre-
atinine levels at day 2 post-allo-HSCT, platelet engraftment, acute graft-versus-host disease (GvHD) and chronic GvHD. External 
validation of our AI model is considered essential. Machine learning algorithms have the potential to improve the prediction of 
long-term survival outcomes for patients undergoing allo-HSCT.

1   |   Introduction

Allogeneic haematopoietic stem cell transplantation (allo-
HSCT) constitutes a potentially curative treatment option 

for a range of haematological disorders, both malignant and 
benign. Nevertheless, the efficacy of allo-HSCT is often dis-
rupted by numerous complications including, endothelial 
injury syndromes, such as HSCT-associated thrombotic 
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microangiopathy, graft-versus-host disease (GvHD), relapse of 
malignancy and occurrence of infections, all of which contrib-
ute to lower transplant-related survival rates [1]. Specifically, 
acute (aGvHD) and chronic (cGvHD) have been recognised 
as major causes of death in allo-HSCT recipients, followed by 
cardiovascular disease [2].

Continuous development of several laboratory or clinical biomark-
ers and their integration into routine clinical practice has led to 
the identification of patients at elevated risk for organ dysfunction-
related complications and those likely to experience reduced 
overall survival (OS) [3]. Moreover, various scoring systems have 
significantly contributed to this objective, thus enabling more pre-
cise and effective clinical interventions. Notable examples include 
the Disease Risk Index (DRI) for allo-HSCT, which categorises 
patients into four groups based on diagnosis, disease stage and 
cytogenetic abnormalities to predict their two-year OS and the 
Haematopoietic Cell Transplantation-specific Comorbidity Index 
(HCT-CI) that serves as an evaluative tool for predicting survival 
following HSCT in individuals with hematologic malignancies 
[4, 5]. Additionally, the Endothelial Activation and Stress Index 
(EASIX) has been demonstrated as a useful prognostic instrument 
for estimating the development of GvHD and OS in these patients 
[6]. Despite these advances, the predictive accuracy of these scor-
ing systems remains suboptimal. Consequently, there is a pressing 
need for the development of novel models to more accurately pre-
dict outcomes and OS in allo-HSCT recipients.

In recent years, machine learning (ML) techniques have been ex-
tensively applied in the field of HSCT [7]. Artificial intelligence 
(AI) models have been utilised to predict allo-HSCT-related 
complications, including thrombotic events, bloodstream infec-
tions, kidney injury, GvHD and pulmonary complications [7]. 
Moreover, these advanced approaches have facilitated the pre-
diction of haematopoietic stem cell mobilisation in allogeneic 
donors, ensuring optimal timing for HSCT in patients with hae-
matological malignancies [8]. ML-based scoring systems have 
also proven useful in selecting the most appropriate condition-
ing regimens for HSCT recipients [9]. Similar predictive models 
have been developed for overall and leukaemia-free survival in 
patients with myelodysplastic syndromes, by utilising clinical 
and laboratory variables [10].

While current models predominantly use baseline, pre-
transplant characteristics, there is a lack of algorithms that ac-
count for variables post-HSCT. Moreover, the accuracy of most 
of these algorithms remains suboptimal in the prediction of 
mortality after transplantation. To address this gap, we aimed 
to develop an algorithm for predicting survival outcomes in 
our real-world cohort of allo-HSCT recipients by incorporating 
both baseline clinical characteristics and post-transplantation 
changes.

2   |   Materials and Methods

2.1   |   Study Design and Population

The primary aim of our work was to construct an AI model for 
the prediction of long-term survival post-allo-HSCT. As men-
tioned above we aimed to include in our model both pre- and 

post-allo-HSCT variables and transplantation-associated char-
acteristics. Thus, we conducted this retrospective observa-
tional study. A database comprising 564 consecutive adult 
patients, who underwent allo-HSCT in our JACIE (Joint 
Accreditation Committee-ISCT & EBMT) accredited center in 
the Haematology department of George Papanikolaou Hospital 
between 2015 and 2024, was compiled to predict survivorship 
rates. The database is appended to this paper as Appendix S1 in 
the Excel file entitled ‘Database’.

Patient gender, age, haematological disease, disease phase, donor 
type, HLA matching with the donor, graft source, conditioning 
regimen toxicity, number of CD34+ cells infused, laboratory 
markers post-allo-HSCT (platelets/lactate dehydrogenase/creat-
inine at Day 2), neutrophil/platelet engraftment and the devel-
opment of aGVHD/cGVHD and secondary malignancy during 
follow-up were retrieved. Allo-HSCT was performed based on 
the standard operating procedures of the European Society for 
Blood and Marrow Transplantation (EBMT), while all patients 
were meticulously evaluated before their admission to the unit 
[11]. The conditioning regimen was considered myeloablative in 
patients who were treated with any of the following: total body ir-
radiation > 8 Gy, melphalan > 140 mg/m2, oral busulfan ≥ 9 mg/
kg, intravenous busulfan ≥ 7.2 mg/kg or thiotepa ≥ 10 mg/kg 
[11]. In the other cases, it was considered a reduced-intensity 
regimen. DRI was retrospectively assessed based on the haema-
tological disease, disease phase, and cytogenetic abnormalities 
identified before HSCT [4]. Patients with aplastic anaemia were 
considered an intermediate DRI subcategory. Assessment and 
grading of acute GVHD were performed according to the crite-
ria of Glucksberg et al. [11], while chronic GVHD was assessed 
and graded according to the 2014 National Health Institute cri-
teria. Additionally, survival status during follow-up was evalu-
ated (Alive, Dead, Alive but follow-up less than 24 months). Our 
study protocol has been approved by the Institutional Review 
Boards of the George Papanicolaou Hospital and conducted in 
accordance with the Declaration of Helsinki.

The descriptive statistics of the population are presented in 
Table  1. Furthermore, in Figure  1 a detailed analysis of the 
studied population is provided. Data is presented for the en-
tire cohort of transplanted patients and for three subcategories 
based on the outcome (Alive, Dead and Alive but follow-up less 
than 24 months) as well as by age groups (up to 40 and over 40). 
Moreover, these categorisations are presented independently of 
gender and by gender (Male or Female). These classifications 
based on the outcome, gender and age result in a total of 12 pa-
tients' categories. Despite the considerable number of these 12 
categories, it is crucial to note that each category contains a sat-
isfactory number of individuals, thus ensuring a robust dataset. 
Notably, no category has fewer than 17 transplanted patients, 
thus underscoring the reliability of this database.

2.2   |   AI Model to Reveal the Parameters Affecting 
the Outcome of the Allo-HSCT Recipients

The main aim of this study, as mentioned above, was to develop 
a predictive soft computing model capable of reliably assessing 
survival outcomes in allo-HSCT recipients. It is important to un-
derline that this objective entails the design of an algorithm that 

 15824934, 2025, 16, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcm

m
.70672 by U

niversity O
f L

ancashire, W
iley O

nline L
ibrary on [27/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3 of 9

selectively considers only the critical from the pool of 18 total 
parameters in the database, as presented in Table 1, which de-
termines the survivorship in allo-HSCT. The variables selected, 
both clinical and laboratory, are widely available and evaluated 
in most allo-HCT recipients. Thus, this model would be easily 
applied to an allo-HCT setting to predict survival in these pa-
tients. Moreover, it is of particular importance for the algorithm 
to evaluate and rank these parameters based on their impact on 
the outcome of the transplanted individuals.

This task is particularly challenging due to the large number 
of possible parameter combinations that need to be examined 
during the model design, ranging from patterns involving 1 
parameter to those involving up to 18. The number of possible 
combinations is given by the following equation:

where n is the number of database parameters.

To address this challenge, DERGA algorithm (Data Ensemble 
Refinement Greedy Algorithm) was employed, a methodology 
introduced and successfully applied by our group in the prog-
nosis of COVID-19 severity by utilising haematological markers 
and elucidating the genetic background of COVID-19 patient 
outcomes [12, 13].

Briefly, the fundamental principle of this algorithm involves 
initially constructing and training a model incorporating all 18 
parameters. Subsequently, 18 distinct models are developed and 
trained, each excluding 1 of the 18 parameters. The model exhib-
iting the least accurate predictions indicates that the excluded 
parameter exerts the least influence among the 18 parameters in 

(1)Patterns Combinations = 2

n
∑

i= 1

n !

i ! (n − i) !
= 2(2n − 1)

TABLE 1    |    Descriptive statistics of allo-HSCT recipients.

Patients' characteristics

Gender, N (%)

Male 339 (60.1)

Female 225 (39.9)

Age, median 47 (18–88)

Disease, N (%)

(1) ALL, HL, NHL, Prolymphocytic 
leukaemia, MPAL

153 (27.1)

(2) AML, MDS, MDS/MPN, MF 367 (65.1)

(3) Aplastic anaemia, autoimmune, 
CLL, CML, MM, plasma cell 
disorder, other

44 (7.8)

Disease phase, N (%)

(1) CR1, CR2, CR3, CR1 MRD+, PR, 
VGPR, Prim. Ref. Chemosensitive, 
Relapse Chemosensitive

447 (79.3)

(2) Prim. ref. chemoresistant, relapse 
chemoresistant, active disease, 
refractory, severe, very severe, 
refractory progressive, graft failure

117 (20.7)

Donor type, N (%)

Sibling 204 (36.2)

Unrelated 284 (50.4)

Haploidentical 76 (13.5)

HLA matching

(1) 8/8, 10/10, 12/12, 9/10,6/6 458 (81.2)

(1) 7/8,5/6, Haploidentical 106 (18.8)

Graft source

Peripheral 514 (91.1)

Bone marrow 47 (8.3)

Other source 3 (0.5)

Conditioning regimen toxicity

Myeloablative 218 (38.7)

Reduced intensity 346 (61.3)

Platelets at Day 2 post-allo-
HSCT, median

61.6 × 109 
(3 × 109 − 922.2 × 109)

Lactate dehydrogenase (mg/dl) 
at Day 2 post-allo-HSCT, median

180 (14–4326)

Creatinine (mg/dl) at Day 2 post-
allo-HSCT, median (range)

2.6 (0.6–5.3)

CD34 + x126/Kg cells infused, 
median

6 (1.23–19.8)

Neutrophil engraftment, N (%) 558 (98.9)

(Continues)

Patients' characteristics

Platelet engraftment, N (%) 512 (90.8)

DRI

Low 260 (46.1)

Intermediate 167 (29.6)

High 137 (24.3)

Acute GvHD, N (%)

Grade 0 or I 219 (38.8)

Other grade 345 (61.2)

Chronic GvHD, N (%) 276 (48.9)

Secondary malignancy, N (%) 10 (1.8)

Abbreviations: ALL, acute lymphoblastic leukaemia; Allo-HSCT, allogeneic 
haematopoietic stem cell transplantation; AML, acute myeloid leukaemia; 
CLL, chronic leukocytic leukaemia; CML, chronic myelogenous leukaemia; 
CR, complete remission; DRI, Disease Risk Index; GvHD, graft versus host 
disease; HL, Hodgkin lymphoma; HLA, human leukocyte antigen; MDS, 
myelodysplastic syndrome; MF, myelofibrosis; MM, multiple myeloma; MPAL, 
mixed-phenotype acute leukaemia; MPN, myeloproliferative neoplasm; MRD, 
minimal residual disease; NHL, non-Hodgkin lymphoma; PR, partial remission; 
PRIM. REF., primary refractory; VGPR, very good partial response.

TABLE 1    |    (Continued)
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assessing the survival outcomes. This process is then repeated 
with the remaining 17 parameters. Consequently, the sequential 
elimination of 1 parameter at a time results in models exhibit-
ing progressively enhanced accuracy until reaching a threshold, 
beyond which accuracy diminishes. The step at which maximal 
accuracy is attained delineates the optimal pattern predicting 
the survival outcomes in allo-HSCT recipients.

The advantages of this algorithm encompass achieving optimal 
prediction accuracy, identifying the minimal set of parameters 
along with their corresponding pattern that defines the pre-
diction and ranking the respective parameters based on their 
importance in predicting survival outcomes among allo-HSCT 
recipients. DERGA also offers reduced complexity, as the total 
combinations of parameter patterns necessitating examination 
are determined by the following equation:

A significantly lower figure compared to the potential combina-
tions outlined in Equation (1).

For each pattern of input parameters derived from the DERGA 
algorithm, corresponding predictive models were designed and 
trained utilising a set of classification meta-algorithms accessi-
ble within the literature. The comprehensive elucidation of this 
process will be presented in the results section.

The proposed DERGA algorithm outperforms other algorithms 
because it incorporates all of them. Specifically, the first step 
of the proposed DERGA algorithm, during which all features 
(input parameters) are included (i.e., the process of removing 
non-crucial input parameters has not yet begun), corresponds to 
the results that would be obtained for each individual algorithm. 
Consequently, one of the main advantages of the proposed 

algorithm is that it can encompass all available classification al-
gorithms and lead to better outcomes.

3   |   Results

The optimal combination of parameters determining the outcome 
of the transplanted individuals (Alive, Dead and Alive but fol-
low-up less than 24 months) was investigated. Specifically, using 
the database of 564 allo-HSCT recipients, the proposed DERGA 
algorithm was implemented with five established classification 
meta-algorithms available in the literature. These meta-algorithms 
included Extra Trees, Decision Trees, Cat Boost, Gradient Boosting 
and Adaptive Boosting (AdaBoost) [14–18].

The computational predictive models were trained by utilising 
the 564-patient database, with each dataset consisting of 18 pa-
rameters (Table 1). The database was partitioned into two sub-
sets: one for training the forecasting models (training datasets) 
consisting of 451 datasets (80% of the total database) and one for 
testing the reliability of these models, consisting of the remain-
ing 113 datasets (20% of the total database). These two datasets 
corresponded to two cohorts, one for developing the computa-
tional predictive model and the other for testing the model's reli-
ability and result confirmation.

Through the proposed algorithm, a total of 2,158,875 models 
were developed and trained, corresponding to 431,775 models 
for each of the five classification meta-algorithms used. The 
number of 431,775 models was calculated as follows: 171 pat-
terns (as defined by Equation  2 for 18 input parameters) × 25 
random splits of the dataset into training and testing sets × 101 
random seeds used for each optimisation algorithm. All predic-
tive models were assessed using classical and widely accepted 
performance indices such as Accuracy, Precision, F1-Score and 
Recall [19]. The best models for each of the five classification 

(2)Patterns Combinations =
n(n + 1)

2

FIGURE 1    |    Number of transplanted patients categorised by age, gender and outcome of the survivorship in adult allogeneic haematopoietic cell 
recipients.
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meta-algorithms are presented in the Appendix  S1 Excel file 
‘Best Models’.

In Figure 2, the results for the optimal mathematical model de-
signed and trained using the DERGA algorithm are presented, 
corresponding to the Extra Trees classification meta-algorithm. 
This optimal prediction model achieved an accuracy of 0.9326, 
utilising only 7 of the 18 total parameters in the database. The 
same figure, along with all performance indices used, is pro-
vided as Appendix S1 in the Excel file entitled ‘Optimal DERGA-
Extra Trees Model’.

The seven parameters and their influence on the survival of a 
transplanted individual are the following:

1.	 Creatinine at Day 2 post-allo-HSCT

2.	 Age

3.	 aGVHD

4.	 Disease phase

5.	 cGVHD

6.	 Disease

7.	 Platelet engraftment

4   |   Discussion

In the present study, we developed an AI model achieving a 
93.26% accuracy rate in predicting long-term survival in a 
real-world cohort of adult allo-HSCT recipients. This model 
incorporates the seven most influential clinical variables, 

after ranking them, including creatinine at Day 2, patients' 
age, aGVHD, disease phase, cGVHD, haematological disease 
and platelet engraftment. To the best of our knowledge, this 
is the first AI model to encompass both pre- (age, disease and 
disease phase) and post-HSCT variables for predicting mor-
tality in adult HSCT recipients with such a high accuracy. 
Furthermore, the accuracy of our AI model in the prediction 
of long-term survival is one of the highest reported in the lit-
erature. In previous works of our group, the factors incorpo-
rated in this model have been recognised as predictors of OS 
[20, 21].

In our AI model, a 93.26% accuracy was exhibited in the predic-
tion of survival status in allo-HSCT patients. Moreover, survival 
in our model was not treated as a time dependent event. Random 
survival forests were identified through a systematic review, in 
which 24 studies were included, as the top-performing ML al-
gorithm for survival prediction, with an area under the curve 
(AUC) of 0.72 as shown in receiver operating characteristic 
(ROC) analysis [22]. Shouval et  al. [23], in their study, con-
structed an ML model (alternating Decision Tree algorithm) for 
predicting transplant-associated mortality in patients with acute 
leukaemia by using 10 pre-transplant variables and achieving 
an AUC of 0.702 at 100 days after the HSCT. In this study 28,236 
adult HSCT recipients were included. Moreover, the same group 
of researchers created another ML algorithm with an in silico 
approach, predicting non-relapse mortality 100 days post-HSCT 
(AUC = 0.67) [24]. The most important variables predicting 
outcomes in the algorithm were disease stage, donor type and 
conditioning regimen. Eisenberg's et al. [25] Gradient Boosting 
Machine (GBM) model managed to predict 21-day mortality, 
with an AUC of 0.92, and cytomegalovirus reactivation, with 
an AUC of 0.83, by encompassing time-dependent clinical and 

FIGURE 2    |    Accuracy of optimal DERGA-Extra Trees model (Bullet symbol (•) in the column of a parameter means that this parameter partic-
ipates as input parameter in the forecasting computational model). aGVHD, acute Graft-versus-host disease; CD34, CD34 cells infused; cGVHD, 
graft-versus-host disease; CR, conditioning regimen; Crea, creatinine at day 2 post-allo-HSCT; DF, disease phase; DRI, disease risk index; DT, donor 
type; GS, graft source; HLA, HLA matching; LDH, lactate dehydrogenase at day 2 post-allo-HSCT; NEUT, neutrophil engraftment; PLAT, platelet 
engraftment; PLT, platelets at day 2 post-allo-HSCT; sMAL, secondary malignancy.
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laboratory data. Unlike these studies, our methodology focused 
on the likelihood of long-term survival rates, with our model 
achieving a significantly higher accuracy. However, our single-
center study, had a smaller number of patients included, in com-
parison to those described above. Thus, external validation of 
our algorithm is considered essential.

Interestingly, Okamura et al. [26] developed an interactive web 
application using ML to predict 1-year OS in allo-HSCT recip-
ients, achieving an AUC of 0.70. Chois et  al.'s [27] GBM algo-
rithm predicted 5-year survival post-HSCT with an AUC of 
0.788, based on pre-transplant clinical and laboratory character-
istics of donors and patients. Mussetti et al. [28] aimed to predict 
2-year mortality in a large cohort of patients with an AUC of 
0.64. These approaches mainly focused on pre- and transplant-
associated variables in the prediction of long-term survival after 
the transplantation procedure, while in our algorithm post-allo-
HSCT factors were included.

Zhou and colleagues were the first to construct an ML model 
for the prediction of survivorship status long term after the 
transplantation, incorporating both pre-nd post-allo-HSCT 
variables, while in their study only children and young adults 
were included [29]. In Table 2, the findings of the studies ex-
amining the role of AI predictive models in survival outcomes 
of adult allo-HCT patients are summarised. Echecopar et al. 
[30] constructed another ML algorithm predicting 1-year sur-
vival in paediatric patients with 72% accuracy, incorporating 
variables like diagnosis and donor type. In our study, exclu-
sively adult patients were included, and the efficacy of our 
AI model in the survival prediction of children and adoles-
cents who undergo allo-HSCT should be examined in future 
research.

Various ML approaches have predicted HSCT outcomes such as 
malignancy relapse. Arabyarmohammadi et al. [31] created an 
ML model to predict relapse post-HSCT using cytologic aspirate 
image markers from AML patients (AUC in the ROC analysis 
0.71 in the validation cohort). Afanaseva et al. [32] in their pilot 
study developed an ML algorithm for the prediction of relapse 
post-allo-HSCT in adult patients with Ph-positive ALL, based 
on post-transplant characteristics. A GBM method, using the 
highest BCR/ABL1 levels, as measured in different time points, 
presence of GvHD, time of prediction (days after HSCT), BCR/
ABL1 levels at the time of prediction, and administration or not 
of tyrosine kinase inhibitors, was developed with a sensitivity 
of 0.91 to predict relapse in this population. Assessing the per-
formance of these algorithms in real-world clinical settings has 
the potential to significantly enhance their practical utility and 
effectiveness.

Our model incorporated GvHD (both acute and chronic) oc-
currence as a predictor of long-term survivorship. Previous 
ML algorithms have predicted GvHD and thrombotic compli-
cations post-HSCT. Salehnasab et al. [33] created a GBM algo-
rithm predicting aGvHD with an AUC of 0.91, using routinely 
used biomarkers like albumin, uric acid and C-reactive protein. 
It is considered crucial to examine the accuracy of these mod-
els in real-world clinical settings in order to incorporate them 
in everyday practice. Furthermore, we plan to examine the ef-
ficacy of the DERGA algorithm, based on both molecular and 

clinical variables, in other transplant-related outcomes, such as 
HSCT-TMA.

Applications of AI have been implemented also in the prediction 
of outcomes in patients who receive chimeric antigen receptor-T 
(CAR-T) cell immunotherapy, and especially in early identifica-
tion of cytokine release syndrome CRS, a major complication of 
this treatment approach [34, 35]. Recently, a computational ap-
proach, using the R programming language, has been developed 
for grading CAR-T-related toxicities [36].

The study's limitations include its retrospective nature, the 
single-center data, and the focus on adult patients with hae-
matological malignancies, necessitating validation in diverse 
populations and paediatric patients. Despite the high accuracy 
of the predictive model developed in this study, the authors 
emphasise the need to update the database with more data 
to enhance the model's accuracy for better clinical decision-
making. Moreover, the accuracy of our AI model was not 
compared to a conventional Cox regression analysis model for 
survival.

Conclusively, this study demonstrates the effectiveness of 
DERGA algorithm in achieving high prediction accuracy 
(93.26%) regarding long-term survival outcomes in adult al-lo-
HSCT recipients. The use of well-established classification algo-
rithms from the ML literature, orchestrated in a data ensemble 
refinement procedure, enables the identification of the minimal 
set of parameters and their corresponding patterns that define 
the optimal prediction model. Future research should prioritise 
the external validation of our AI predictive model by indepen-
dent HSCT centers to ensure its robustness and applicability 
across diverse patient populations. Additionally, further efforts 
should be made to expand and update the current database 
to encompass a larger and more comprehensive dataset. This 
would ensure adequate representation of all possible parameter 
values relevant to the studied domain, thereby enhancing the 
model's generalisability and reliability. Moreover, subsequent 
studies should aim to extend the predictive scope of AI models 
to include other HSCT-related complications, which remain a 
critical area of clinical importance. AI algorithms, such as ours, 
also can be helpful for the development of novel molecular ther-
apeutics [37].

In response to the potential limitations highlighted, this study 
acknowledges the retrospective nature of the dataset, which 
may introduce biases such as confounding factors and data im-
balance. These limitations underline the importance of design-
ing future prospective studies that proactively address these 
issues. Prospective studies should aim to curate balanced and 
representative datasets, implement robust techniques to miti-
gate selection bias, and ensure the inclusion of diverse patient 
populations to enhance the predictive accuracy and fairness of 
the model. Furthermore, this study recognises the need to inte-
grate the DERGA algorithm into clinical workflows effectively. 
Future research should explore strategies to overcome poten-
tial barriers, such as clinician training, system interoperability 
and real-time application challenges, to facilitate its adoption 
in routine clinical practice. These considerations will not only 
improve the model's usability but also maximise its impact in 
improving patient outcomes.
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