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Abstract 

Both an experimental investigation of the interaction effects within commercial 

particulate recording media and a numerical investigation of the reversal mechanism of 

particles within the media have been made. The particle systems investigated comprised 

three audio y-Fe203 tapes, three audio Cr02 tapes and a video metal particle tape. 

An absolute measure of the interaction effects within particulate tapes has been 

investigated by comparing the measured properties of isolated particles taken from the 

medium with the measured bulk properties of the medium. The results indicated 

negative interactions for all the samples investigated except the video metal particle 

tape, which indicated positive interactions. However, Al plots for all the samples 

however, indicated negative interactions. This is contrary to the absolute interactions 

measured in the video metal particle tape. A possible explanation for this inconsistency 

was the presence of highly localised alignment of particles, "a chaining effect", within 

the metal particle system. This effect allows for increased system coercivity without 

removing the general negative interactions characteristic of all acicular particulate 

media. 

A micromagnetic model was developed to study typical y-Fe203 and Cr02 

particles measured experimentally in this study. Simulations were performed as a 

function of the applied field angle and the results compared to the experimental study. 

The simulations representing typical 'y-Fe203 particles indicated reasonable agreement at 

the lower applied field angles, while poorer agreement was observed at larger applied 

field angles. The simulations representing a typical Cr02 particle indicated reasonable 

agreement at the higher applied field angles, while poorer agreement was observed at 

low applied field angles. These inconsistencies for both types of particles investigated 

were accounted for by assumptions and simplifications within the model, particularly 

the absence of bulk crystalline imperfections, the degree of surface irregularities and the 

effect of an oversimplified particle shape. 

The micromagnetic model developed was also used to investigate the effect of 

model parameters on the reversal mechanism of the 'y-Fe203 particle simulation. It was 

found that the reversal mechanism was very sensitive to the size and shape of the model 

particle. 
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Chapter One 

Magnetic materials. 

1.1 The origin of magnetism 

Magnetism is the result of the flow of charge, whether in an electric circuit or the 

motion of unpaired electrons within an atom. The magnetic moment generated from the 

quantised orbital motion of an electron around its nuclei is called the Bohr magneton 

and is the fundamental unit of magnetism. 

The Bohr magneton is defined from an electron of mass M 0  moving with a 

velocity v in a circular orbit of radius r. The orbital charge constitutes a current of 

magnitude, 

e 	ev 
I- - 

T 2m- 
(1-1) 

where I is the period for a charge to complete an orbit. A current in a circular 

loop generates a magnetic field that is indistinguishable from that of a magnetic moment 

at a large distance away from the loop. The magnetic moment generated from a loop is 

given by 

= iA, 	 (1-2) 

where A is the cross sectional area of the ioop. Applying this definition for a 

moment to an orbiting electron and considering that angular momentum is quantised in 

units of h/2ir, where h is Plancks constant, the lowest value of ,s is given in the above 

equation and is called the Bohr magneton p (pa=9.27*10 24  A.m2) 

eh 
U8 = 	

( 1-3) 
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As well as the magnetic moment generated from orbital motion of unpaired 

electrons around the nucleus there exist two other sources, the moment generated from 

spin of the electron around its own axis and the moment generated from nucleus. The 

total moment of the atom is the vector sum of these moments, however, the contribution 

from the nucleus is insignificant when compared to the moment generated from the 

electrons. 

In materials where the atoms have completely filled electrons orbits the moments 

generated from these electrons will tend to cancel each other, effectively reducing the 

total moment of the atom/material. For materials consisting of atoms with incompletely 

filled electron orbits the moment generated within these material can be large. As a 

consequence of these material characteristics there exist a number of possible 

descriptions of a materials magnetic characteristics. 

1. The material can be Diamagnetic where the moment of the atoms within the material 

cancel each other out. 

2. The material can be Antiferromagnetic, Ferrimagnetic, Paramagnetic or 

Ferromagnetic. These descriptions describe the conditions of a material having a net 

magnetic moment 

A full description of the various types of magnetic material can be found in the book by 

Crangle [1]. 

As the moment of a material is linked to its atomic structure, the alignment of 

the moments within a material can have some energy preferable direction. This 

preferred energy direction is described by the term anisotropy. The anisotropy of a 

material describes the easy axis directions for the moments to lie within a material. 

There exists a number of forms of anisotropy, these forms are discussed in later 

sections. 

1.2 Magnetic units 

There are currently three systems of units currently used in magnetism. These are 

CGS also known as the Gaussian system, the SI systems which are the Sommerfeld 

convention and the Kennelly convention [1-3]. 

The Gaussian system is commonly used throughout industry and research. 

However, there is now a tendency for research papers to be published in S.I. units, in the 
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convention known as the Sommerfeld. As it is more likely that this system will be 

increasingly used for research, it has been adopted in this thesis. 

1.3 Magnetic domains 

A domain is a region within a material where all magnetic moments are aligned. 

In order to explain the existence of aligned moments Weiss [4] proposed a mean 

(molecular) field theory. The theory extended the work by Langevin [51, who described 

paramagnetism based on classical Boltzmann statistics. The mean field proposed by 

Weiss described the effect of interatomic interactions. These interactions have the effect 

of causing neighbouring atomic moments to align parallel to one another. This mean 

field H, within a domain is expressed as 

H,=aM 5 , 	
( 1-4) 

where Ms is the saturation magnetisation within the domain and a is the mean field 

constant. Weiss proposed another variation to his mean field approximation [6] that 

described an interaction field with nearest neighbour interactions only. This mean field 

approximation is represented by 

= EaViij, 	 (1-5) 
picdreZg 
neighbours 

where aij is an interaction field constant between moments i and j. The model assumes 

that the interaction field constant is identical between all nearest neighbours and is equal 

to a. The interaction field constant can be used to model a ferromagnetic system with a 

positive a or an antiferromagnetic system with a negative a. An exchange energy E1 can 

be calculated between a moment ni, and its adjacent moments ni j  by 

E i  = —ji,ii 	, 	 (1-6) 

where a1 is the mean field constant between moments i and j. It can be postulated from 

the mean field proposed by Weiss that all moments would spontaneously align in a 

ferromagnetic material. This would be the case if there were no other contributions to 

the energy of the sample. The other contributing energy phenomena are the 

magnetostatic energy of a single domain, the domain wall energy and the anisotropy 

energy. 



1.4 Anisotropy 

The magnetic anisotropy of a material describes the energy of its moment for a 

particular orientation within the material. This energy dependence for a moment's 

orientation generates easy and hard axes for the moment to lie within the material; thus 

anisotropy acts like a force which pushes a moment into an energy favourable 

orientation. The easy axis of a moment is often referred to as its C-axis within the 

crystal structure. The sources of magnetic anisotropy are: 

I. Magnetocrystalline anisotropy 

2. Shape anisotropy 

3. Stress anisotropy 

4. Induced anisotropy 

5. Exchange anisotropy 

The anisotropy of magnetic particles within particulate media originate 

predominately from their shape and crystalline structure. These forms of anisotropy will 

be discussed in later sections. The other sources of anisotropy found in magnetism are 

described in the book by Cullity [7]. 

1.4.1 Shape anisotropy 

In a magnetised body the effect of the magnetisation is to generate a field within 

the body that acts to demagnetise the body [2]. In a pole magnet the NS poles generate a 

field H around the magnet, while within the magnet the poles generate a demagnetising 

field I-I< . The demagnetising field is dependent on the demagnetising factor Nd and the 

magnetisation of the domain, M, 

Hd = —NdM . 	 ( 1-7) 

The demagnetising factor Nd is dependent on the geometry of the domain. It is 

this demagnetising factor which determines the shape anisotropy of the domain. The 

shape anisotropy is calculated from the magnetostatic energy of the domain. 
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The magnetostatic energy of a domain is the energy of a magnetised body Al in a 

magnetic field H. The magnetostatic energy is determined through the following volume 

integration [2] 

E = --i-p0 JH.Mdv. 	 (1-8) 

Where no external field is present the only field within the sample is the 

demagnetising field lid. Thus, the energy generated by a domain is determined by, 

E= t_N d M 2 . 	 ( 1-9) 

The anisotropy of a single domain prolate spheroid given in figure (1-1) results 

from the different dernagnetising factors, Nc for the semi major axis C and NA the semi 

minor axis A. The magnetisation of the domain is represented by M, its orientation with 

respect to the C axis is given by 9. 

C axis 

,K-i--------- 

A axis 

figure (1-1): A prolate spheroid. 

The magnetostatic energy of a prolate spheroid having a single domain is 

determined from the magnetisation components along the different demagnetising axes. 

E MS = A4_[N(M cosof +NA(M sine)1j 	 (1-10)  2 
Rearranging the above equation and substituting the identity cos2B==1-sin28 the 

magnetostatic energy of a prolate spheroid can be determined as 

E MS  = -- M 2 N + 14- (N A  - N)M 2 sin 2 B. 	(1-11) 

This expression relates the magnetostatic energy of the spheroid to the 

orientation angle of its moment. 
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The shape anisotropy KSHAPE of the spheroid is the coefficient of the 

rnagnetostatic energy and is defined by 

KSHAPE = O (N A _N C )M 2 . 	 (1-12) 

1.4.2 Magnetocrystalline anisotropy 

The energy associated with magnetising a ferromagnetic material is dependent 

on the direction of nmgnetisation with respect to the crystal lattice of the material. The 

origin of magnetocrystalline anisotropy is the direct and/or indirect spin-orbit coupling 

between lattice sites and conduction electrons [1]. The two most common types of 

magneto-crystalline anisotropy found in particles in recording media are uniaxial and 

cubic. 

Uniaxial anisotropy results from a hexagonal or tetragonal structure. A 

hexagonal structure of cobalt is shown in figure (1-2). This crystal structure has a single 

easy axis represented by the c axis, all other axes are found to be hard. The easy and 

hard axis found in this crystal structure and in other crystal structures are a result of the 

spin orbit coupling of the electrons with the crystal lattice. 

- Easy C axis 
[00011 

N_ Hard axis 

[1010 

figure (1-2): The hexagonal close packed structure of cobalt. 



The structure of cobalt has an energy EK given by 

E K  = K 0  + K sin 2  9 + K 1  sin 4  9+..., 	 (1-13) 

where K13,K 1  and K2  are anisotropy constants for a particular crystal and 9 is the angle 

between the moment direction and the easy axis. In the analysis of magnetic particles the 

higher terms K2 and above are usually neglected as being small. In the analysis of 

reversal mechanisms K0 is also neglected since it is independent of the magnetisation 

state within the domain. 

Cubic anisotropy is expressed in terms of direction cosines a with respect to the 

easy axes directions <100> within the crystal lattice. Shown in figure (1-3) is the body 

centred cubic structure of iron. 

Medium 
<110> - 

Easy 
<100> 

—Hard 
<111> 

figure (1-3): The crystal structure of iron. 

The direction cosines a corresponding to the easy axes directions are always 

related by a + a,2  + a =1. The anisotropy energy EK for a cubic structure is given by 

EK =KO(a12+cz +a)+K1(aa+acz +aa2)+K2(a2aafl+..., (1-14) 

where K0,K1 and 1(2 are again the anisotropy constants for a particular crystal. As with 

uniaxial anisotropy, the higher order anisotropy constants are considered insignificant 

and are ignored. The first term in the equation is also ignored, since it is independent of 

the magnetisation orientation within the crystal. 
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1.4.3 Mixed anisotropy 

The particles commonly found within particulate media have an anisotropy 

which results from both its shape and its crystalline structure. The resultant anisotropy 

energy for such a particle is the simple addition of the different anisotropy sources. For 

example, if the anisotropy energy of a particle is being calculated, all its anisotropy 

sources are considered separately to determine its overall anisotropy energy. An 

example of this technique can be found in the book by Cullity [7] who determines the 

properties of a cobalt particle that has two sources of anisotropy, its shape and its 

crystalline structure. 

1.5 Domain wall 

A domain wall is a junction between two domains of different magnetised states. 

At the junction there is a transition region where the atomic moments rotate from one 

magnetised state to the other. The energy associated with this change is the wall energy. 

Bloch [8] proposed a theoretical structure for a domain wall given in figure (1-4). 

0 

A Domain wall  

Domn A 

figure (1-4): A Bloch wall structure. 

The Bloch domain wall structure is the simplest transition from one domain to 

another. Other forms of domain walls can be found, they are Neel and cross-tie [7]. The 



Bloch wall thickness is determined by the magnetocrystalline anisotropy energy and the 

exchange energy associated with the transition of moments from one domain direction 

to another. The exchange energy within the wall will try to reduce the angle from 

adjacent moments. This will have the effect of increasing the wall thickness. The 

magnetocrystaJline anisotropy energy will try to align the moments with the easy axes of 

the material. This will tend to lead to instantaneous transitions from one easy axis to the 

next. In an actual Bloch wall the thickness is determined by minimising the total energy 

of the system; thus the thickness of the wall is determined by the relative magnitudes of 

the magnetocrystalline anisotropy energy and the exchange energy. 

The configuration and generation of domains within a magnetised body depend 

on the reduction of the total energy of the body. Changing the size of the domains and 

their arrangement within the body can reduce the total energy within the body. A typical 

arrangement, shown in figure (1-5) would be the generation of closure domains in a 

magnetised body containing two domains (sample A) to a body containing four (sample 

B). Closure domains minimise the formation of free poles and reduce the magnetostatic 

energy of the magnetised body. 

a- Closure 

• •( 	domain 
'I 

p . . 

A 
	

B 

figure (1-5): Domain configurations. 

The reversal mechanism within a multidomain magnetised body occurs through 

domain wall motion and the realignment of the domains into the applied field direction. 

The action of domain wall motion is to rotate moments from one domain to the next. 

The ease with which a domain wall traverses through a magnetised body is dependent 

on the imperfections within the body. These imperfections generate energy barriers that 

inhibit domain wail motion. Domains can also rotate as a whole into an externally 
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applied field direction. This reorientation into an external field is dependent on the 

magnitude of the external field and the anisotropy within the domain. 

1.6 The single domain particle 

A single domain particle occurs when it is energetically favourable to have one 

domain with its large associated magnetostatic energy rather than having a domain wall 

with its associated energy. Single domain particles become prevalent as the size of a 

magnetised body reduces and the relative contributions of the domain wall energy 

increases and the magnetostatic energy decreases. The geometry of a typical single 

domain particle found in commercial particulate recording media and studied in this 

investigation is of a prolate spheroid with an aspect ratio of 10:1 and a length of 0.3 pm. 

The reversal mechanism within single domain particle's has been and still is an 

important area of research [9-111. The reversal mechanism of a particle determines to a 

large extent its magnetic properties, its switching field, its remanence and the speed of 

reversal. A particle's switching field is the field required to reverse its moment. A 

particle's switching speed is becoming increasingly important in the strive for faster 

read/write times in recording media [12-14]. The two basic forms of moment reversal 

within a single domain particle are coherent and incoherent 

1.6.1 Coherent reversal 

Stoner and Wohlfarth (SW) [9] proposed to model the switching mechanism of a 

single domain particle by assuming that all the atomic spins of the atoms remain parallel 

to one another during the reversal process, indicated in figure (1-6). This form of 

reversal has subsequently been known as coherent rotation or Stoner-Wohlfarth (SW) 

mode of rotation. 

Since the publication of Stoner-Wohlfarth model it has been found that the 

switching fields (field at which the moment of a particle reverses) of SW particles are 

consistently greater than the switching fields of the corresponding real particles [10]. 

The reason for the error was thought to be the assumption that the magnetisation 

remains uniform during reversal process and hence exchange interactions play no role in 

the reversal process. Consequently non-uniform reversal modes for the particle 

switching process have been suggested [15], e.g. fanning, curling and buckling. 
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1.6.2 Incoherent reversal 

The fanning mode of reversal was suggested experimentally by the shape of 

electrodeposited iron particles observed with an electron microscope [161. The shapes of 

the particles were similar to a long chain of peanuts. Jacobs and Bean proposed a model 

that represented a single domain particle by a chain of spheres [10]. Their model 

considered the applied field energy and the magnetostatic energy of the dipole dipole 

interactions between the spheres. They examined both symmetrical fanning and 

coherent rotation. In the fanning mode indicated in figure (1-6) they found that north 

and south poles are brought together, thus reducing the magnetostatic energy, while in 

the coherent mode like poles were aligned, thus increasing the magnetostatic energy. 

The effect of an increased magnetostatic energy contribution in the coherent mode was 

to make the fanning mode a more energetically favourable reversal mechanism. 

Curling was investigated theoretically in micromagnetics by Frei et al. [11]. The 

curling mode is characterised by the existence of no free poles on the particles surface 

during the reversal process, thus no external magnetostatic fields are generated during 

the reversal process. The diagram in figure (1-6) indicates the classical description of 

curling, where all the moments lie parallel to the surface of the particle. A full 

description of the main aspects of curling and the other forms of reversal can be found 

in the book by Cullity [7]. 

Buckling is another form of reversal mechanism that has been investigated 

[7,11]. The mechanism gave theoretically lower switching field for particles with 

specific geometric conditions than coherent, fanning or curling reversal mechanisms. 

Buckling is characterised by moments reversing locally within the particle and these 

reversed moments acting as points of nucleation for further reversal. 

11 
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figure (1-6): Reversal mechanisms. 

1.7 Magnetic interactions in particulate media 

The properties of particulate media are determined by properties of the particles, 

the particle orientation distribution within the media and the interaction effects between 

particles. The interactions within particulate media are magnetostatic (long range) and 

tend to lead to the formation of flux closures. 

An explanation of the interaction effects within a simple system of magnetically 

identical particles given in figure (1-7) is used as an example. In the system all the fields 

shown are the fields generated from particle A. It is clear that particle A will affect 

particles B and C differently due to their relative distance, orientation and position. 

Particle B experiences a magnetising field, while particle C experiences a demagnetising 

field from particle A. These interaction effects becomes apparent when external fields 

are applied to switch the particles. If an external field is applied in the negative z 

direction, then the field from particle A would aid switching of particle C and oppose 

the switching of particle B. This would result in particle C reversing its moment at a 

lower field value than that of particles A or B. 

12 



C I Z+ 

A 

figure (1-7): Interaction effects between particles. 

if now all interactions are considered during the switching process of the system, 

particle C would switch first, aided by the demagnetising interaction fields of particles 

A and B. The interaction field of a switched particle C would oppose demagnetisation of 

both particles. However, particle A will experience a greater magnetising field from 

switched particle C than particle B. The next particle to switch would be particle B, its 

interaction field would then try to demagnetise particle A and initiate its switching. This 

simple example has shown how difficult interaction effects are to understand. In fact the 

number of interactions considered in any system is the factorial of the number of 

particles within the system. In this case a system of three particles contains six 

interactions, a ten-particle system would contain over 3.6 million interaction fields. This 

indicates just how complex a real system would be to model or describe. 

A mean field approximation has been proposed [6] to describe the effects of 

interactions within particulate media. The model represents the effect of inter-particle 

interactions by a mean field determined from the medium's mean magnetised state. if a 

particle is considered to lie in a magnetised body, as in 

figure (1-8), the particle will experience the effect of the applied field HAPP, its 

own demagnetising field Nd and the field HHOLE. The field HHOLE is generated by the 
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mean magnetised state of the media, assuming there is a hole in instead of the particle. 

The effective field the particle experience is a result of all these fields and is given as 

NEFF =H,,, +Hd HHOLE 	 (1-15) 

figure (1-8): Mean field approximation. 

The effect of the field HHOLE before half the medium had switched is to oppose 

the switching of particles, after half the medium has switched the effect of HHOLE  is to 

aid further switching of particles. The mean field approximation predicts that the 

switching field distribution of a medium will be at a lower mean field value and have a 

broader distribution. 

The packing density of a medium influences the properties of the individual 

particles within the media. The properties of particles within the medium are determined 

by the properties of the particles and the interaction effects between the particles. As the 

packing density within the media increases, particles begin to touch and so lose some of 

their shape anisotropy. The loss of shape anisotropy reduces the particle's coercivity. 

Another consequence of an increased packing density is increased interaction field 

between the particles. This field can either magnetise or demagnetise the sample as a 

whole depending on the relativ& orientation of the particles within the medium. 
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The effect of packing density was first investigated by Neel [17] who proposed 

an empirical relationship between the packing density of the media, the coercivity of an 

isolated particle with shape anisotropy only and the coercivity of the media as a whole. 

Neel's empirical relationship given as 

11 c(P) = H(0)(l - p) , 	 (1-16) 

where Hc(0) represents the coercivity of an individual isolated particle and p is the 

volumetric packing fraction. This empirical relationship indicates that as the packing 

density increases to unity the coercivity reduces to zero. This relationship was later used 

in the study by Knowles [18,19] who found a good agreement in y-Fe203 samples 

between experiment and theory in a packing density range of 0 to 0.4. 

1.8 Particulate recording media 

Particulate recording media are still one of the most common forms of magnetic 

media used commercially today. The medium consists of a dispersion of magnetic 

particles coated onto a support material in an organic binder. Information is stored as a 

magnetic pattern by the application of a magnetising field. The recording head is an 

electromagnet, through which a current passes that represents the write signal. 

Information is written on to the media by a time varying current signal as the head 

moves at a constant velocity along the medium. The signal is represented by the spatial 

variation of the remanent magnetisation in the media. The motion of the readlwrite head 

across the media reads the information. The head picks up an induced voltage signal 

proportional to the remanent magnetisation and the velocity of the head across the 

medium. This read signal is not an exact facsimile of the original write signal but 

constitutes a reproduction of it. The raw signal is electronically processed to become a 

reproduction of the original write signal. 

Particulate media must have specific properties to allow the successful recording 

and reading of magnetically coded information. The particles within the media must 

have an adequate remanent magnetisation to generate sufficient field for the read/write 

head to measure. The coercivity of the particles must be small enough to allow 

successful writing and large enough to resist signal degradation with storage time. The 

switching field distribution of the particles within the medium should be narrow to 
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allow sharp transitions from one magnetised state to the next, this facilitates the ability 

to record data at high densities. If the switching field distribution of a medium is broad a 

number of problems are encountered. A distribution that extends to excessively large 

coercivities will cause problems in the erasure and the overwritting of old data with 

new. This is particularly problematic for analogue data that requires a thorough erasure, 

digital data however can tolerate some residual overwritten signal. A distribution that 

extends too low coercivities can lead to problems of instability in the magnetised signal 

and the phenomena of print through. Print through occurs when a magnetised signal 

from one tape layer is transferred weakly to an adjacent layer in the reel [20]. Particles 

must also be stable chemically and physically under conditions they are liable to 

encounter in their use. 

The transition density, essentially the information density within a medium is 

determined by the physical size of the particles. A recorded segment should contain a 

large number of particles to give a small signal to noise ratio. For a high density media 

with low noise the magnetic particles should be as small as possible. There is a 

requirement to minimise the separation between the media and the read/write head to 

allow an efficient read/write process. This process depends partly on the smoothness of 

the recording surface. These requirements have led to a trend to smaller magnetic 

particles. As the size of these particles reduce they become increasingly susceptible to 

magnetic fluctuations due to thermal energy. The moment of a particle can reverse by a 

thermally activated transition, this reversal phenomena is called time dependence [21]. 

The limit of magnetic stability occurs when the thermal energy becomes of the same 

order as the anisotropy energy, at this point the particles are said to be 

superparamagnetic, they act like individual spin moments of paramagnetic materials. 

There is a constant trend to increase data densities within particulate media by 

the reduction of particle size and the increased perfection of particle morphology. 

Particle size determines the finite limit of recording density, since a bit of information 

can not change over the physical length of a particle. Particles with greater morphology 

perfection have a narrow switching field distribution, this allows sharper magnetic 

transitions. As consequence of increased recording densities there is a tendency for 

particles to have larger coercivities to counteract the effect of the internal demagnetising 

fields generated at magnetic transitions. Thus, in particulate media there is a general 
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trend to small morphologically perfect particles with high coercivities, but not so high as 

to prevent recording heads from writing data. 

There exists a wide variety of commercial particulate recording media that have 

been developed for data storage. For example, gamma-ferric oxide, cobalt modified 

gamma-ferric oxide, chromium dioxide, metal and barium ferrite. All these particulates, 

except for barium ferrite are acicular in shape and have a strong shape anisotropy. 

Gamma ferric oxide (y-Fe203) particles are acicular in shape with a typical 

length of 0.3-0.4jim and a diameter of 0.06-0.03pm [22-24]. The particles have a cubic 

crystal structure with a magnetocrystalline anisotropy constant of Kj=4.64*10 3J/m3  

[24]. Gamma fefflc oxide saturation magnetisation is 336-340 kAJm. The particles 

anisotropy results predominantly from its shape giving coercivities of 20-28 kAJm. 

There is a discrepancy between the measured coercivity of a gamma ferric oxide particle 

and its theoretical coercivity from Stoner-Wohlfarth model. This is thought to arise from 

the morphology of gamma ferric oxide, since rather than having a clean surface the 

particles are dendritic. The effect of the dendrites results in the formation of a number of 

nucleation points which subsequently leads to a reduction in the coercivity [25,26]. 

Apart from the morphological problems associated with gamma ferric oxide, it remains 

a popular particulate due to its high chemical stability and low cost. 

Cobalt modified gamma fen-ic oxide (Co-Fe203) particles were a technological 

advance in the coercivity of metal oxide particles. The particles can either be cobalt 

doped into the iron oxide structure [27] or cobalt absorbed onto the oxide surface. 

Cobalt doped iron oxide structures were the first attempt to increase the coercivity of 

iron oxide structures. The coercivity of these structures was increased by exchange 

interactions between the electronic structure of cobalt and the iron oxides. This led to a 

coupling of the high magnetocrystalline anisotropy of cobalt K1c4.3*  l0 Jim3  to the 

iron oxides, increasing its coercivity to 43-60kAIm. [28,291. Cobalt doped iron oxides 

are not satisfactory for magnetic media, since the coercivity is temperature dependent 

and displays progressive loss of short-wavelength signal amplitude with repeated 

playback [23]. In an attempt to avoid these problems cobalt was surface doped onto the 

iron oxide particles [30,3 11. Surface doping had the effect of improving the temperature 

dependence of the switching field of particles and increasing its coercivity. The surface 

doped cobalt iron oxide particles have similar size and shape to that of iron oxide 
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particles. Their saturation magnetisation is 350-355 kA/m and their magnetocrystalline 

anisotropy constant is K--S to +100* 10 J/m3[24]. 

Chromium dioxide (Cr02) was developed as a recording particle for its high 

coercivities typically 26-1 57kAIm. Chromium dioxide particles are acicular in shape 

with a length of 0.5-0.1pm and an aspect ratio of 30-5:1[32,33]. Chromium dioxide has 

a tetragonal rutile crystal structure. The easy direction of the magnetocrystalline 

anisotropy has been reported parallel to the c axis [34] or inclined by 40 0  to the c axis 

[35]. The anisotropy of chromium dioxide particles is dominated by their strong shape 

anisotropy. The reversal mechanism within chromium dioxide has been investigated 

theoretically and experimentally [11,36]. Results indicated a curling mechanism, which 

is only possible in highly smooth particles with few dendrites. Chromium dioxide 

particles have few imperfections (few dendrites) and are uniform in shape, this aids in 

efficient packing and good orientation of the particles within the medium. 

Metal particles of pure iron were investigated as a particulate in magnetic 

recording media for their large saturation magnetisation typically 870-1110 kAJm, 

which is four times that of an iron oxide. The initial problems associated with the 

development of metal particles were associated with their tendency to oxidise. This 

problem with oxidation was solved by the development of a surface passivation layer, 

which inhibits oxidation of the bulk iron. The particles are acicular in shape with a 

length of 0.1-0.3pm and an aspect ratio of 10-5:1, giving coercivities of 30-131 kA/m. 

The reversal mechanism within metal particles has been found to be dependent on its 

shape and crystal structure. Under certain physical conditions the fanning mode is 

appropriate [16], while under other conditions curling is more appropriate [11]. 

Barium ferrite was initially developed with an application to perpendicular 

recording in view. The benefit of perpendicular recording is a reduction in self-

demagnetisation, this allows for the retention of sharp transitions within the media, and 

hence high recording densities are possible. Pure barium ferrite was found to have an 

excessive coercivity and size for high density recording. This problem was solved by the 

substitution of Fe with Co and Ti within the barium ferrite structure [37], this led to 

particles having typical diameters of 0.lpm with a thicknesses of 0.017pm [23,38] and 

coercivities of 160-238 kA/m [24]. Barium ferrite has a hexagonal lattice in a platelike 

structure. Its anisotropy is predominately uniaxial magnetocrystalline with the easy axis 
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perpendicular to its plane, while its shape anisotropy is in the plane of the platelike 

structure. The physical and chemical properties of barium ferrite are found to be stable. 

Particulate recording media are produced by the well-established technique of 

coating a support material with a dispersion of discrete magnetic particles in an organic 

binder [39].  This creates a magnetisable layer on the surface of a nonmagnetic support 

layer, such as polyethylene terephthalate (P.E.T.). Particulate media basically consist of 

single domain particles held to a substrate by a binder. Magnetic layers can typically 

range in thickness from 0.25pm for a rigid disk to 12pm for an audio tape [23]. 

A dispersion is a careful blend of magnetic pigments, wetting agents, abrasive 

agents, organic resins, lubricants and one or more volatile solvents. The magnetic 

pigment used is specifically chosen to have the appropriate coercivity for the recording 

application in which the medium is to be used. The organic resins are used to separate 

the particles in the dispersion and to provide a binding for the particles in a tough, 

flexible tape coating. Wetting agents are added to reduce the formation of agglomerates 

within the dispersion. Lubricants are added to reduce the friction generated by the 

contact between the tape and the read/write head. A common lubricant is carbon black, 

which has the advantage of also being an anti-static agent. Abrasive agents such as 

alumina are imbedded into the tape to remove the accumulation of polymer molecules 

from the read/write head. 

The preparation of the dispersion goes through many stages in its production 

process. These include premixing, milling, letdown and activation [39]. The completed 

dispersion can be spread onto the support film via a number of techniques, including 

knife coating and the use of a rotating drum [38,39]. During the coating process the 

particles on the tape can be given a orientation in the plane of the tape by the application 

of a magnetic field. 



Chapter Two 

Measurement of the properties of 
isolated magnetic particles: 
Experimental Theory 

2.1 Introduction 

A technique was proposed by J.E. Knowles [1] in 1978 to measure the magnetic 

properties of isolated acicular magnetic particles. The basic technique involved 

observing under a microscope the reaction of a particle to a weak aligning and a large 

pulsed magnetic field. The technique essentially measured the switching field of a 

particle, the applied field at which the moment of the particle reversed, identified by the 

rotation of the particle through 180 0.  

The technique required the preparation of a dilute viscous particle dispersion. 

This dispersion was sealed within a micro-slide tube, placed between two pulsed field 

coils and was observed under a microscope. Under observation, the particles were 

aligned in an orientation field (—lml) generated from weak permanent magnets and an 

opposing pulsed magnetic field generated from a field coil was applied, indicated by the 

schematic diagram in figure (2-1). After the pulsed field was applied, if the particle 

remained stationary, then its moment had not switched and another pulsed field of 

greater magnitude was applied. This technique was repeated until the particle was seen 

to rotate through 180°. This indicated the moment of the particle had switched in the 

applied pulsed field and was now realigning within the orientation field. 
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figure (2-1): Schematic diagram of the experimental technique for the measurement of 
an isolated magnetic particles switching field. 

The technique was selective as only apparently single isolated particles were 

measured. Small agglomerations that appeared to be single isolated particles were 

identified by their reaction to pulsed magnetic fields. If after a pulsed magnetic field the 

suspect particle rotated, but not through 1800  then it was assumed the particle had been 

demagnetised, indicating it was a multiple or a multidomain particle. 

The basic apparatus for the measurement of the switching field of an isolated 

particle can be divided broadly into two areas, the optics and the magnetic field 

generation. The optics allows the visualisation of the particles under investigation, while 

the magnetic field generation allows the investigation of the particles magnetic 

properties. 

2.2 Sample preparation 

The particle dispersion used as samples for the measurement of the properties of 

isolated magnetic particles required specific characteristics. The particles within the 

dispersion were required to be isolated and to remain in the field of view during the time 

frame of the experiment. As a consequence the particles were dispersed in a viscous 

resin. 

The dispersion was derived from particles originating from commercial and hand 

spread tapes. The particles within a sample were extracted by soaking the sample 

(-6cm2) in cyclohexane (-5.5g). This solution was agitated in an ultrasonic bath until 
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the resin binding the particles to the tape had dissolved and a suspension of particles 

was created. The dispersion was produced by stirring —0.2g of the suspension into —5.Og 

of Vagh resin , which is a vinyl chloride using a Turrax Tm  high shear blender. 

The viscosity of the dispersion for the experiment was controlled by further 

additions of solvents or resin, if the motion of particles within the dispersion during the 

experiment was problematic ( the particles moving out of the optics field of view), then 

more resin was added. If the particle took an excessive amount of time to rotate, more 

than a minute, then more solvent was added. 

2.3 Experimental techniques 

The basic apparatus for the switching field measurement of a particle consisted 

of a platform that held a pulsed field coil and two permanent magnets that aligned the 

particles. A schematic overview of the platform is presented in figure (2-2). 

figure (2-2): Pulsed field coil platform. 
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A number of techniques were developed by Knowles [2,3] as extensions to the 

basic technique for the switching field measurement of a particle. The techniques 

allowed for the measurement of 

1. The switching field as a function of the applied field angle with respect to the easy 

axis of a particle 

2. The remanent magnetisation of a particle 

3. The effect of A.C. demagnetisation upon an apparently single particle 

4. The anisotropy field of a particle 

Techniques land 2 are described with their experimental results in chapter 3. 

The other two techniques were not utilised within this study and are not discussed. 

2.4 Microscope 

A schematic diagram of the microscope used for the measurement of isolated 

particles is found in figure (2-3). The schematic indicates all the main components of 

the microscope and its basic experimental set up. 

The microscope had an oil immersion objective with an oil immersion 

condenser. The oil immersion system consisted of an oil film with a similar refractive 

index to crown glass in between the condenser and specimen and the specimen and 

objective [4]. The oil film filled the air gap found between the specimen and the 

objective, allowing more oblique light rays to pass through the objective. This had the 

effect of increasing the numerical aperture (N.A.) of the objective. A similar effect 

occurred for the oil immersion film between the specimen and the condenser. 

The N.A. is a term commonly used to compare the resolution of various 

objectives regardless of their working medium and magnification. The N.A. is quoted as 

a number which has a linear relationship with the resolving power of the microscope 

and is defined as 

NA = nsina. 	 (2-1) 

Here n is the refractive index of the medium between the object and the lens, and a is 

half the intake angle of the lens. 
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figure (2-3): Microscope. 

The objective is a lens or a combination of lenses. Its main purpose is to collect 

the light passing through the specimen. There are many forms of objectives; including 

Achromatic, Semi-Apochromatic or fluorite and Apochromatic. These terms refer to the 

colour correction for the chromatic aberrations of white light within the lens. The 

objective found within the microscope for the single particle measurements was an oil 

immersion Semi-Apochromatic. This objective had a N.A. of 1.25 with a x63 gain. This 

type of objective has the same focal point for two wavelengths in the visible spectrum, 

in practice all other spectral colours are very near to the same focal point. In most 

circumstances a semi-apochromatic objective is indistinguishable from apochromatic 

objectives where three spectral components have the same focal length. 
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The objective tube length for the objective lens used in the single particle 

measurements was 160mm. This is the optical path length when the image from the 

objective has been fully corrected for spherical aberrations. The working distance of the 

objective is an important parameter when using high resolution microscopy. For 

objectives with large apertures that have a small working distance, problems can arise 

when the working distance of the objective is less than the outer thickness of a micro-

slide tube or the thickness of a cover glass. Simply it is not possible to focus on the 

sample within the tube or below the cover glass. 

The condenser is a lens or a system of lenses placed below the sample under 

investigation. The purpose of the condenser is to illuminate the sample at a controlled 

angle. Within the condenser there is an iris diaphragm that controls its aperture. For high 

resolution work the highly corrected objectives with large apertures requires the 

condenser's aperture to match that of the objective to give the maximum resolution. The 

condenser found within the microscope for single particle measurements has a N. A of 

1.4. It also contains a patch stop near its iris diaphragm. 

The patch stop is a disc made of glass with an opaque centre. The patch stop 

generates a hollow cone of light that reduces the direct light entering the objective. This 

increases the contrast when observing small opaque objects. This is because the more 

axial the light the more it will be affected by diffraction effects at the particle, blurring 

the projected image at the eyepiece [5]. 

The function of the microscope eyepiece was to act as a magnifier, enlarging the 

image resolved by the objective to a size suitable for the eye to perceive. The eyepiece 

within the microscope had a gain of x20. The eye piece projected the image onto a 

Philips black and white video camera, which was then displayed on a monitor. The 

overall magnification of the microscope and the video camera was —10000, which could 

be increased to —15000 by increasing the distance between the eyepiece and the video 

camera. 

The light source of the microscope was deep blue having a wavelength of 

approximately 460 nm. The light source power was generated by a 100 watt bulb 

powered by a 12 volt power supply unit. 
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The resolution of the microscope depended on whether the objective had a 

sufficient aperture to accommodate the cone of light through the sample and the first 

order diffraction spectra generated by the aperture of the condenser. The diffraction 

effects within the microscope determine its finite resolution. The diffraction effects are 

determined by the N.A. of the microscope and the wavelength of light used. The 

experiments performed by Abbe [5] led to the conclusion that the resolving power R of 

a microscope was 

A 
(2-2) 

The resolution of the microscope calculated from equation (2-2) was 0.19J.uTl. 

This resolution limit determined the lowest particle size observable within the 

microscope. 

2.5 Pulsed field generation 

The technique to measure the switching field of an isolated particle required the 

particle to be aligned in an orientation field (-1.0 ml), while a large opposing pulsed 

magnetic field was applied, indicated earlier in figure (2-1). The generation of a large 

pulsed magnetic field required the construction of a pulsed field coil and a pulsed 

voltage source. For the measurement of commercial magnetic particles the pulsed field 

generated from the coil and driven by the voltage source was required to be in excess of 

0.15 Tesla. The pulsed field should also ideally be uniform over its duration and the 

experimental observational area of the microscope to allow repeatable and consistent 

experimental results. 

2.6 Pulsed Field Coil 

In the previous work by Knowles the field coil former was constructed from 

optical quality glass which was in optical contact with the objective of the microscope 

and its condenser. This experimental set up for the microscope is essential for maximum 

resolution. If there is not an optical contact between the specimen tube and the optics the 

resolution of the microscope is reduced and as a consequence, it would be impossible to 
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resolve a single magnetic particle. For these reasons the pulsed field coil and the 

experimental set up developed by Knowles were adopted in this work. 

The pulsed field coil design consisted of a field coil former constructed from 

optical quality glass slides with enamelled copper wire wound onto a former to create a 

Helmholtz pair. The sample tube in the final constructed pulsed field coil would lie in 

between the two coils of the Helmholtz pair. 

The coil former was fashioned from three pieces of optical quality glass. The 

main piece approximately 3050.8-1.0 nun was fractured from a glass slide with 

dimensions of 76x26x0.8-1 .0 mm. The edges of this fractured piece were smoothed 

using emery paper and its physical dimensions measured. The other two pieces were 

fractured from a cover slip with dimensions of 22x22x0. 17mm to match the width of the 

main glass slide. These three fractured glass pieces were glued together with 

commercial cyanoacrylate in the form given in figure (2-4). 

figure (2-4): Coil former. 

The next stage of construction was the coils' winding. Coils were wound with 

0.05mm enamelled copper wire under a strong magnifying glass at points A and B in 

figure (2-4). Particular care was taken at this stage to achieve good coil uniformity as 

this is essential for field uniformity. After the completion of each coil winding stage, the 

coils were glued to the glass former with commercial cyanoacrylate. The final 

construction stage was to solder the two coil ends together to create a Helmholtz pair. A 

diagram of the final constructed pulsed field coil is given in figure (2-5). 
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figure (2-5): Constructed pulsed field coil. 

After the construction of the pulsed field coil its dimensions were measured and 

its field profile was calculated. 

2.6.1 Field Calculation 

Due to the nature of the pulsed field coil construction, it is practically impossible 

to construct coils with the same dimensions. For this reason it was necessary to calculate 

the field produced by a pulsed field coil. A numerical program was developed to 

calculate the field profile for a square Helxnholtz coil found in the pulsed field coil. The 

program was written in GWBASIC and used the Biot-Savart law found in equation (2-3) 

to calculate the field components in i, j and k as a function of the distance z away from 

the pulsed field coil centre. Biot-Savart law expresses the vector field B at some point P 

as the sum of the contributions to the field made by the elements, dl, of a current 

carrying conductor 

B
p1 dlxf 	 (2-3) 

- 4w 

The program considered a square coil as four individual straight wires. The 

calculation of the field was determined from the solution of Biot-Savart equation for 

straight wire and summed for all four wires of each coil in the Helmholtz pair. 



figure (2-6): Magnetic Field of a straight conductor. 

The vector element dl of the conductor is dy, the distance r = ,1x2 + y 2  and 

sinA = sin(ir —6) = xl ,Jx2 + 	. The direction of dB is perpendicular to the plane of 

the figure, into the plane, and in this example the direction of dR's from all the elements 

of the conductor are the same. Thus, the total field at point P is determined by the 

integration of all the elements of the conductor. Using equation (2-3) and substituting 

appropriately for this example, the magnitude of the total field at point P becomes 

B = .&L i 	xdy _________ 
41r Lx2 + y 2 ) 312  (2-4) 
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which yields 

ji,! 	2a 
47tx ,j71 +a 2  (2-5) 

The field from the Helmholtz pair was calculated using the numerical program 

and physical characteristics of the coils. These included the inner coil separation, the 

number of turns in the coils, the wire diameter, the centre height of the sample with 

respect to the axis height of the coil, the depth of coil, the width of coil, the outer 

separation of the coils and the maximum current rating of the voltage pulsed driver. The 

position of each turn of the coil on the former was calculated assuming an average 

separation between each turn. The resistance of the pulsed field coil was calculated 

within the numerical program, the program used this value with the maximum pulsed 

voltage generated from the voltage pulsed driver to calculate the maximum pulsed field 

profile of the coil. An example of the results from this program is presented in 

figure (2-7) for coil OC1 1. 
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figure (2-7): Field Profile for coil OC1 1. 
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The program was also used as a design tool for the determination of the optimum 

number of turns for a specific pulsed field coil former. It was also important to consider 

the voltage driver in the determination of the optimum characteristics for the coil. The 

voltage driver had a maximum voltage of 127 volts and was current limited at 100 

Amps. The maximum power transfer from the driver to the coil occurred when the 

current in the coil was defined by the resistance of the coil and not by the maximum 

current rating of the pulsed voltage driver. 

General maxims for the coil former design were to construct a former with the 

field coils as close to the sample tube as possible and to reduce the width of the coil 

former. In reducing the width of the former the length of wire used to wind the coils 

was reduced, thus reducing the coils resistance and increasthg the maximum current for 

the coil. 

The number of turns within a coil was critically important for its maximum field 

and its field uniformity. It was found that coils with too few turns had a low resistance 

with a poor power transfer from the voltage driver. The field uniformity from these coils 

were also found to be poor due to the limited number of turns used to generate the field. 

Coils with too many turns led to a problem where the outer turns of the coils did 

not contribute enough to the coils field to compensate for their resistance. The increased 

coils resistance reduces the current passing through the coil, thus reducing all the other 

turns contribution to the coils field. A point was reached where the extra turns on the 

coil did not increase the coil's field but actually decreased it by the reduction of the 

current through the coil. These coils had good field uniformity but they had a limited 

maximum field. 

A compromise had to be taken between these two extremes of design. This 

compromise was achieved simply by running the program to calculate the field profile 

for a coil former with different number of turns. The results were compared for their 

maximum field generated and for their field uniformity. 
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2.6.2 Field Calculation Uncertainty 

Analysis of the computed pulsed field coil profiles indicated that the field varied 

across the observational area of the microscope. For this reason it was decided to 

calculate the uncertainty in the calculated field profile for the positional uncertainty of a 

particle and the uncertainty in the measured parameters used to calculate the original 

field profile. The uncertainty in the field calculation was determined by calculating the 

fields for the combinations of all the errors. The errors taken for the calculations were 

the width and depth of the coil former (±0.1cm), the inner and outer separation of the 

coils (±0.1cm) and the positional uncertainty of the particle (if plane ±0.1cm, j direction 

±0.01cm). The results from these calculations for coil OCI I are presented in a 

histogram given in figure (2-8). 
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figure (2-8): Field calculation histogram for coil OC1 I. 
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The calculation presented in figure (2-8) indicates that the mean maximum field 

for coil OC1 1 was 0.1656 Tesla with a standard deviation of ±0.007 Tesla. This 

calculated maximum field with its associated error was used in the presentation of all 

results determined using this coil. 

2.7 Pulsed Voltage Source 

The magnetic pulsed field is generated by a large pulsed voltage applied to the 

pulsed field coil. The original pulsed voltage source donated to the department by J. E 

Knowles had consistently broken down during experimental measurements. It was 

decided to construct a new pulsed voltage unit, incorporating its own signal generator in 

a modular unit. 

The new pulsed voltage unit was designed in a modular form allowing 

improvements to the unit at later dates by simply replacing a board. There are four main 

boards within the unit, the signal generator, the discharge board, the capacitor bank 

board and the power supply board. A schematic diagram of the complete unit is 

presented in figure (2-9). 
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figure (2-9): Schematic diagram of the modular pulsed voltage generator. 

The generator was designed to develop a voltage pulse of a fixed amplitude for a 

specified duration or a repetitive pulse of fixed amplitude, fixed duration and a fixed 

duty cycle. The pulse parameters are determined by control knobs at the front of the 

unit. 
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The power board (board 1) provides the power lines for the analogue and digital 

circuitry from a 127 volt power supply unit, capable of producing 100 mA. The board 

also charges the discharge capacitors to a preset level determined on the board by a 

potentiometer. A circuit diagram for the power board is given in figure (2-10). 
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figure (2-10): Power supply circuitry. 

The potentiometer Ri determines the voltage Va to which the discharge 

capacitors are charged, the potentiometer is a multi-turn and is found on the control 

panel of the unit. All the power lines within the board are decoupled with a 6600.iF 

capacitor on the capacitor bank board (board 4). 

This signal generator board (board 2) is the most complex board within the unit. 

This board generates a single pulse at fixed duration or repetitive pulses at a fixed duty 

cycle and a fixed duration. The pulse duration and the duty cycle are controlled by 

potentiometers within the circuitry of the board. The board consists of two astable 

generators, one of the astable generators is used as a trigger source for the pulse duration 

monostable generator, while the other sets the duty cycle for the repetitive pulse mode. 

The two monostable generators determine the pulse duration and the time delay between 

consecutive pulses, this avoids multiple pulses generated in the single pulse mode. The 
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analogue switching circuitry allows the transition from single pulse mode to the 

repetitive pulse mode. A schematic design of the signal generator board is given in 

figure (2-11). 
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figure (2-11): Schematic diagram of the signal generator board. 

The circuit diagram for the astable generators within the signal generator board 

is presented in figure (2-12). The potentiometer R2 is found on the pulsed voltage 

source control panel and it determines the duty cycle in the repetitive pulse mode. 
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figure (2-12): Astable generators of the signal generator board. 

+ 1 5v 

figure (2-13): Analogue switching circuitry of the signal generator board. 

The analogue switching circuitry switches between repetitive pulse mode B and 

single pulse mode A by switch 1. 
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figure (2-14): Monostable generators of the signal generator board. 

The monostable generators within the signal generator board are presented in 

figure (2-14). Switch 3 is a microswitch that initiates an output pulsed voltage in the 

single pulse mode- The potentiometers R8 and R9 respectively control the pulse 

duration and the time delay between consecutive single pulses. These potentiometers 

and the microswitch are found on the control panel. 
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figure (2-15): Discharge board. 

The discharge board presented in figure (2-15) allows the charge from the 

capacitor bank to be discharged through the output load for the duration of the signal 

pulse. The discharge board contains a comparator (IC1) that monitors the output from 

the signal board and controls a large electronic switch (a HEXFET) that dumps the 

energy from the capacitor bank through the output load. 

After the construction of the pulsed voltage unit it was necessary to calibrate the 

multiturn potentiometer on the control panel that controls the pulse duration and the 

multiturn potentiometer that controls the magnitude of the pulse. The results from these 

calibrations are presented in figure (2-16) and figure (2-17). 
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figure (2-16) Calibration of pulse duration. 
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figure (2-17): Calibration of voltage pulse magnitude. 
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2.8 Calibration of the pulsed field coils 

In the experimental study of the properties of isolated particles it was initially 

thought acceptable to only have a numerical calculation of the field generated from the 

pulsed field coils. This field calculation would have been adequate if the same pulsed 

field coil was used throughout all the measurements. During experiments, however, the 

field coils were found to be susceptible to damage, in particular the coil fusing and the 

coil former cracking. This led to the problem of obtaining comparable and repeatable 

results for different particle systems measured with the different field coils. As single 

particle measurement had only ready been produced for some systems, that now can not 

be calibrated the accuracy of the numerical calculation of the field generated from the 

pulsed field coil had to be addressed. 

To test the repeatability of the calculated fields generated from different coils, 

switching field distributions (SFD5) on a Chromium dioxide particle sample measured 

with three different field coils were compared. The graph given in figure (2-18) shows 

SFD histograms of the Chromium dioxide particles measured with pulsed field coils 

006, 0C9 and OCl 1. 
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figure (2-18): Histograms of the switching field distributions of Cr0 2  particles. 

For a numerical comparison of the SFDs measured with the three different field 

coils, the histograms were curve fitted using a normal distribution to determine their 



mean and standard deviation. The results of the curve fits are presented in table (2-1). 

The results for the different field coils indicated a discrepancy of less than 6KAIm 

between their mean SFD's. This gave some confidence in the calculated fields from the 

coils, but gave no confidence in the absolute field generated from the field coil. 

Coil Mean Standard 

Deviation (1 sd) 

Particles 

measured 

006 89KAIm 13.4KA/m 50 

0C9 82.3 KAIm 10.8 KAIm 20 

OC11 87.3 KA/m 14.1 KA/m 22 

table (2-1): Results of the curve fitted normal distribution. 

The table below indicates which coils were used for single particle 

measurements, which coils had their results compared for the same particle systems and 

which had been calibrated, described later in this chapter. 

Compared 
Calculated results. Experimentally Measured single 

COILS field switching field Calibrated particle results 
profile distributions of 

Cr02 particles  
006 X X - X 
0C9 X X - X 

OC1I X X X X 

table (2-2) : Results and analysis used for each coil. 

2.8.1 Experimental calibration technique 

To confirm that the field coils were producing the field calculated theoretically 

from the GWBASIC program, an experimental technique was devised. In principle the 

technique measured the switching field of a single particle using a known field and the 

field generated by the field coil. The problem was to generate a known field to measure 

the switching field of a particle. 
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The solution proposed to calibrate the pulsed field coil was to vary the 

orientation field aligning the particles within the pulsed field system. The technique 

measured the switching field of a particle at two known orientation fields. Equating the 

difference between the two measured switching fields for the particle and the known 

difference between the orientation fields an absolute measure of the field generated from 

the pulsed coil system can be obtained. 

For an accurate calibration of the pulsed field coils by the technique described 

above, the design of the orientation coils was crucial. The characteristics of these coils 

determined the final accuracy of the pulsed field coil calibration. The calibration 

technique required an orientation field as large as possible to reduce the inaccuracies 

within the calibration. The field generated from the orientation coils must also be 

uniform on and off axis to allow it to be measured and calibrated successfully with a 

Hall probe. 

2.8.2 Design, construction and characterisation of the 

orientation coils 

It was initially necessary to determine the position and the size of the orientation 

coils that could be incorporated between the condenser and the objective of the 

microscope. To increase the available space for the orientation coils the pulsed field coil 

platform on the metal platform of the microscope was removed and lowered. This had 

the effect of increasing the available space for the orientation coils without altering the 

optics of the microscope. 

As a consequence of this decision to remove the pulsed field coil platform it was 

necessary to make a new platform for the pulsed field coil, so that the coil could lie in 

the centre of the metal platform and between the final position of the orientation coils. 

The new platform was constructed from a printed circuit board (PCB) which had tracks 

connecting the coils' wire to the pulsed field generator cables. The PCB was held to the 

metal platform with wooden blocks, which were bolted to the metal platform and to 

PCB itselt The position of the orientation coils and their maximum size was determined 
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to be 39 mm apart with an inner coil diameter of 10mm, an outer coil diameter of 36mm 

and a coil length of 20mm. 

To have an understanding of how the field profile of the orientation coils varied 

along its axis and to have a measure of the field produced by the orientation coils before 

construction a numerical program was written. The GWBASIC program used the Biot-

Savart law to calculate the on axis field profile for the orientation coils. In figure (2-19) 

there is a representation of a current loop within the orientation coil. 

V 

figure (2-19): On axis field calculation of a current loop 

Here o represents the centre of the orientation coil, a is the radius of the current 

loop, I is the current passing through the loop, P is the position where the field dB from 

a current element dl is calculated. The on axis field calculation for the current loop 

requires the calculation of the B. field component from Biot Savart law given in 

equation (2-3). 

LL0 i dlXr 
r2 

sinG 	
(2-6) 
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Expressing sinG as a/,/a2  +x 2  andras V6 2  +x 2  into equation (2-6). 

B - 	
a 2 3/2 Jdl 	 (2-7) 

- 4 1r (a2 + x ) 	o 

The on axis field component from a current loop is determined by integrating 

equation (2-7). 

BA 	
a2 

23/2 	 (2-8) 
2 (a2+x ) 

To calculate the field profile of a coil it is necessary to know the number of turns 

within the coil, their positions and the current passing through the coil. The OWBASIC 

program determined the orientation field from the diameter of the wire used, the 

diameter of the copper within the wire, the maximum current rating of the wire, the 

separation of the coils, the outer and inner diameter of the coils and their axial lengths. 

The program calculates for a 100% packing density, the number of turns within the coil 

and the electrical resistance of the coils. The electrical resistance is an important 

parameter that should be determined; there is no point constructing a coil if there was no 

power supply that can drive it. The power supply available for the orientation coils was 

a Farnell stabilised power supply type TSV70 M1c2, capable of producing 0-35v at 10A 

or 0-70 at 5A. 

From the orientation coils physical characteristics the on axis field profile was 

calculated for enamelled copper wire of 0.27mm diameter. The program determined the 

resistance of 88 Ohms per coil. The electrical characteristics of the coil are compatible 

with being driven by the Farnell power supply unit The on axis field profile for the 

orientation coils was calculated with an applied current of 0.33 amps, the rated current 

for the enamelled wire used in the coils windings. The on axis field calculated field 

profile for the orientation coils is presented in figure (2-20). The results indicate that the 

orientation coil had a field of 8.46±0.08mT within 2mm of its axial centre. 
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In the previous calculation for the "on axis" field profile using the Biot-Savart 

law, the symmetry of the problem aided its solution. This is not the case for the "off 

axis" field profile, indicated in figure (2-21). 
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figure (2-20): Orientation coil on axis field profile. 
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figure (2-21): Off axis field calculation for a current loop. 
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Here a represents the angle between the current element and the y axis and b 

represents the distance off axis from point P where the field component dB requires to 

be calculated. The off axis field calculation for the orientation coils required the field 

component B to be calculated from equation (2-6). 

Again the equation was solved by the expressing sinG and r in terms of the 

parameters a b and a. wherer = (( a —bcoscz) 2  +x 2 )" 1 . 

(a —bcosa) 

if ((a - b cosa) 2  + x2 )312 dl 	 (2-9) 

We can replace the element dl within equation (2-9) by ada, thus making the 

integral tractable. 

B
' 
 = .2L# 	

a(a — bcosa) 	
dcx 	 (2-10)  

Or ((a —bcosa) 1  +x 2 )'2  

The calculation of the off axis field profile was essentially the same as for the on 

axis field profile. The exception was the off axis field program determined the field 

from the current loop by the numerical integration of the current elements within the 

loop using the trapezoidal rule. The on axis field calculated field profile for the 

orientation coils is presented in figure (2-22). The calculated off axis field profile for the 

orientation coils indicated a maximum field of 8.39± 0.02mT (ls.d) within 1.5mm of its 

axial centre. 

The results from the numerical investigation of the orientation coils suggested 

that the calibration of the pulsed field coils was possible using this coil design. The 

orientation coils were constructed to the physical parameters determined by the 

parameters of the microscope and the characteristics of these coils investigated. 

The Hall probe used for the calibration of the orientation coils was calibrated in 

its forward and reverse direction by three calibration magnets 148.5mT, 495mT and 

1.0061. The results from the calibration of the Hall probe are presented in figure (2-23). 
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figure (2-22): Off axis field calculation of a current loop. 
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figure (2-23): Hall probe calibration 
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The field generated from the orientation coils was calibrated for the current 

passing through the coils by the calibrated Hall probe. The current calibration of the 

orientation coils is presented in figure (2-24). 
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figure (2-24): Calibration of the orientation coil. 

The measured field generated from the orientation coils represents 88% of the 

theoretical field calculated by GWBASIC programs. This reduced field is the product of 

a reduced packing density within the orientation coils. The reduction of the orientation 

coils' field has no effect on its field uniformity. The only effect is a reduction in the final 

accuracy of the pulsed field coils calibration. This reduction in the field generation 

within the orientation coils can be compensated somewhat by increasing past its 

maximum recommended limit the current through the coil for the time of the 

experiment. 



2.8.3 Calibration of pulsed field coil OC11 

The calibration of the pulsed field coil OC1 1 was performed using the basic 

technique described within the sections earlier. The switching field (V 5f) of the particle 

was measured by the voltage applied to the pulsed field coil from the pulsed voltage 

generator. The orientation field (Ia)  was measured by the applied current through the 

orientation coil generated from the Farnell power supply unit. The pulsed field coils 

absolute field was determined by measuring the switching field of a particle at two 

different orientation fields. The difference between the two switching fields 

isV5, = I511 - 	was equated to the difference between the two orientation fields 

= 110 1  1021. Since the orientation field 13 had been calibrated, indicated in 

figure (2-24) then an absolute measure of the isV 5, can be obtained and an absolute 

measure of the particles switching field can be deduced. 

The calibration was performed on twenty Chromium dioxide particles taken 

from the sample used previously for the comparison of SFD's measured with different 

pulsed field coils. The difference in the two switching fields isV, (volts) for each 

particle was plotted against the difference in the two orientation fields his! 0  (mT), 

given in figure (2-24). The errors associated with the calibration results were calculated 

from the quantifiable errors, the error in the measured current (&o ± 0.01 Amp) and the 

error within the applied pulsed voltage ((5VsF ±0.1 volt). The error within isV 5, and 

A1 0  were calculated [6] by 

3M 0  = -.ñToi 0 	 (2-11) 

MMI 

3AV U  = hsV 51 . 	 (2-12) 

The error calculations did not take into consideration the errors arising from the 

pulsed field profile, the motion of a particle during the calibration or the possibility that 

the object under observation was a multiple particle. 
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figure (2-25): Calibration of coil OC1 1. 

Equating the gradient of the calibration curve of coil OC1 I to the maximum 

pulsed voltage (127 volts) then the maximum field generated from coil OC1 1 was 

0.1612T. This measured field was comparable with the theoretical calculation of its field 

0.1 656±0.007T (1 .Sd). These results confirmed the theoretical calculations of the pulsed 

field coils field profile. 
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Chapter Three 

Measurement of the intrinsic 
properties of the individual particles. 

3.1 Introduction 

To further the development of particulate recording media it is necessary to fully 

understand the properties of the media and their origins. The properties of particulate 

recording media originate from a number of sources. These include the magnetic and 

physical properties of the particles that constitute the media, the interaction effects 

between these particles and the physical distribution of the particles within the media. 

In this chapter, experiments investigating the magnetic properties of particles 

using apparatus developed by Knowles [1] are reported. This apparatus allows the 

measurement of the properties of isolated magnetic particles. The techniques used were 

the measurement of particle switching field as a function of the applied field angle, the 

measurement of the switching field for an ensemble of isolated particles and the 

measurement of the remanent magnetisation of a particle. The physical properties of the 

particles were also of interest, particularly their aspect ratio and their length. These 

parameters measured by a Scanning Electron Microscope (SEM) were used in chapter 

six for the numerical modelling of the properties of individual magnetic particles. 

In measuring the magnetic properties of single particles and in conjunction with 

the bulk measurements of the medium, particularly its particle easy axis distribution it is 

possible to simulate a theoretical medium without interactions. A comparison between 

the measured characteristics of a medium with its theoretical representation allows a 

direct measure of its interaction effects. As a consequence the results of the single 

particle measurements in this chapter were curve fitted for a numerical representation of 

their properties. 
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3.2 Samples 

The magnetic particles investigated within this work were taken from 

commercial and hand spread media samples. The samples investigated were a series of 

three y-Fe203, three  Cr02 and a metal particle sample. The microscope used within this 

investigation had a resolution limit of 0.2pm. As there is a general uend towards 

commercial particles with smaller dimensions, lengths of less than 0.2jim, there is a lack 

of recent commercial particles which are suitable for this experimental technique. The 

sample types investigated are presented in table (3-1). 

Sample Sample Manufacture Format 

type No 

y-Fe203 I Ampex Audio 

particulate 2 Scotch Audio 

media 3 TDK Audio 

Cr02 4 Hand spread - 

particulate 5 Fuji Audio 

(Double Coated) 

media 6 Philips Audio 

Metal 7 Sony Video 

particle media 

table (3-1): The format and manufacturers of the samples investigated. 
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3.3 Measurement of the switching field distribution of an 
ensemble of particles 

Magnetic media manufacturers would prefer to use highly regular particles with 

well-defined magnetic and physical characteristics. These particles would allow the 

manufacture to produce a medium with a narrow Switching field distribution (SFD) 

determined by the particles physical size, the thickness of the media and the particles' 

easy axis distribution within the media. Commercial magnetic particles, however, are 

not perfectly uniform. They have variations in their magnetic and physical properties. 

The magnetic variations include bulk saturation magnetisation, crystalline anisotropy 

and bulk crystalline imperfections. The particle physical variations includes size, shape 

and the presence of surface irregularities, such as bumps and pits. These variations 

broaden the particles' switching field distribution (SFD) and hence broaden the SFD of 

the media. This is detrimental to recording performance as discussed in chapter 1. 

The single particle apparatus as discussed in chapter 2 was configured so that 

the pulsed field coils were in the opposite direction to the aligning magnets (9=0 0), as 

indicated in figure (3-1). 

Pulsed field (8=00) 

moment 
Particle 

Alignment field 

figure (3-1): Configuration of single particle apparatus for the switching field 
distribution investigation. 

The switching fields were measured for an ensemble of 50 isolated particles 

taken from each sample. These results were plotted as histograms to generate a SFD for 

non-interacting ensembles of particles. As a sample of 50 particles was small, only a 

small number of histogram bins were chosen for each sample. It was found that —10 bins 

gave a reasonable histogram for the measured samples. It was assumed a large data 
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sample could be represented by a Gaussian distribution. A numerical measure of the 

SFD data was obtained by curve fitting the histograms with a Gaussian distribution, 

given as 

d 	1 
SFD(H) = 2 —exp{--  

2 
 (H - K WEAN)2  I a} 	 (3-1) 

ra  

Here SFD(H) is the prominence of the distribution as a function of the applied field, a is 

the standard deviation of the SFD, HMEAJY is the mean switching field of the SFD, H is 

the applied field and d represents a curve fitting parameter. 

A normalised standard deviation CM=O/HMEAN of the particles measured was 

evaluated. This allowed a direct comparison between experimental results and 

numerical model results to be performed later in chapter 6. The standard deviation can 

be used as a figure of merit for the particles quality. This figure of merit is only valid 

when comparing particle systems with similar mean switching fields. The lower the 

value of a, the more regular the particles and conversely the higher its value the more 

irregular the particles. The measured switching field histograms of 50 particles with 

their Gaussian distribution curve fits are presented in figure (3-2) through to figure (3-

8). The curve fit parameters and the normalised standard deviation are presented in table 

(3-2). 

A visual interpretation of the Gaussian distribution curve fits indicated that they 

gave a reasonable representation of the measured SFD histograms. The standard 

deviation parameter of samples 2-7 were similar, below 14.6 kAIm, indicating these 

particles had a similar spread in their switching fields. However, Sample 1 had a much 

larger or (17.0 kAJm) than the other samples investigated. This might be attributed to a 

greater variation of particle properties within sample 1, particularly a greater degree of 

particle imperfections. These results are unsurprising as sample I was produced in the 

1960's, while the other samples were produced with the improved production 

techniques of the 1980's. It was also noted that the mean switching fields of samples 1-4 

and 6-7 were similar (55.4-85.6kA/m), while sample 5 the audio double coated Cr0 2  

tape had a mean switching field of 108.0kAJm. 
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figure (3-2): Switching field disthbution of sample 1. 
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figure (3-3): Switching field distribution of sample 2. 
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figure (3-8): Switching field distribution of sample 7 

Sample Sample HUEAN or 

type No (kA/m) (kA/m) 

y-Fe203 1 55.4 17.0 0.307 

particulate 2 60.8 8.7 0.143 

media 3 85.6 11.3 0.132 

Cr02 4 83.0 14.6 0.176 

particulate 5 108.0 13.6 0.126 

media 6 69.8 9.9 0.142 

Metal 7 69.7 9.6 0.138 

particle media 

table (3-2): Switching field distribution curve fitted parameters. 



3.4 The switching field measurement of a particle as a 
function of the applied field angle 

The switching field characteristics of a particle are dominated by its reversal 

mechanism, which is directly dependent on the direction of the applied field with 

respect to its easy axis direction. The switching field measurement of a particle as a 

function of the applied field angle allowed a direct comparison with theoretical data 

available within the literature on the angular dependence of reversal mechanisms [2-5]. 

The switching field of a particle was measured with the pulsed field direction 

directly opposed to the alignment field direction, an angular separation of 1800.  The 

aligning magnets were rotated by 100, rotating the easy axis of the particle and its 

switching field was measured again, indicated in figure (3-9). 

Pulsed field (e-100) 

ield 

L!I4(W['I 

figure (3-9): Configuration of the single particle apparatus for the investigation of a 
particle's switching field as a function of the applied field angle. 

This procedure of incremental increases in the pulsed field angle and the 

subsequent switching field measurement of the particle continued until the particle had 

drifted out of the field of view, the pulsed field angle had reached 900  or the maximum 

pulsed field available was not great enough to switch the moment of the particle. The 

experimental results for samples 1 to 7 are resented in figure (3-10) through to 

figure (3-16). 
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figure (3-10): Switching field as a function of angle for 5 particles of sample 1. 
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figure (3-1 1): Switching field as a function of angle for 3 particles of sample 2. 
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figure (3-12): Switching field as a function of angle for 3 particles of sample 3. 
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figure (3-13): Switching field as a function of angle for 5 particles of sample 4. 
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figure (3-14): Switching field as a function of angle for 3 particles of sample 5. 
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figure (3-15): Switching field as a function of angle for 3 particles of sample 6. 
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figure (3-16): Switching field as a function of angle for 4 particles of sample 7. 

The measured switching field as a function of the applied field angle for the 

particles investigated in this study can be represented numerically by 

HTOTAL = H (g_0)  + dO 
	

(3-2) 

where e and f are curve fitting parameters, 11ToThj  and H( o) are the switching fields at 

angles 9 and 9=0 respectively. An example of the curve fit for a typical particle within 

sample 2 can be found in figure (3-17). 
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figure (3-17): A particle from sample 2 curve fitted numerically. 

The switching field angular component of the particles taken from a sample were 

investigated. For a numerical measure of how the switching field of a sample varied, the 

switching field at 9=0 for each particle was subtracted from its switching field at all 

applied field angles, the results for all the particles within a sample were then curve 

fitted with equation (3-3), modified to represent only the angular variation of the 

switching field. 

H e  = e1019, 	 (3-3) 

here e and f are curve fitting parameters representing the angular variation in the 

switching field of particles from a sample. An example of this analysis for sample I 

with the curve fit is presented in figure (3-18). The results for all the other samples 

investigated are presented in table (3-3). As there were only a very small number of 

particles investigated for the switching field as function of angle the results were not 

taken as absolute, but as a guide to the general trend. 
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figure (3-18): Curve fit of the angular switching field component of sample 1. 

Sample Sample Curve fit parameter Curve fit parameter 

type No e f 

y-Fe203 1 2.880 0.0185 

particulate 2 0.639 0.0267 

media 3 0.0074 0.0512 

Cr02 4 3.111 0.0190 

particulate 5 0.578 0.0269 

media 6 0.310 0.0269 

Metal 7 0.741 0.0299 

particle media 

table (3-3): Numerical curve fits of the samples angular switching field component. 
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The relative variation in the switching field (f-fR)  as a function of the applied 

pulsed field angle for the particles taken from each sample was investigated. The curve 

tics of the switching field as a function of the applied field angle for each sample were 

normalised to its mean switching field (HMaV) of its switching field histogram. 

H104 	H (9 ..0)  + elO'°  

= WEAN = 	 H WCAN 

The relative variation in the switching field as a function of the applied field 

angle for all the samples is presented in figure (3-19). 
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figure (3-19): The relative variation in the switching field (I-fR)  as a function of the 
applied pulsed field angle for the particles taken from each sample. 

The results for the y-Fe203 and Cr02 samples indicated a similar switching field 

angular dependence. The results for the metal particle sample indicated it had a larger 

angular dependence in its switching field when compared to all the other samples 

investigated. One possibility for these observations could be the presence of similar 



reversal mechanisms within the y-Fe203 and Cr02 particles, while a more angular 

dependent reversal mechanism was occurring in the metal particles. As 'j-Fe203 and 

Cr02 particles have similar bulk saturation magnetisation values and all the particles 

within this study have similar dimensions, the more angular dependent reversal 

mechanism found within the metal particles might be attributed to the effect of its 

significantly higher bulk saturation magnetisation. 

The measured switching field as a function of the applied field angle for all the 

sample particles investigated indicated similar results. The observed switching field 

remained approximately constant below 300,  while above 300  the switching field 

increased markedly with the applied field angle. This is consistent with the incoherent 

reversal models, such as fanning, buckling and curling. These reversal modes can 

initiate reversal at lower switching fields than those achieved by coherent reversal at low 

applied field angles, the angle between the easy axis of the particle and the applied field 

direction. As the applied field angle increases these reversal models become more 

coherent, thus increasing the switching field of the particle [1,3,6]. These results are 

comparable with the studies by Knowles [1,7] and by Luo etal. [8]. Knowles measured 

the switching field as a function of angle for commercial y-Fe203 and Cr0 2  particles, 

while Luo et al. measured characteristics of individual commercial iron particles by 

Magnetic Force Microscopy (MEM). 

The measurements of isolated magnetic particles performed in this study has 

extended the work by Knowles for recent commercial particles, commercial MI' for 

example. The results from the single particle measurement have in later chapters been 

used to derive an absolute measure of interaction field within particulate media. These 

results have also been used as an comparison with modelled reversal properties of the 

particles measured in this chapter, and thus obtain a direct comparison with 

experimental and modelling results for isolated particles. 

In the recent work by Sailing et al. [9] and Lederman et al. [6,10] the switching 

field characteristics of y-Fe203 particles were investigated using Transmission Electron 

Microscopy (TEM) and ?VIFM. Their results indicated the reversal mechanism to be 

coherent at large applied field but as the applied field, angle 9 approached zero, curling 

became the more probable reversal mechanism. An example of the results by Lederman 
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et at. is presented in figure (3-20). These measured results are significantly different to 

those here, and those obtained by Knowles and by Luo et al. This can be atwibuted to 

the particles used within Sailing et at. and Lederman et at. studies. These particles were 

especially fabricated to be very close to prolate ellipsoids and had very few surface 

imperfections [111. Particles with these characteristics would generate a uniform 

demagnetisation field aiding coherent reversal and with few surface nucleation sites for 

the initiation of incoherent reversal. 
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figure (3-20): Angular dependence of the switching field H5(8) of two isolated single 

domain y-Fe203 particles. The solid curve represents H5(e) predicted by Stoner-

Wohlfarth (uniform rotation) with a satuartion magnetisation M 5=350emu/cm 3  and an 

aspect ratio of 4.6. (After Lederman et at. [10]). 
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3.5 The remanent curve measured from an individual particle 

As the remanent magnetisation of a particle is strongly dependent on its physical 

structure, an examination of its remanent magnetisation can be instructive in the 

evaluation of its physical structure. A particle composed of a number of domains would 

exhibit demagnetisation effects through its remanence curve, identified by a reduction in 

its remanence approaching its switching field. 

The remanent magnetisation of a particle was determined by measuring the time 

taken for a particle to rotate into an aligning field through a known angle [1]. The 

inverse of this time was taken as an arbitrary measure of its remanent magnetisation. 

The technique assumed that the torque T'p acting on a particle by a weak 

alignment field as it rotates in a viscous resin was equivalent to the torque FR generated 

from the resin as the particle rotates. 

(3-5) 

The torque generated from the moment of the particle as it rotates in an alignment 

field is defined as 

r. = jz 0HM sine, 	 (3-6) 

where M is the moment of the particle, H is the weak alignment field and 9 is the angle 

between the particle moment and the alignment field, indicated in figure (3-21). 

Moment (M) 

figure (3-2 1): Particle configuration for the measurement of its remanence. 

The torque 11 generated by the viscous resin as the particle rotates is 

proportional to its angular velocity w. 



FR cc 	 (3-7) 

Equating this proportionality to the torque generated on the particles moment by the 

alignment field, 

dO 
 — =aiccMsinO. 	 (3-8) 

dt 

Hence 

5 	

lxdO 	l[ 
= droc--_5 	= 	ln( 

M sinG 	
tan(—)) I 	 (3-9) 

2 Jo 

The time t taken for a particle to rotate through a known angle is thus inversely 

proportional to its moment. Equation (3-9) does not have a finite solution for the limits 

0 to it as there is no torque mathematically at these points and so the particle cannot 

rotate. In a real situation the moment of a particle would move from the unstable 

equilibrium position through field misalignment or thermal agitation of its moment. 

The experimental procedure adopted to measure the remanence curve of an 

individual particle is as follows. The particle under investigation was initially saturated 

with the maximum pulsed field available. The alignment magnets generating the 

aligmnent field were then rotated by 90 0  and the time taken for the particle to realign 

within the alignment field was measured. This was repeated twice more to obtain a 

mean for the particle realignment time. The reciprocal of this mean was taken as an 

arbitrary measure of its saturation moment [1]. A small reversed pulsed field was then 

applied, and it was noted whether the particle rotated by 180 0 , indicating its moment 

had been switched and was rotating within the alignment field direction. The remanence 

of the particle was measured with the described technique. This procedure was repeated 

for incremental increases in the applied pulsed field until the particle had been switched 

and saturated in the reverse field direction, indicated through the rotation of the moment 

towards the alignment field. 

The results for the samples 1,4 and 7 are presented in figure (3-22), figure (3-23) 

and figure (3-24). Samples I and 7 exhibit a step function in their remanence curves 

indicating no demagnetisation effects. The particle of sample 4 however indicated 

demagnetising effects within its remanence curve, identified by a reduction in its 
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remanence approaching its switching field. These demagnetising effects could be 

attributed to this particle being multidomain or a multiple particle. These experimental 

results indicating a step function and demagnetising effects are similar to those by 

Knowles [7]. Since the experimental technique was very time consuming, the motion 

and subsequent loss of the particles in the field of view was extremely problematic. As a 

consequence and the insignificance of the quantitative data, this investigation was not 

extended to further samples. 
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figure (3-22): Remanence curve for an individual particle of sample 1. 
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figure (3-23): Remanence curve for an individual particle of sample 4. 
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figure (3-24): Remanence curve for an individual particle of sample 7. 
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3.6 Measurement of the physical dimensions of the particles 

For a full evaluation of the particles investigated it would be necessary to have 

an understanding of their size and physical structure. The measurement of the particle 

size was not possible with the optical microscope used within this study as diffraction 

effects dominate its image, effectively blurring its shape. Thus, a Scanning Electron 

Microscope (SEM) was utilised to determine the physical dimensions of a particle, 

while its structure was assumed from the available literature [12-21]. The SEM used 

throughout this work was a JEOL JSMT300 at Manchester Metropolitan University and 

this work was performed in association with Mr G Heydon. 

A schematic diagram of a SEM with its basic components is presented in 

figure (3-25). The SEM generates a narrow beam of electrons from an electron gun. This 

electron beam passes down through the evacuated column of the SEM (_106 t) towards 

the sample. As the beam passes through the electromagnetic condenser lenses it is 

demagnified, becoming narrower. The beam then passes through the scanning coils that 

scan the beam on to the surface of the sample. Before the beam intersects the sample it 

passes through the objective lens of the SEM that focuses the beam on to the surface. As 

the electrons strike the sample, secondary electrons are produced which are attracted 

towards the potential of the collector. The production of these secondary electrons is 

dependent on the energy and direction of the primary electron, the density of the sample 

and its surface structure. A full discussion of the many aspects of scanning electron 

microscopy can be found in the books by Hayat, Oatley, Kay et at. and 

Thornton [22-25]. 
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figure (3-25): Schematic diagram of a scanning electron microscope, after Hayat [22]. 

The preparation of the SEM sample required the extraction of the particles from 

their media. The particles were extracted from their media by the action of a solvent, 

Methylethyilcetone in an ultrasonic bath. The solvent dissolved the resin of the media, 

while the ultrasonic bath lifted the particles away from the backing film. A drop of the 

particle suspension was deposited on a SEM sample block and allowed to evaporate, 

leaving the particles behind. 

The SEM sample blocks were observed within the SEM. The images obtained 

from the SEM were in the form of Polaroid photographs. It was found that they all gave 

similar images indicating the formation of agglomerations on the sample block. A 

number of attempts to eliminate the formation of these agglomerations at Preston and at 

Manchester Metropolitan University were all unsuccessful. These included the 

application of AC and DC alignment fields during the evaporation of the solvent. This 

had no discernible affect on the formation of the agglomerations on the sample blocks 
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surface. An example of a typical SEM image obtained with a gain of 30K for sample 1 

is presented in figure (3-26). 

figure (3-26): SEM polaroid image of sample 1. 

The dimensions of the particles were measured from the SEM images. As the 

images tended to have particles within agglomerations it was difficult to identify 

particles and so only a small number of particles could be measured. These 

measurements were also susceptible to errors associated with the projection of the 

particle with respect to the plane of the image. The histograms of the particle length and 

its aspect ratio for all the samples investigated are presented in figure (3-27) through to 

figure (3-33). 
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figure (3-27): Particle length and aspect ratio histogram for 17 particles of sample 1. 
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figure (3-28): Particle length and aspect ratio histogram for 13 particles of sample 2. 

76 



1 

0 	

0.4-0.5 

	

ito 7

to7 	
0.6-0.7 

8 to 9

S 	0.5-0.6 

6 	
0.7-0.8 

Aspect ratio 5 to 6 	 0.8-().9 	Pcle 
4 to 5 	0.9-1.0 	 length (1'm) 

figure (3-29): Particle length and aspect ratio histogram for 10 particles of sample 3. 
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figure (3-30): Particle length and aspect ratio histogram for 9 particles of sample 4. 

77 



M IR M M C - BE 
u -'ç 	 ,L 0 

7 to 8  
6 to 7 
	770.3-0.4 

..5 
5 to 6 	 0.5-0.6 

Aspect ratio 4 to 5 	 0.6-0.7 
Particle 

3 to 4 	0.7-0.8 	length (Jim) 

figure (3-3 1): Particle length and aspect ratio histogram for 15 particles of sample 5. 

0K 
6 to 7 'N%s. Zo.90-1 .o  

7 to 8 ' -ç 

Aspect ratio 8 to 9 	 0.7-0.8 

 Particle 
_116-17 9  length (Jim) 

figure (3-32): Particle length and aspect ratio histogram for 6 particles of sample 6. 
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figure (3-33): Particle length and aspect ratio histogram for 9 particles of sample 7. 

The results from the SEM images have indicated that the particles taken from the 

samples under investigation were observable using the available optical microscopy. 

Typically the particles had an aspect ratio ranging from 3:1 to 9: 1 with a particle length 

ranging from 0.3pm to 1.Opm. 
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Chapter Four 

Bulk measurements and analysis of 
particulate media 

4.1 Introduction 

In this chapter the bulk measurement techniques are introduced and the 

properties of the measured samples are presented. The bulk properties measured were 

hysteresis, remanence and the orientation of particles within the media. These 

measurements in association with the study of particle properties in chapter 3 are 

considered further in chapter 5, to derive an absolute measure of interaction effects 

within the samples. 

A Vibrating Sample Magnetometer (VSM) [1] has been used to measure 

hysteresis loops and remanence curves. These measurements in association with 

analysis techniques, particularly l-Ienkel plots [2] and orientation ratios have given an 

insight into the interaction effects and particle orientations. 

Transverse susceptibility measurements [3] have been made to investigate the 

anisotropy field of a sample and its out-of-plane demagnetising field [4]. Analysis of 

these results, in conjunction with measurements performed on the VSM, has allowed the 

absolute magnetisation and the thickness of the sample to be derived. With these results 

an orientation ratio out-of-plane has been calculated and functions representing the 

orientation of particles out-of-plane for the samples have been proposed. 

The orientation of particle's in-plane within a sample, known as its in-plane Easy 

Axis Distribution (EAD) has been investigated. The technique utilised a Bi-axial VSM 

[5] that enabled the moment of the sample to be measured in the field direction and 

orthogonal to it. The measured EAD in-plane for the samples were compared with their 
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orientation ratios in-plane. The results indicated the orientation ratio to be a reasonable 

measure of particle orientation. 

4.2 Hysteresis measurements 

Hysteresis describes the ability of a magnetic material to retain its magnetisation 

after the removal of its rnagnetising field. It should be noted that the magnetisation is 

not a unique function of the applied field, but is dependent on the direction and 

magnitude of previous applied fields. A hysteresis ioop represents the magnetisation of a 

sample through the cyclic rotation of an applied field. An example of a major hysteresis 

loop where the magnetisation of the sample is saturated in both applied field directions 

is given in figure (4-1). 
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figure (4-1): A typical hysteresis loop a for particulate medium, indicating typical 
measurement parameters. 

The direction of the arrows in figure (4-1) represent the magnetising field 

direction. Initially the sample is demagnetised and a positive field applied. This field 

magnetised the sample by the rotation and the switching of the moments into the applied 

field direction. This part of the hysteresis plot is referred to as the virgin curve, it can 
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also be referred to as the initial curve. As the positive applied field increased a point was 

reached where the magnetisation of the sample remained constant, this point identified 

its saturation magnetisation (Ms). The field was now reduced to zero allowing the 

magnetisation to relax. The rnagnetisation at this point, referred to as its remanent 

magnetisation (MR) does not return to zero, since there is an energy barrier originating 

from the anisotropy of the sample. 

At this stage a negative applied field was applied. The effect of this field was to 

demagnetise the positively magnetised sample. As the negative applied field increased a 

point was reached where the field was great enough to reduce the magnetisation to zero. 

This field identified as the coercivity (Hc) of the sample represents an important 

parameter within magnetic recording media. It determines the field required to 

magnetise/demagnetise a signal. 

As the negative applied field decreased the sign of the magnetisation became 

negative, as this field decreased further the magnetisation became negatively saturated. 

This represented half the major hysteresis loop from positive saturation to negative 

saturation. The loop was completed in a similar process of sweeping the applied field 

from negative to positive field saturation. 

Apart from the Major hysteresis loop described above there exist an infinite 

number of minor loops. These loops exist within the major loop and can be both 

symmetrical and unsymmetrical depending on the application of the applied field [4,6], 

but were not investigated. 

Apart from the hysteresis loop parameters already discussed there exist three 

other parameters utilised in this study. They are its squareness ratio, its orientation ratio 

and its Switching Field Distribution (SFD) defined from the differential of the major 

hysteresis loop. 

The loops squareness ratio (Sq) is defined as 

Sq=M/M 5 . 	 (4-1) 

The squareness ratio is an important parameter in the characterisation of magnetic media 

by manufacturers, since it is proportional to the magnitude of the read signal from a 

magnetic transition within the media. The squareness ratio also indicates the degree of 

particle orientation within the media and is a measure of the reversible component in the 



sample's saturation magnetisation. For a random assembly of uniaxial single domain 

particles it has been shown theoretically [7] to be 0.5, while for a perfectly aligned 

sample the squareness ratio is 1.0. In manufactured aligned particulate media the typical 

squareness ratio is within the range 0.7-0.9 [8-10]. 

The orientation ratio in-plane Or(J) is a measure of the particle alignment within 

a system, its Easy Axis Distribution (EAD). It is defined by the squareness ratio Sq(J) 

measured in-plane within the EAD direction and squareness Sq(T) measured in-plane 

and transverse to the EAD direction, 

Or(1) = Sq(1) I Sq(T) . 	 (4-2) 

The squareness in-plane and transverse to the EAD direction for sample 2 was 

0.83±0.01 and 0.32±0.01 respectfully. This gave an in-plane orientation ratio of 

2.59±0.09. An orientation ratio of 1.0 would indicate no alignment, while an orientation 

ratio greater than 1.0 would represent particle alignment within the sample, indicating a 

EAD direction. 

The SFD of a media is dependent upon the consistency of its particles, their 

orientation and the interaction effects between them. As a consequence of the SFD 

sensitivity to these characteristics and its importance to media manufacturers a number 

of techniques have been developed for its determination, discussed by Wohlfarth [11] 

and Koster [12]. The SFD can be obtained from a hysteresis loop by differentiating the 

ioop in the region from negative to positive saturation (dM/dR), indicated in 

figure (4-2). It should be noted that this SFD examines both the irreversible and 

reversible magnetisation processes within the hysteresis loop. The width of the SFD can 

be measured by its half pulse width, Al-Ic  [13]. However, the most common measure of 

the SFD is the quantify 1-S , where S' is the length of the line joining the magnetisation 

axis at saturation magnetisation on to a tangent to the curve at H=Hc. 
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figure (4-2): Hystereis loop showing basic parameters for the derivation of its switching 
field distribution. 

The VSM used throughout this work had a field resolution of 800 A/rn, while the 

measured moment had a resolution of 0.01*  10-3  Am2  The VSM was calibrated with a 

Nickel sample (0.232g) which generated a moment of 12.618*103  Am2. The nickel 

sample shape (5 * 10mm) was important as the response of the VSM is dependent on 

the sample position within its pickup coils. For this reason the shape of the sample was 

cut to match the calibration sample. A further reduction in the measured accuracy could 

be inadvertently created by the poor alignment of either the calibration or the 

measurement sample. 

The hysteresis plots for the samples investigated were performed and the basic 

parameters obtainable are presented within table (4-1). The results indicate a low 

squareness value for sample 1 (Sq=0.69), a 1960's y-Fe 203  Ampex tape and sample 4 

(Sq=0.74), a hand spread Cr02 tape. These results would seem to suggest poorer particle 

alignment within samples 1 and 4 compared to the other samples investigated. The 

results from the orientation ratio in-plane support these findings, especially for sample 1 

where its in-plane orientation ratio is significantly smaller than all the other samples 



where its in-plane orientation ratio is significantly smaller than all the other samples 

investigated. The results also show sample 1 to have a broader SF1) compared to the 

other samples investigated. This broad SF1) may be the result of a broad particle SF1) 

within the media or poor particle alignment in the media. It should also be noted that the 

coerciviries for samples 1-6 were similar (23.08-57.85kAIm), while the metal particle 

sample was significantly larger 11 7.94kAIm. 

Sample Sample Coercivity Squarenes Orientation 1-5' 

type No lcAJm s ratio (±0.01) 

(±0.13) Sq (in-plane) 

(±0.01) 

y-Fe203 1 23.08 0.69 1.64±0.05 0.41 

particulate 2 26.58 0.83 2.59±0.08 0.24 

media 3 32.31 0.86 2.50±0.08 0.24 

Cr02 4 39.31 0.74 2.24±0.07 0.37 

particulate 5 57.85 0.87 2.49±0.08 0.33 

media 6 38.28 0.78 2.33±0.08 0.34 

metal 7 117.94 0.82 2.41±0.10 0.33 

particle 

media 

table (4-I): Hysteresis loop characterisation results. 

4.3 Remanence curves 

Remanence curves provide a technique for the investigation of the irreversible 

magnetisation process in magnetic recording media [13,14]. They measure the sample 

moment in zero applied field, hence no reversible magnetisation component. The two 

types of remanence curves are Isothermal Remanent Magnetisation (IRM) and DC 

Demagnetisation (DCD). 

Experimentally the IRlvI curve was obtained by initially demagnetising the 

sample in an AC field. A small magnetic field H was applied, the field was reduced to 



zero and the samples remanent magnetisation was measured l'vI,RM(H). This process of 

incremental increases in the applied field and then the subsequent measurement of the 

samples remanent magnetisation was repeated until the sample was saturated M,RM(oo). 

The DCD curve was obtained in a similar fashion as the [RM curve. The only 

difference is that the sample was initially saturated in a positive field and not 

demagnetised. A small negative magnetic field was applied to the sample, removed and 

the remanent magnetisation of the sample was measured MDCD(H). This process was 

repeated until the sample had been saturated in the applied field direction MDCD("0). 

An example of both types of remanence curves for sample 2 with their remanent 

coercivities HRC and HRC'  identified is presented in figure (1-3). The DCD curve 

remanent coercivity HRc is defined at zero remanent magnetisation, while the IRM 

curve remanent coercivity HRC'  is defined at half the saturation remanent magnetisation. 

Both remanence curves are normally plotted in their reduced units, where JDCD(H)= 

LvIDCD(H)I MDCD(cO) and Inw(H)' M,RM(H)/ Miaw(oo). 
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figure (4-3): IRM and DCD remanence curves for sample 2 



The SFD for both remanence curves can be obtained through the differentiation 

of their curves. In the case of the [RM, where the sample state was initially random the 

SFD is given by, 

SFDIRM= dI,RM (4-3) 
dli 

In the case of the DCD curve, where the sample was initially saturated the SFD 

is given by 

- 	ldJ (DCD  
(4-4) 

SFDOCD - 2 dli 

In the absence of interactions the SFD from both remanence curves should be 

identical [13]. An example of SFD derived from both the IRM and DCL) curves of 

sample 2 is presented in figure (4-4). These results are typical for the particulate media 

investigated and for particulate media as a whole. The interaction field within the DCL) 

remanence curve demagnetises the sample shifting its switching field distribution peak 

to a lower field. 
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figure (4-4): Typical SFD's for IRM and DCI) curves 
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4.4 Henkel plots 

In 1958 Wohlfaj-th [15] showed that the DCD and IRM remanence curves for a 

system of non interacting single domain particles were linked. A proof of this 

relationship is given in appendix A. This link has become known as the Wohlfarth 

relationship, 

= I - 21MM (H). 	 (4-5) 

Here IDCEJH)  and I,RM(H) are the DCD and IRM curves normalised to the appropriate 

saturated remanent magnetisation of the sample. 

In 1964 Henkel [2] proposed a technique utilising the Wohlfarth relationship to 

investigate interaction effects within hard magnetic materials. Henkel plotted JDCD(H) vs 

I!RM(H) and According to equation (4-5) in the absence of interaction effects the 

relationship should be linear. Any deviation away from this straight line would indicate 

interaction effects within the system. Deviations above the straight line would indicate 

positive interactions, the system opposing demagnetisation, while deviations below this 

line would indicate negative interactions, demagnetising the system. 

In 1988 Spratt et al. [16] extended the technique developed by Henkel to 

investigate interaction effects within particulate recording media. They investigated 

interaction effects within Cr02 particulate media Their study indicated negative 

interactions within this system. In particulate media it has been found that most systems 

exhibit negative interactions [17,18], only in high locally aligned systems can these 

interactions be positive [19,20]. 

In 1989 Kelly et al. [21] proposed an extension to equation (4-5) for examination 

of the deviation away from the Wohlfath relation as a function of the applied field, 

1 DC0(H) = 1 - 2IIRM (H)+AI(H). (4-6) 

Here 41(H) represents the deviation away from the Wolhfarth relationship normalised to 

the saturation magnetisation of the sample. The value of 41(H) is normally plotted 

against the applied field H to indicate the effect of interactions with the applied field and 

to allow a direct comparison with the hysteresis loop of the sample. For small 



deviations away from the Wohlfarth relationship the Al plot is a clearer representation of 

the effect of interactions than the Henkel plot. 

A technique was proposed by Bottoni et al. [22] to investigate the magnitude of 

interactions within particulate systems. It was based on the magnitude of the Al 

deviation away from the Wohlfarth relationship. They plotted Al vs. IDcD(H)/IDCD(cc) 

and assumed the magnitude interactions could be expressed as the integral of the Al 

deviation, 

A (plot area) = 5 AIdx, 	 (4-7) 

where XJDCD(H)/JDCD(CO) and A (plot area) quantifies the total deviation away from the 

Wohlfarth relationship. A positive value of A (plot area) would indicate a tendency for 

the sample to oppose demagnetisation, while a negative value would indicate a tendency 

for the sample to demagnetise [21,23]. 

Bottoni et al. [24] has investigated the influence of the volumethc packing 

density P on the coercivity of iron powders. Their investigation suggested that using 

packing density has a measure of interaction strength could be misleading due to 

agglomerations within the sample effectively increasing its packing density locally. As a 

consequence the A (plot area) was thought to be a more appropriate measure of the 

interaction strength within their particle systems. In their investigation the A (plot area) 

also appeared to be sensitive to particle configurations within the samples. In particular 

at a packing density of 5*103  the A (plot area) was positive, suggesting axial 

interactions through the formation of chains. As the packing density increased the 

A (plot area) reduced, indicating lateral interactions through the formation of particle 

bundles. Further increases in packing density reduced the A (plot area) until its sign 

reversed, suggesting predominately negative interactions caused by lateral interactions 

within the particle bundles. 

The Al plot as proposed by Bottoni a al. Was produced for each of the samples 

investigated. The results are presented here in figure (4-5), figure (4-6) and figure (4-7) 

for the '-Fe2O3, Cr02 and metal particle samples. The A (plot area) for all the samples 

investigated are presented in table (4-2). The results of the Al plots indicated negative 

interactions for all the samples investigated. The magnitude of these interactions given 



by the A (plot area) for the 'j-Fe203 and CrC2 samples were similar. In the metal particle 

sample the magnitude of interactions was significantly smaller than all the other samples 

investigated. This was surprising as the saturation magnetisation of metal particles is 

approximately a factor of 3 greater than y-Fe203 and Cr0 2. Thus, assuming a similar 

EAD and a similar packing densities for the samples, the magnitude of interactions 

within the metal particle sample should be greater not smaller than the other samples 

investigated. These results might indicate the presence of positive axial interactions 

within localised chains of particles within the sample. The modelling study of 

Lyberatos a al.[251 discussed in chapter 5 confirms this possibility. 
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figure (4-5): Al deviation for the y-Fe203 samples as a function of the normalised DCD 
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Corradi and Wohlfarth [26] proposed an analytical technique for the 

measurement of the interaction field strength in a region around coercivity. This 

measure defined as the Interaction Field Factor (11F) was determined from the 

coercivity Hc of the media, its DCD remanent coercivity HR and its IRM remanent 

coercivity HR'. The 1FF was defined analytically as 

1FF = (R — Ha') 	
(4-8) 

'I C 

The 1FF can indicate both negative and positive interactions. Negative 

interactions are represented by a positive 1FF, while positive interactions are represented 

by negative 1FF. Since 1FF is a measure of the interactions around coercivity it can be a 

useful numerical parameter for the comparison of particulate media. The 1FF results for 

the samples investigated are presented together with the calculated i (plot area) in 

table (4.2). 

Sample type Sample 1FF To a (plot area) 

No 

y-Fe203 1 11.0±4.9 -0.343 

particulate 2 10.4±4.2 -0.400 

media 3 10.3±3.5 -0.413 

Cr02 4 8.7±2.9 -0.346 

particulate 5 7.2±1.9 -0.300 

media 6 7.5±2.9 -0.331 

Sony metal 7 4.4±1.0 -0.182 

particle tape 

table (4-2): a (plot area) of samples investigated. 

A direct comparison between the a (plot area) and 1FF values was performed in 

figure (4-8). The results showed that 1FF value and the a (plot area) gave similar 

indications of the interaction effects within the media. The results also indicate a linear 

relationship between the a (plot area) and the 1FF value. These results are in agreement 

with the work by Bottoni et al. [24] who measured coercivity as a function of 



A (plot area) and found similar characteristics to Corradi er at. [26] who measured 

coercivity as a function of 1FF. 
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figure (4-8): 1FF as a function of the A (plot area). 

4.5 In-plane, Easy Axis Distribution Measurements of the 

Media 

The orientation of particles within a media is referred to as its Easy Axis 

Distribution (FAD). The FAD in and out of the plane of the sample are important 

parameters in its characterisation, as they affect its squareness and its SFD. A medium 

with randomly orientated particles has a squareness approaching 0.5 with a broad SFD. 

A media with these characteristics would have poor recording properties, characterised 

by a wide transition width reducing data densities and a small replay signal. 

The EAD within the plane of a media was determined by a technique developed 

by flanders etal. [27]. The measurement technique implemented by Schmidlin et al. [5] 

utilises a bi-axial VSM that allows the measurement of the moment from a sample to be 

made both in the field direction and orthogonal to it. The VSM also has the ability to 

15 
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HAPPLIED(U-O.0), 
M R(a) 

M t(a+6a) 

rotate the sample. The calibration sample for this VSM was a disc lying in the 

measurement plane. This avoided any angular variation in the calibration as a sample 

rotated with respect to the pick up coils within the VSM. The samples used throughout 

all measurements were also circular discs lying in the measurement plane. 

Initially, the easy axis centre of the sample, its EAD direction was determined. 

The sample was saturated in a large magnetic field, the field was removed and the 

remanent magnetisation in the field direction was measured. This step was repeated at 

different sample orientations until a maximum remanent magnetisation in the applied 

field direction was achieved, this identified the EAD centre (ct=O.0) of the sample. 

(a) 

LW R( oa) 

(c) 

figure (4-9): Schematic representation of particles orientated within a media (a) after the 

application of a saturation field in the easy axis centre a=O.O, (b) after the application of 

a saturation field at an angle a-i-öcx, (c) the switched remanent magnetisation of the 

moment between applied saturating field directions of a and ct+öct. 
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Once the centre of the EAD had been identified the experimental procedure to 

determine the EAD of the sample was implemented. The sample was saturated with a 

large magnetic field in its easy axis centre, so all the particles are switched into the field 

direction, diagram (a) in figure (4-9). The vector remanent magnetisation of the sample 

was measured Al The sample was rotated in its plane by an angle Sct c2.00  and 

again saturated with a large magnetising field. When the field was removed all the 

particle moments within the sample occupied the easy axes directions closest to the 

saturating field direction, indicated as diagram (b) in figure (4-9). The shaded area 

within this diagram represented the switched moments from consecutive saturating 

applied field directions a to a+Sa. The remanent magnetisation as a function of the 

sample orientation was measured until a maximum was achieved, this identified the 

samples vector remanent magnetisation. The vector remanent magnetisation Al R( of 

the moments switched from consecutive saturating applied fields, indicated as diagram 

(c) in figure (4-9) was determined by the subtraction of the remanent inagnetisation 

vectors MR(a)  and M R(C+&) . 

M R(&) = M K(a+Sa) - M R(a) 	 (4-9) 

The magnitude of Al R(&a)  between angles a and Sct represented a measure of the 

particles that lay with their easy axes within those angles. By subsequently repeating the 

measurement process for an incremental increase in a from 00  to  1800,  the EAD for the 

sample could be obtained in that measurement plane. 

Typical results are presented in figure (4-10) for sample 2, a y-Fe203 sample. 

The measured results have been fitted by a Lorentzian distribution to obtain a numerical 

measure of the distribution width, 

( f(a) = 	 4-10)  
(a2 + y 2) 

Here fla) represents the magnitude of the EAD, a represents the angle in-plane 

with respect to the samples easy axis direction, y gives the width of the distribution and 

,g is a curve fitting parameter. The decision to use this particular function was that it 



followed work by Templeton et at [28] and Schmidlin et at. [5]. Their work indicated 

that the function gave a good fit to the in-plane EAD of particulate recording media. 
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figure (4-10): Measured and curve fitted in-plane easy axis distribution for sample 2. 

The measured EAD of sample 2 indicated that as the examined particles easy 

axis direction extended past the sample's distribution width parameter the measured 

signal became increasingly noisy; this was of a direct consequence of the measurement 

technique. At angles increasing further away from the EAJ) direction the amount of 

particles switched from consecutive saturating applied field directions becomes 

increasingly small and the background noise within the system starts to dominate. 

Results from the in-plane EAJ) Lorentzian curve fits for the samples investigated 

are presented in table (4-3). 

M. 



Sample type Sample Disthbution width y 

No (degrees) 

y-Fe203 1 32.1 

particulate 2 18.3 

media 3 20.0 

Cr02 4 19.4 

particulate 5 16.5 

media 6 15.7 

Metal 7 21.0 

particle media 

table (4-3): Lorentzian distribution widths of investigated samples. 

These EAD results indicated similar distribution width parameters y for all the 

samples investigated, apart from sample 1. This indicated that sample 1 has a poor 

particle alignment when compared with the other samples investigated. This confirms 

the low value of the in plane orientation ratio calculated for sample 1 in section 4.2. 

In theory it should be possible to measure the out-of-plane EAD for a sample 

using this technique if the demagnetising field can be calculated during the experiment 

and compensated for. However, this has been difficult to achieve since if there is any 

miscalculation of the demagnetising field at any angle, the accuracy of the measured 

vector magnetisation at that angle will be incorrect. This inaccuracy will compound and 

invalidate the measurements of the vector remanent magnetisation at all subsequent 

measurement angles. As it was not possible to measure the out-of-plane EAD the 

orientation ratio has been investigated as a measure of the EAD within the samples. 
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The in-plane EAD width () of a media can be linked to its orientation ratio in-

plane OR(I)=Sq(J)/Sq(T) by its EAD function fict). The squareness at an angle in plane 

(p) away from its EAD centre can be calculated using the disthbution Jta) through the 

summation of its moments contnbution to the samples remanence [5]. 

Sq(d) = J f(a)cos(a - r))da ~ 	+ 180 ° )cos(a + U)da.  
90 

A calculated orientation ratio as a function of the Lorentzian EAD width 

parameter y can be determined using equation (4-11). The angle 1800  in the function 

f (a + 180 0 ) is a consequence of the numerical calculation of the orientation ratio. The 

calculated and the samples measured in-plane orientation ratio were plotted as a 

function of the Lorentzian EAD width parameter y, given in figure (4-Il). 
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figure (4-11): Comparison between the measured and the calculated in-plane orientation 
ratio. 
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The measured in-plane orientation ratio as a function of the distribution width 

parameter indicates reasonable agreement with the calculated orientation ratio. Although 

there is some discrepancy between the measured and calculated data this could be 

attributed in some cases to the errors associated with the Lorentziaxi distribution curve 

fit. The calculated orientation ratio also indicates that as LAD of a media becomes 

increasingly narrow, the orientation ratio as a measure of the EAD improves. This 

would seem to suggest that for highly orientated systems the orientation ratio would be a 

good measure of its LAD. 

The out-of-plane orientation ratio for a medium can be evaluated and used to 

derive an out-of-plane EAD if the demagnetising field out-of-plane can be calculated. 

The demagnetising field is dependent on the thickness of the medium and its absolute 

magnetisation, as described in chapter 1, 

He = N d M. 	 (4-12) 

With the evaluation of the sampl&s orientation ratio out-of-plane a Lorentzian 

distribution width parameter could be calculated and a LAD could be proposed. The 

absolute magnetisation of the sample was thus investigated using a technique derived 

from transverse susceptibility measurements. 

4.6 Transverse Susceptibility theory and measurements 

Transverse susceptibility (xt)  essentially measures the AC susceptibility of a 

materiai as a function of the applied DC field perpendicular to the AC field direction. Xc 

has been found experimentally [3] and theoretically [29,30] to give sharp peaks at the 

anisotropy field and at its coercivity. The experimental technique to measure the 

anisotropy field of a sample is indicated in figure (4-12). It consists of a static applied 

DC field perpendicular to the LAD of the sample with a small probing AC field in the 

LAD axis direction. 



Sample's EM 
direction 

- HAC Probe field 

figure (4-12): Transverse susceptibility experimental configuration. 

The AC susceptibility of a sample is measured as a function of the static DC 

field within the AC field direction. The AC probe field (-1600 A/rn) examines the 

energy profile within the sample by inducing oscillations in its moment which are 

measured by search coils. As the DC field approaches the anisotropy field, a broad 

energy minimum is created that allows the moment of the sample to have large 

oscillatory displacements within the AC field direction. These displacements become a 

maximum at the anisotropy field. If the DC field is increased further the broad energy 

minimum reduces dissipating the moments displacement within the AC field. The Xt 

response was measured for each sample by sweeping the applied DC field to positive 

saturation, then negative saturation and then back to positive saturation. An example of 

the results for a Cr02 tape, sample 4 is given in figure (4-13). This figure indicates the 

anisotropy field of the sample. the parameters 1-(max) and XT(H=0), which have been 

used in a ratio as a measure of the anisotropy peaks prominence 131]. 

100 



0.20 

0.10 

Anisotropy 

C 

0.15 

0.2! 

(H-0) 

0.05 L.  
-500 	-250 	 0 

	
250 	 500 

Field (kA/m) 

figure (4-13): XT measurement of a Cr02 tape, sample 4. 

4.6.1 The absolute magnetisation measurement of the samples 

Measurement of the absolute magnetisation of a sample requires measurement of 

its moment and its volume. The moment and its surface area are easily determined; 

however, the sample thickness is not. As a consequence of this difficulty, Souls and 

Bissell in 1991 [321 proposed a technique based on Xt  measurements in association with 

VSM measurements to determine the sample thickness and its absolute magnetisation. 

As stated earlier, XT measures the AC susceptibility of the sample as a function 

of DC field perpendicular to the AC probe field direction. The determination of the 

demagnetising field within the sample was achieved by measurement of the Xi  in 

different DC field configurations. In configuration A the Xi  response was measured with 

the DC field in-plane and perpendicular to the EAD of the sample with the AC field in-

plane and in the EAD direction of the sample, indicated in figure (4-14). In 

configuration B the Xi  response was measured in a similar configuration to A, but in this 

case the DC field was out-of-plane and perpendicular to the EAD direction of the 
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sample, indicated also in figure (4-14). These configurations respectively investigated 

the anisotropy field, and the anisotropy field in conjunction with the out-of-plane 

demagnetising field. 

DC field 	 DC field 

AC pro 
field 

robe 

F! -a- 
Eli 
L!J 

figure (4-14): Transverse susceptibility configurations. 

The XT  responses from both configurations were investigated as a function of the 

applied DC field from positive saturation to zero applied field. This region of the XT 

response avoids coercivity effects, it only examines the relaxation of moments to their 

easy axes directions. The graph in figure (4-15) represents this part of the curve in both 

DC field configurations for sample 2. 

It was observed that the effect of the DC field out-of-plane was to shift the XT 

peak at H1, configuration A, to the higher field value 1 -12, configuration B. Since the AC 

field is in the same orientation for both configurations, the peak shift must be mainly 

atthbuted to the demagnetising field, 11d,  perpendicular to the plane of the sample. The 

demagnetising field in this case can be written as 

H2 — Hl=Hd=NdM2=M21 	 (4-13) 

where Nd is the demagnetising factor perpendicular to the sample plane and is 

equal to 1, the value for a sheet, M2 is the magnetisation of the sample at field 1-12 

applied perpendicular to the sample plane. 
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figure (4-15): %T  response for sample 2 as function of an applied DC field from 

saturation to zero applied field in configurations A and B. 

For y-Fe203 sample 2 the value of the peak positions H1 and H2 were 

73.6±2.8kAIm and 191 .4±7.4kA/m respectively. The anisotropy peak position was 

measured from both positive and negative saturation to zero applied DC field. The mean 

of these two values was determined and the maximum discrepancy between the 

calculated mean and the measured value was taken as the error in the measured 

anisotropy peak position. The calculated value of the demagnetising field was 

I l7.8±6.4kA/m, where the value of the demagnetising factor was assumed to be error 

free. 

To determine the absolute magnetisation of a sample the VSM had to be 

calibrated for the sample geometry, with the sample plane perpendicular to its applied 

field direction. The magnetisation of the sample was determined by measuring its 

magnetisation at the applied field H2 with the sample orientated, so that its plane was 

perpendicular to the applied field direction. 
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The absolute saturation magnetisation of the sample Ms(sample) was derived by 

41 
M 	

,
5 (sample) = 	-  

(41/ 'I 
/i 5 ) 

The determined value of Ms(sample) was 140.2±7.8lcA/m , where M2 was 

117.8± 6.4kAfm and M was 0.84±0M1. 

The derived absolute saturation magnetisation of the sample Ms, its moment 

p,s=0.670±0.0 13 * 103 Am2  and its area, A= 12 cm 2  were used to determine its thickness, 

= 
V
-  = 	 = 4.0±0.2pm 
A 	M 5 (sample)A 

The accuracy of this tecimique was addressed in the work by Sollis and Bissell 

[32]. They determined that the assumption of I for the demagnetising factor was a good 

approximation for a particulate recording media, where film thickness is small, of the 

order —5pm and has good thickness uniformity. The assumption, that the peak was only 

affected by the demagnetising field was more problematic. If it is assumed that the EAD 

within the sample had cylindrical symmetry, then the only effective difference between 

the XT  response of both configurations was the effect of the demagnetising field. In 

particulate media, however, there is a likelihood that there is a difference between the 

EAD in and out-of-plane. 

In the recent work by Sollis et al. [33] the effect of EAD on the anisotropy peak 

had been addressed. Their work concerned the dependence of LAD and interaction 

fields on the anisotropy peak in Cr02 and Co-y-Fe203 particle samples. The magnetic 

properties were investigated for a range of samples; these included a pseudo random 

hand spread (PR}IS), a powder (F), a dried dispersion (DD) and an aligned hand spread 

(AIlS). The pseudo random hand spread was prepared by stacking 40 discs in groups of 

5 cut from the aligned hand spread with their alignment directions 22.50  apart, thus 

resulting in 8 easy axis directions within the sample. A selection of the results from their 

investigation are presented here in table (4-4). 
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Sample Sq 1FF 

(%) 

HK 

(kOe) 

XT(Hmax 

/XTW-rn 

Cr02 (P) 0.46 18.2 2.59 1.12 

Cr02(DD) 0.49 19.7 2.59 1.16 

Cr02 (PRHS) 0.57 9.2 2.53 1.21 

Cr02 (AHS) 0.82 13.5 2.81 1  3.58 

table (4-4): Magnetic properties of the samples investigated by Sollis etal. [33]. 

For the Cr02 AHS sample they found its anisotropy peak position and its 

XTo-'maxIXT(1i—o) values were —11% and —308% greater than for the unaligned samples. It 

was reported that the packing densities were similar in all the samples, suggesting 

similar interaction fields. The measured 1FF values indicated negative interactions with 

no observable correlation between the samples anisotropy field. As the only other major 

difference between the aligned and unaligned samples was their EAD, it was proposed 

that EAD within the sample does affect the anisotropy peak, its position and 

prominence. 

In particulate media it is unlikely there would be an out-of-plane random particle 

distribution. It is more likely that there would be cylindrical symmetry within the media 

or even a narrower distribution out-of-plane through the action of the coating process. 

As a consequence, the difference between the in-plane anisotropy peak position and the 

out-of-plane anisotropy peak position corrected for the demagnetising field could be 

considered negligible. This assumption has been verified experimentally by Sollis [34], 

who compared the derived media thickness using X t  measurements with the physical 

measurement of the thickness using a talysurf. The results showed reasonable agreement 

between both techniques for the determination of the media thickness. 

In determining the absolute saturation magnetisation of a sample Ms(Sample) it 

is possible to determine the packing density P within the media if the bulk saturation 

magnetisation Ms(particle) of the particles are known, 

M 5  (tape) 
p = 	 (4-15) 

M(partic1e) 
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For an approximate measure of the packing density within the samples 

investigated bulk saturation magnetisation value were taken from the literature, 

338kA/m for y-Fe203, 365kA/m for Cr02 and 985 kA/m for metal (iron) [35-37]. 

The results for all the samples investigated, their saturation magnetisation, their 

magnetic media thickness and their packing density are presented in table (4-5). 

Sample Sample Saturation Tape Packing 

type No magnetisation thickness density 

Ms(sample) t 

kAhn pm P 

y-Fe203 1 105.0±5.5 11.8±1.1 0.30±0.02 

particulate 2 140.2±7.8 4.0±0.2 0.42±0.02 

media 3 135.6±14.0 4.2±0.4 0.40±0.04 

Cr02 4 121.1±2.7 3.4±0.2 0.34±0.01 

particulate 5 174.6±4.7 4.2±0.2 0.47±0.01 

media 6 106.4±4.8- 4.8±0.8 0.29±0.01 

Metal 

particulate media 7 369.7±11.1 1.3±0.1 0.37±0.01 

table (4-5): Sample parameters derived from the samples saturation magnetisations. 

4.7 Evaluation of the overall Easy Axis Distributions for the 

samples 

Through the investigation of the orientation ratio in-plane and the measured 

EAD for the samples, it was shown that the orientation ratio of a sample gave a 

reasonable numerical measure of its EAD. A similar orientation ratio out-of-plane can 

be evaluated to investigate the out-of-plane EAD. However, this orientation ratio Or(0) 

is more difficult to determine, since the demagnetising field must be compensated in the 

out-of-plane hysteresis loop, before the its squareness can be measured. 
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The orientation ratio out-of-plane is defined as 

Or(0) = Sq(I) I Sq(0), 	 (4-16) 

where Sq(0) is the out-of-plane squareness corrected for the demagnetising field. The 

correction of the demagnetising field for the out-of-plane hysteresis loop was achieved 

by the transformation of its hysteresis loop by 

HuF  = HAppuED  - N d (M,%,f )M S , 	 (4-17) 

where HErr represents the field the sample experiences corrected for the demagnetising 

field, HAPPUED is the applied field exerted by the VSM, (MIM5) is the normalised 

hysteresis loop magnetisation, Ms is the saturation magnetisation of the sample and Nd is 

the demagnetising factor of a magnetised sheet. The errors associated with this 

transformation are the measured accuracy of the sample's saturation magnetisation, the 

measured moment, the applied field, the sample alignment within the VSM and the 

assumption of the samples demagnetising factor. 

An example of the measured out-of-plane hysteresis loop and the demagnetising 

field corrected loop for sample 2 can be found in figure (4-16). The effect of the 

correction is twofold, the squareness of the ioop increased and the effective maximum 

field exerted on the sample was reduced. As an attempt to quantify the error in the 

corrected out-of-plane squareness the transformation was performed with the maximum 

errors associated with the transform parameters to give the largest variation in the 

determined out-of-plane squareness. The determined squareness out-of-plane and 

transverse to the EAD direction for sample 2 was 0.83±0.01 and 0.32±0.04 respectively. 

This gave an out-of-plane orientation ratio of 2.67 ± 0.35. 

The calculated orientation ratio in and out-of-plane for all the samples 

investigated are presented in figure (4-17). These results are near the reflection y=x 

indicating the EAD of the media has cylindrical symmetry, this is in agreement with 

other research [38] on particulate recording media. 
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figure (4-16): Out-of-plane hysteresis loop of sample 2 corrected and uncorrected for the 
demagneting field. 
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The orientation ratio out-of-plane was compared directly with the calculated 

orientation ratio assuming a Lorentzian distribution given in figure (4-11). This allowed 

the detennination of a theoretical out-of-plane distribution width. With this distribution 

width, a Lorentizian distribution representing the out-of-plane LAD of the sample was 

proposed. The out-of-plane distribution width parameters (ij) for most of the samples 

investigated were similar —20 degrees. The distribution width parameters for all the 

samples are presented in table (4-6). 

Assuming the EAD for the sample in and out-of-plane are not correlated, then a 

3D representation of the EAD can be obtained This was achieved by multiplication of 

the Lorentzian distribution functions that represented the measured EAD in-plane and 

the derived out-of-plane EAD. 

With sample 2 as an example, its in-plane disthbution can be written as 

f( 	
(1 

cz) = 	
8.3)2 	

(4-18) 
(a 2  +(18 . 3) 2 ) '  

and its out-of-plane distribution can be written as 

(18.7)2 	
(4-19) 8($) = 	+(18.7)2) 

Here f(a) represents the LAD in-plane, g($) the LAD out-of-plane, a represents the 

angle in-plane with respect to the LAD direction and 3  represents the angle out-of-plane 

with respect to the BAD direction. The values 18.3 and 18.7 degrees refer to the 

measured and the derived Lorentzian distribution widths for the sample. The 3D 

distribution of the particle easy axes within the media was determined by 

y(B,Ø) = f(a)g(fi), 	 (4-20) 

where the function y(a,$) describes the 3D easy axes distribution within the sample. 

This function for sample 2 is presented in figure (4-18). The parameters for this sample 

and the others investigated are presented in table (4-6) and were used throughout the 

next chapter to derive the interaction effects within the samples. 
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figure (4-18): Easy Axes Distribution for sample 2 

Sample type Sample Measured in- Derived Out-of- 

No plane distribution plane distribution 

parameter P parameter if 

y-Fe203 1 32.1 53.0±0.7 

particulate 2 18.3 18.7±4.8 

media 3 18.6 25.2±6.8 

Cr02  4 19.4 17.1±2.0 

particulate 5 16.5 19.2±1.6 

media 6 15.7 13.3±1.7 

Metal 7 21.0 26.4±2.6 

particulate media 

table (4-6): Measured and derived in and out-of-plane distribution width parameters. 
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Chapter Five 

Derivation and Analysis of 
Interaction Effects 

5.1 Introduction 

The magnetic properties of a media are dominated by the characteristics of the 

particles that compose the media and the interaction effects between these particles. 

These interaction effects are the result of the action of the magnetostatic field from each 

particle on the other particles in the media. This field can either demagnetise a particle 

or aid its saturation depending on the relative positions of all the particles. In particulate 

media a particle has many near neighbours which can generate a large local interaction 

field. In the media as a whole, these fields can significantly affect its characteristics, 

either inagnetising or dernagnetising the media. 

There has been a number of analytical techniques developed from bulk 

measurements [1-3] for the examination of the interaction effects within particulate 

media. These techniques such as Henkel and Al plots only provide an indication of the 

sign and magnitude of the interactions, they do not give an absolute measure. An 

absolute measure of the interaction effects was derived from the individual particle 

properties, their orientation within the media and the properties of the media. With these 

parameters the characteristics of the media can be simulated with the interactions 

effectively "switched off". A direct comparison between the characteristics of the 

simulated media with no interactions and the measured media with interactions allowed 

a direct and absolute measure of the interactions. 
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5.2 Mathematical simulation of a medium without 

interactions 

The technique combines numerically the measured properties of particles with 

their angular disthbution within the media, i.e. the Easy Axis Distribution (EAD). In 

combining these data, the characteristics of a medium with the interactions "switched 

off' can be simulated. 

The measured particle characteristics, curve fitted with mathematical functions 

were reported in chapter 3. The switching field distribution SFD(9=0 °) of an ensemble 

of 50 particles was measured and curve fitted with a Gaussian distribution, denoted as 

equation (3-1) in chapter 3 

SFD(9 = 00) = d —exp{—  1 
 

—(H - 11MEAN )2 Ia2)  
2ira 	2 

Here d represents a curve fitted parameter, or represents the standard deviation of the 

switching field distribution and HMEAN the mean of the distribution. 

The angular variation H9 of the particles' switching field within a sample has 

been measured and curve fitted by equation (3-3) in chapter 3, given as 

H 9  = e10 19 
	

(5-2) 

Here e & f represent curve fitting parameters and 9 the angle between the easy axis of 

the particle and the applied field direction. 

The Easy axis distribution of particles y(a,fl) with respect to the EAD direction 

for a sample was derived in chapter four. The EAD in and out of plane were curve fitted 

with Lorentzian distributions fla) and g(fl), 

y(a,$) = f(a)g(fi), 	 (5-3) 

where a represents the angular displacement in plane to the EAD direction and 13 
represents the angular displacement out of plane to the EAD direction. 

These three mathematical functions were combined numerically with a number 

of assumptions to simulate a medium with no interactions. The simulation assumed the 

angular dependence for all the particles within the sample were the same. The angular 
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The number of particles that have been switched into the remanent state aR 11  

between the fields H2 and I-It was calculated in the quadrant 00ca,J3c900  by, 

H.fl90 a=90 

= 	I 	 , 	(5-6) 

where 9= tan((tana)2  +(tan$) 2 ) :590°. 

Here a represents the angular displacement in plane to the EAD direction, P represents 

the angular displacement out of plane to the EAD direction and S represents the angle 

between the LAD direction and the angular displacement of the particles. The algorithm 

that simulates the switching field distribution for a medium with no interactions is 

indicated in the flow chart in figure (5-1). Before the simulation was performed the 

mathematical functions representing the particle characteristics and the media 

characteristics were determined and entered in the program. In the simulation the field 

H2 was set and the switched remanence by this field was calculated. The field FT2 was 

increased, H1 was set to the previous H2, the switched remanence between the fields H2 

and H1 was calculated and saved. This procedure of incremental increases in the applied 

field and the subsequent calculation of the switched remanence continued until all the 

particles had switched. 
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I START I 

Input parameters 
Particle's angular distributions within the media 

Switching field distribution 
Switching field as a function of the applied field angle 

I 	Increment field H by MI 	I 

Calculate the magnitude of the remanence switched for 
all angles of alpha and beta for an applied field H. 

R 

Determine the switched remanence from subsequent applied fields 
AR=R-R, 

Store 
save H, AR 

set R. as Re., 

Field increment complete? 
YorN 

Yes 

STOP 

figure (5-1): Flow chart of algorithm to generate the switching field distribution on a 
non interacting system of particles. 
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dependence for each sample was reported in table (3-3). Thus, knowing the switching 

field of a particle at 8=00  and the angular dependence of particles within a sample it was 

possible to determine the switching field of a particle at any angle (8). This was 

represented mathematically in chapter 3 as equation (3-2), given by 

= 11MEAN +H, 	 (5-4) 

where HMW., is the mean switching field of a sample at 9=0, He is the switching field 

angular component of a particle and HTOTAL is the switching field of a particle, definable 

at any angle 9. The angular component for each sample was reported in table (3-3). 

The simulation also assumed the measured switching field distribution 

SFD(9=0°) could be extended to represent a SFD(9) at an angle 9. This was achieved by 

allowing the mean switching field of the distributions to be the switching field of the 

particle at that angle 9=00,  with the distribution width or at 9=00  being set directly 

propoftional to the mean of the distribution. This was represented mathematically as 

SFD(8) - 
- dil WEAN 

 2zraH TOTAL 

exp{—-(H - ll TOTAL ) 2  I (all TOTAL 1  HMEAN)2} . 	(5-5) 

With mathematical functions representing the switching field distribution of 

particles at an angle 9, SFD(8), the orientation of particles within the media, y(a,$) and 

the switching field of particles as a function of the applied field angle, HTOTAL, a media 

with the interactions "turned off' can be simulated. 

As the switching field distribution obtained from a media was derived from its 

IRM curve the mathematical functions SFD(9), y(cr,$) and HTOTAL were used in 

conjunction with a cos(9) term to simulate the remanence of the media without 

interactions. By determining the switched remanence for incremental increases in the 

applied field a switching field distribution for the media can be simulated without 

interactions. 
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5.3 Numerical Results and Analysis 

The numerical model simulated the sample's switching field distribution 

SF0 YUM  without interactions. This SF1) was compared directly with the derived SFD 

from the samples IRM remarience curve, SFDEX.  The difference between both SFD's 

can be directly attributed to the interaction effects within the sample. The results for all 

the samples investigated were normalised and presented in figure (5-2) through to 

figure (5-8). 

The mean of the numerical SF1), SF0 NUM and the mean of the experimental 

SF1), SEDEX were determined for all the samples. The difference between the mean of 

both SFD's within a sample was attributed to an interaction field LISFDM,T. A numerical 

measure of the strength of the interaction effects was obtained by evaluating the packing 

density P from the numerical SF1) mean and the experimentally determined SF1) mean, 

SFx 1 	
. 	 (5-7) 

SF0 NUM 

For particulate media as the packing density increases the effect of the shape 

anisotropy is reduced. Thus, there is a reduction in the coercivity of the particles within 

the media and hence the media itself. The results from equation (5-7) represent the 

effect of the loss of shape anisotropy and inter-particle interactions within the media. 

These interactions can either be predominately negative demagnetising the sample, 

reducing its measured SFD mean or the interactions could be positive, magnetising the 

sample, increasing its measured SED mean. 

The measured SF1) mean of the media, the derived SFD mean of the media, the 

interaction field and the evaluated packing density for all the samples investigated are 

presented in table (5-1). 
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figure (5-2): Switching field distributions with and without interactions for sample 1. 
5 	Ii 	I 	i I 	I 	I 

Ph 

-S 

3 

cC 

N, 	 50 	 100 	 t50 

Field (kA/m) 

figure (5-3): Switching field distributions with and without interactions for sample 2. 
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figure (5-5): Switching field distributions with and without interactions for sample 4. 
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figure (5-6): Switching field distributions with and without interactions for sample 5. 
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figure (5-7): Switching field disthbutions with and without interactions for sample 6. 
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figure (5-8): Switching field disthbutions with and without interactions for sample 7. 

The effect of interactions within the y-Fe203 and the Cr02 was in line with the 

findings of Knowles [4] and was consistent with the modified Henkel plots which 

indicated demagnetising or negative interactions. These measurements and the analysis 

can be described by a mean field approximation which shifts the sample's coercivity and 

hence its SFD to lower fields. 
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;FD numerical SFD measured Interaction Packing 

Sample Sample mean field mean field field density 

type No SFDNUM SFDEX ASFDM(T P= 	 " - SF: 

kA/m kAJm kAJm 

y-Fe203 1 71.9 21.3 50.6 0.70 

particulate 2 63.5 24.8 38.7 0.61 

media 3 86.2 33.6 52.6 0.61 

Cr02 4 94.7 31.9 62.8 0.66 

particulate 5 110.7 54.1 56.6 0.51 

media 6 71.1 37.7 33.4 0.47 

Metal 

particle 7 73.5 114.1 -40.7 -0.55 

media 

table (5-1): Comparison between the measured and derived SFD mean fields. 

The calculated packing densities for the y-Fe203 and Cr02 samples, given in 

table (5-1) were approximately 0.65 and 0.55 respectively. These calculated values are 

high for commercial particulate media, where the volumethc packing density is of the 

order of 0.4 [5,6]. This discrepancy might be attributed to the localised formation of 

agglomerations within the sample, effectively increasing the media's packing density 

and increasing the localised interaction field within an agglomeration. Theoretical work 

by Coverdale et cii. [71 and Saroh et cii. [8] on fluid dispersions and on the 

microstructure of dried coatings supports these conclusions. Their investigations have 

indicated the presence of particle bundles and the formation of voids within the dried 

media. This would effectively increase the packing density of the media, increasing the 

localised interactions and thus reducing coercivity. 

The results for the metal particle system, sample 7, were contrary to the mean 

field approximation, since the effect of interactions was to shift the SF1) to higher field 

values giving a negative packing density of -0.51. This indicates interactions that 

oppose demagnetisation (positive interactions), a result which was contrary to the 
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modified Henkel plot for this sample and the findings of other workers [91 for metal 

particle media. Thus, at a microscopic level local inter-particle interactions appear to 

enhance the switching field and dominate the behaviour of individual particles. 

However, at a macroscopic level, behaviour is still predominantly that of a system in 

which interactions are demagnetising. These finding appear to be contradictory. 

A possible explanation for this contradiction was that the measured single 

particles were not representative of the distribution in the tape or were damaged during 

removal and subsequent dispersion. The latter was unlikely since particles were 

removed by dissolving the binder system and dispersed using an ultrasonic bath. 

However, the experiment was 'selective' since many agglomerates were observed but 

ignored in the measurements. There is a possibility, albeit unlikely, that particles that 

formed agglomerates are different from those which remained isolated. Any multi-

domain particles were also ignored in the measurements. 

An alternative suggestion for this contradiction may be found in the modelling 

study of Lyberatos and Wohlfarth [10]. Chains of particles were introduced into a 

particulate system. This had the effect of increasing the system's coercivity, However, 

Henkel plots showed that interactions between adjacent chains dominated and exhibited 

an overall demagnetising behaviour. Only in very dilute systems did the interactions 

between particles in the chains start to dominate and produce positive interactions. It 

was therefore suggested that in the metal particle system studied there may be very 

strong local alignment of particles which has the effect of increasing the system 

coercivity whilst not affecting the its bulk negative interactions. This suggestion has 

been supported by the experimental study of Bottoni et al. [11]. Their study proposed 

particle chaining as a mechanism for producing positive interactions, while negative 

interactions were produced by particle bundles. Examples of transmission electron 

microscopy images of metal particles in chains and bundles can be found in figure (5-9) 

through to figure (5-1 1). 
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figure (5-9): TEM micrograph image of iron particles appearing to form chains 
consisting of several short particles, after Bottoni a al. [11]. 

figure (5-10): TEM micrograph image of iron particles appearing to form two long 
chains flanking each other, after Bottoni et al. [11]. 
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figure (5-1 1): TEM micrograph image of iron particles appearing to form bundles with 
chains of particles, after Bottoni eral. [11]. 

If, as suggested, the positive interactions measured within the metal particle 

system are the result of chaining, then why does this phenomenon not occur within the 

similar y-Fe203 and Cr02  particulate systems investigated. These particulate systems 

have particles of similar dimensions and have similar media characteristics, as 

measured in chapter 4. The only major difference between these samples and the metal 

particle sample is the bulk saturation magnetisation of the metal particles. Metal 

particles have a bulk saturation magnetisation of approximately three times that of 

y-Fe203 or Cr02; the effect of this increased saturation magnetisation is an increased 

magnetostatic interaction field within the media. This large magnetostatic field may 

promote particle chaining, increasing the positive interactions between the particles 

within the chain and effectively increasing their coercivity. 
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Chapter Six 

Numerical investigation of particles 

6.1 Introduction 

A number of theoretical models have been developed over the years to simulate 

the reversal properties of single domain magnetic particles. Early theoretical models, 

such as the Stoner-Wohlfarth [11 and the chain of spheres [2] are simplistic and can only 

represent two forms of reversal, coherent and fanning. In recent years numerical 

micromagnetic models have been developed by Schabes et al. [3,4] and Della Torre et 

al. [5] to simulate more complicated reversal modes. These models can represent both 

the simplistic reversal modes and the more complicated modes such as curling and 

buckling. 

In this chapter the Stoner-Wohlfarth and the chain of spheres models are 

introduced. Their switching fields have been modelled and compared with experimental 

results for isolated magnetic particles. A numerical model similar to that of Schabes et 

at. and Della Tone a al. has also been developed. This model utilised the measured 

physical parameters of a particle with bulk properties taken from the literature. These 

parameters and properties were used to simulate the magnetic characteristics of the 

particles measured experimentally. From the results of this model, a direct comparison 

with the experimentally measured characteristics of a particle was performed. The effect 

of model parameters on the simulation has also been investigated, particularly how they 

affect its switching field. 

In comparing the experimentally measured properties of particles with their 

simulated characteristics, particularly their switching fields, it was anticipated that the 

effect of different particle parameters on the reversal mechanism within particles could 

be determined. This investigation was separated into two distinct areas, the simulation 
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of particles measured experimentally and the effect of the simulation parameters on the 

reversal mechanism within the model. 

In the first area, an exact correlation between the simulation results and the 

experimental results was not expected, since any simulation cannot be an exact 

representation of the particle being modelled. Although an exact correlation was not 

expected, the results from the simulation were expected to indicate the properties of the 

particles being modelled. This would indicate that the model developed had some 

validity. 

The second area of research was primarily involved in observing the effect of 

model parameters on the reversal mechanism. In particular, the aim was to observe how 

the reversal mechanism changed with the shape of the model and how this affected its 

properties, particularly its switching field and its remanence. This work was performed 

so that the model could be used to indicate how the properties of a particle would 

change with different physical characteristics. For example, the effect of aspect ratio on 

the properties of the particle, its reversal mechanism, its switching field and its 

remanence was investigated. 

6.2 Stoner Wohlfarth model 

In 1947, Stoner and Wohlfarth [1] proposed a model to describe the behaviour of 

a single domain particle. Their model assumed that the magnetisation of the particle 

remains uniform during reversal. This type of reversal in the literature is often referred 

to as coherent. 

Their model described the magnetic properties of an isolated magnetised particle 

through the minimisation of its magnetic energy. The model considered uniaxial 

anisotropy energy and the energy associated with the moment of the particle interacting 

with an external applied field. The uniaxial anisotropy energy of a particle can be due to 

its shape or its crystalline structure, as described in chapter one. The uniaxial anisobopy 

energy was represented by 

LAN! = K 1 V sin2q, , 	 (6-1) 

where Kj is the uniaxial anisotropy constant, V is the volume of the particle and q is the 

angle between the moment direction and the easy axis direction. 
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The energy EAPP associated with interaction of an applied external field HAPP on 

a moment (Al) was defined as 

EAPP = — p0 MH 4,, cosØ . 	 (6-2) 

where p0 is the permeability of empty space and 0 is the angle between the moment 

direction and the applied field direction. The total energy ETOTAL of the Stoner Wohlfarth 

model was 

ETOTAL = K,V sin2 - PO MH A ,, cosØ. 	 (6-3) 

The definitions of the angles within the Stoner Wohlfarth particle are indicated in 

figure (6-1). 

figure (6-1): Stoner Wohlfarth model. 

The Stoner Wohlfarth simulation reduced the energy of the model towards a 

stable energy minima solution. This occurred when the torque generated from the 

applied field was equal and opposite to the torque generated from the uniaxial 

anisotropy. 

The torque generated from the orientation of a moment away from its easy axis 

is given by 

r 	Arn !2KV5inQco59j 	 (6-4) I ANJJ 
j dip 
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The torque rAPP generated by the action of the applied field on a moment is 

given by 

lr'APPi = jH pM sV sin øI 1 	
(6-5) 

where the moment M=M5V is defined by the material saturation magnetisation and the 

volume of the material. 

The moment tends towards the energy minimisation condition, where torque 

generated by the applied field is equivalent and opposite to the torque generated from 

the anisotropy, thus 

ITAPPI =k'ANII' 
	 (6-6) 

POHA,PM SV sin(0 - 	= j2K 1  sin ç  cosq( 	 (6-7) 

The field required to rotate the moment by 90 degrees away from its easy axis is 

defined as its anisotropy field, 11K. It is evaluated by allowing 0=900  and through the 

manipulation of equation (6-7) the anisotropy field of the particle is 

defined as 

2K 
HK 

= i0fr) 
(6-8) 

Stoner and Wohlfarth determined the orientation of the moment by an energy 

minimisation technique. Hysteresis loops for a Stoner-Wohlfarth particle with applied 

field angles between the easy axis and the applied field direction are presented in 

figure (6-2). The applied field, on the horizontal axis is given in reduced units 

h = ' EXT / H.. The hysteresis loop for the applied field angle 9=00  indicates reversal 

through a purely irreversible process. An irreversible process occurs when a moment 

switches between two stable energy minima in a single irreversible process. As the 

applied field angle 9 increases, the reversal process becomes increasingly reversible. At 

9=900 the reversal process becomes totally reversible with no irreversible component. 

At the angles &-o° and 9=900  there is a discontinuity at h=1 .0, this represents the 

saturation of the moment in the applied field direction, the anisotropy field of the 

particle. 
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figure (6-2): Hysteresis ioops generated from the Stoner-Wohlfarth model [1] 

The switching field of a particle is identified from the external field required to 

reverse its moment. On a hysteresis loop, this is the point where the ioop closes. The 

switching field of particle can be identified on its hysteresis ioop at the point where its 

loop closes. The switching field for the Stoner-Wohlfarth model as a function of the 

applied field angle is presented in figure (6-3). These results are similar to experimental 

results on y-Fe203 particles by Ledereman et al. [6]. The particles in their study closely 

resembled prolate spheroids with few surface imperfections. These particles would 

exhibit a uniform demagnetising field. Thus, when a uniform magnetising field is 

applied, the magnetisation of the particle remains uniform as it rotates, aiding coherent 

reversal [7]. 
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figure (6-3): Switching field as a function of the applied field angle for the Stoner-
Wohlfarth model. 

6.3 The chain of spheres model 

A chain of spheres model was developed, similar to the model developed by 

Jacobs and Bean [2J. It represented a single magnetic particle as a chain of uniform 

isotropic single domain spheres with only point contact or even slightly separated, so as 

to be magnetically isolated. The moment Mi of each sphere (i) is free to adopt any angle 

(9) in a two dimensional plane with respect to the vector joining the spheres. The total 

energy of a six sphere system consists of fifteen dipole-dipole terms and six applied 

field terms. The magnetostatic energy between two moments M1 and M1, with angles & 

and Oj,  separated by a distance r11 is given by 

E7'8  =(p0MM /4pj3)*(cos(  —91 )-3cos9, cosO 1 ). 	(6-9) 
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The applied field energy EIJICM  of a moment i is given by 

= pO Mj HApp 	—a). 	 (6-10) 

Here (& -a) is the angle between the moment direction and the applied field direction. 

The applied field direction with respect to the long axis of the chain of spheres is given 

by a. 

To obtain a stable solution the total energy of the system was minimised. The 

energy was minimised using the gradient descent technique used by Dean [8]. The 

energy gradient of each particle was calculated using 

9k' 	 6 

T= p0 M 1 H,,, sin(4 —a)— 	(p0M1M1/4,3)(sin(91 — 9)-3sin9 cos9 1 ) (6-11) 
V',1 	 j—I.j*i 

In order to have a dimensionless equation for the energy gradient of the th  

moment, equation (6-11) was divided throughout by the energy 2K,V, where K, is the 

anisotropy constant and V is the volume of the particle. The following identities were 

used here. 

Internal field strength 	 H i tt ,= M,V / d 3 	 (6-12) 

Reduced field 	 hAn  = HA?? / H 	 (6-13) 

Reduced magnetostatic interactions 	hint = H. 1  / 11K 	 (6-14) 

The separation between spheres was given as 

(6-15) 

where normalised distance was ,H, the actual distance was r  and the separation 

between adjacent spheres was d. 
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The reduced energy gradient of the ith  moment is given as 

dE 	 6 

- = hApp sin(6 1  - a) - L (h 11  I 47rr1 ' 3  )(sin(8 1  - O) - 3sinO 1  cos91) . (6-16) 
dOi 	 j=l.jxi 

The moment of each sphere was pushed down its associated energy gradient 

using 

=O f  - x * 3E 	 (647) ae, 

Here X is a constant, 8, is the angle of the moment before relaxation and 87+1  is  

its angle after relaxation. A value of 0.1 for X was found to be satisfactory by Dean [8] 

by thai and error. The energy gradient technique is based on the reduction of a moments 

energy. It calculates the individual energy gradient for each moment then pushes the 

angle of the moment towards its associated energy minimum state. A minimum energy 

state was defined when none of the moments rotated more than the minimisation criteria 

for a single iteration. The minimisation criteria was 0.010,  this was found to be 

satisfactory through trial and error. It should be noted that the energy minima found by 

the gradient desent technique is not a global energy minima for the system but 

individual minima for each moment. 

The algorithm used within this model to generate a hysteresis loop for a chain of 

six spheres is as follows:- 

• Initialisation routine 

1. All the moments within the system are aligned as in saturation. 

2. The applied field is set and the minimisation routine is initiated. 

• Minimisation routine 

3. The moments within the system are visited simultaneously and their energy gradients 

are calculated. 

4. The moments are relaxed simultaneously down their energy gradient. 

Stage 3 and 4 are repeated until a satisfactory energy minimum state has been 

achieved for every moment within the system. At this point the hysteresis routine is 

initiated. 
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• Hysteresis routine 

5. The applied field value is changed by zH and the minimisation routine is initiated. 

7. After completion of half a hysteresis loop the program terminates. 

Hysteresis ioops generated from this model with hu1=0. 1 for different applied 

field angles are given in figure (6-4). The results indicate that for low applied field 

angles the hysteresis loop exhibits a high remanence with a low switching field. As the 

applied field angle increases the remanence reduces and the switching field is seen to 

increase. 

I 
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figure (6-4): Magnetisation curves for a chain of spheres model. 

The switching field as a function of the angle obtained from the chain of spheres 

model is presented in figure (6-5). The switching field of the model remains flat up to 

_200  and then steadily increases with the applied field angle. These characteristics are 

similar to the switching field characteristics of the commercial particles measured 

within this study and in other studies [9-1 1]. Although the results are similar they do not 
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give an adequate interpretation of reversal mechanisms within commercial magnetic 

particles. In particular for Cr02 particles the reversal mechanism has been reported to 

occur through curling [12,131 which can not be represented by the chain of spheres 

model. As a result of these limitations a more complex micromagnetic model was 

developed to represent the particles measured in this study. 
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figure (6-5): Switching field as a function of the applied field angle for the chain of 
spheres model. 

6.4 Micromagnetic model 

A micromagnetic model was developed to simulate the reversal mechanisms 

within the commercial magnetic particles measured in chapter 3. The model represented 

the shape of the particle by an array of cubes in a lattice structure. At the centre of each 

cube, there was a dipole moment that was free to rotate in any direction. The model 

determined the effective field at the centre of each cube, it then rotated the moment 

dynamically towards its energy minimum. The calculation of the effective field and the 
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subsequent relaxation of the moments was repeated until all the moments within the 

model had achieved an energy minimum state, defined by the minimisation criteria. 

The micromagnetic model utilised experimentally measured parameters, the size 

and shape of a particle with bulk properties taken from the literature. The model was 

used to simulate the hysteresis loops of particles measured experimentally in this study, 

y-Fe203 particles from sample 2 and Cr02 particles from sample 4. From this loop, the 

switching field was obtained and compared directly with the experimentally measured 

switching fields for particles with similar physical dimensions. The effect of changes in 

model parameters on the results of the simulation was also investigated, particularly 

how shape affected the switching field. 

6.4.1 Co-ordinate system 

The position of the cubes and dipoles was determined using a right-handed co-

ordinate system. The distance between cubes I and j was normalised with respect to the 

distance between adjacent cubes and was defined as 

:, 	 (6-18) 

where x, y,% represent the normalised unit dimensions between cubes i and j, while 

represents the normalised displacement vector between cubes i and j. 

The direction of dipoles at the centre of each cube was identified within the 

model by spherical polar co-ordinates, indicated in figure (6-6). 
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figure (6-6): Spherical poiar co-ordinate system 

The position of point P in space can be identified in terms of three co-ordinates 

(r,84), The directions P,8,$ in figure (6-6) are given by 

P = I sinO cos 4' + sin9 sin 4' + k cos 0, 	 (6-19) 

§ = I cos 8 cos 4' + 5 cos 8 sinØ - ksin 9, 	 (6-20) 

and 

=-1 sin$+cos4'. 	 (6-21) 

The unit moment magnetisation for cube i and j in spherical poiar co-ordinates are 

defined as 

oi =1sin4cos.+]sin.sin+Icos 	 (6-22) 

and 

in 1  =Csin91 cosØ1 +]sine1 sinØ1 -4-kcosB 1 	(6-23) 
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6.4.2 Micromagnetic structure 

A magnetic particle was represented by a three dimensional array of cubes, 

similar to that of other workers (4,5,14,15). These cubic elements were assumed to be 

sufficiently small so that the magnetisation within a cube remained uniform across its 

dimensions. The magnetisation within each cube was the saturation magnetisation of the 

material and was free to rotate in any direction. 

The number of cubes used to represent a particle determined the overall 

resolution of the model. This was limited by the practical number of micromagnetic 

calculations possible. If the cube's dimensions approached the atomic scale, a quantum 

mechanical treatment would have to be employed [161.  This limits their finite size in 

phenomenological models. As the number cubes N within a system increases, the 

number of magnetostatic interactions increases by N(N-1). This limited N to typically 

less than 250 to be computed by a Pentium personal computer within one week. 

An example of a simple model representing a particle with an aspect ratio of 6:1 

is given in figure (6-7). This model has 25 cubes in the xy plane and 30 cubes in the z 

direction. An odd number of cubes was chosen within the xy plane to avoid any 

symmetry effects during reversal through this plane. 

figure (6-7): Cubic lattice representing an isolated micromagnetic particle. 

Yan and Della Torre (5) in their computational study of y-Fe203 particles have 

proposed an extension to this basic cubic structure. Their extension involved removing 

cubes at the eight corner of the lattice, this produced a structure that is more 
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representative of a commercial particle. An example of this structure, referred to as a 

parallelepiped with pyramid ends is given in figure (6-8). 

figure (6-8): Cubic lattice with pyramid ends. 

The simulated y-Fe203 particle of Yan and Della Torre had an aspect ratio of 6:1 

discretised into 5x5x30 cubes. They investigated how the reversal mechanism was 

affected by having a pyramid structure at the ends of their model. They found that for a 

model with no pyramid structures (flat ends), a large non uniform demagnetising field 

was induced at its ends. This field reduced the remanence of the model and aided its 

reversal. With the inclusion of the pyramid structures, they found the demagnetising 

field was more uniform. This increased the remanence of the model and aided coherent 

reversal, increasing its coercivity. 

The results of the simulations in this study, by Yan and Della Tone and by other 

workers with similar models [4,15,17] have indicated symmetry effects. These occur 

when the structure of a model is symmetrical. This creates symmetrical patterns in 

magnetic microstructure and as a result unrealistic reversal mechanisms are initiated. As 

a consequence of this phenomenon, a cubic structure with surface irregularities was 

developed. This was achieved by allowing the surface cubes to be expanded or 

contracted by an amount chosen in a random number generator that followed a normal 

distribution. The magnitude and variation of the surface irregularity was described by 

the standard deviation of the distribution and the seed value for the random number 

generator. An example of this structure with a standard deviation of 10% of the cube's 

original width is given in figure (6-9). 
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figure (6-9): Cubic lattice with pyramid ends and an irregular structure. 

6.4.3 Field terms 

The effective field 1EFF  that the dipole moment experiences at the centre of 

each cube was determined by summing the individual contributions, the magnetostatic 

the exchange fi EXC ,  the anisotropyfi AN/  and the applied field 11APP• 

N EFF = 11 MAG + 11EXC + 'ANI  + 11 APP 	 (6-24) 

The magnetostatic field 11MAG  at the centre of a given cube I was calculated 

assuming a dipole approximation [18] 

11MAG 	

1 
3(3 MJ . JfU - MJ). 	 (6-25) 

where V 1  is the volume of cube j, ü I is its magrietisation and 7ij  is the position vector 

from cube ito j. 

The magnetostatic field is long rang in nature, thus all the cubes moment's will 

interact with one another. This creates a large number of magnetostatic fields that are 

required to be calculated for an accurate determination of the magnetostatic field at one 

point. In fact the number of magnetostatic field calculation required for a system of 

moments is the factorial of the number of moments within the system. A system of 10 

moments would require 3.6 million calculations. 

As a consequence of this difficulty, range truncation [19] was examined. This 

simple technique limits the range over which magnetostatic interactions are considered, 
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reducing computational time. Since the magnetostatic field decreases as 1r3  it might 

appear to be a sufficiently accurate and computationally efficient technique for most 

micromagnetic simulations. In this case, however, the volume of material considered 

within the interaction is proportional to?, so the effect of the magnetostatic field cannot 

be neglected at large r. Thus, this technique would seem insufficient for a large 3D 

micromagnetic simulation. In this particle model the volume of material contributing to 

the magnetostatic calculation at large r, greater than the particle width is approximately 

proportional to r, so the magnetostatic contribution falls off as 11?. Thus at large r, 

where the total moment excluded is small the effect of the magnetostatic contributions 

could be neglected [19]. 

An exact calculation of the magnetostatic field was not possible due to 

computational time constraints. As a consequence a compromise was taken between the 

accuracy of the magnetostatic calculation and the computational time available. 

Simulations were performed with different truncation lengths and the effects were 

observed. It was found that for a simulation with typical micromagnetic parameters a 

truncation length of 6 cube widths gave a satisfactorily accurate magnetostatic 

calculation with a considerable reduction in the computational time for a hysteresis 

loop, approximately 65%. 

The effect of truncation on the parameters of the simulation was investigated. 

Truncation had no observable effect on the remanence of the simulation, while its 

switching field was reduced. Typically the reduction of the switching field was less than 

10% for a simulation with an aspect ratio of 6:1, represented by an array 5x5x30. It 

should be noted that this discrepancy was likely to increase with an increase in the 

aspect ratio of a simulation. For simulations with large applied field angles with respect 

to the long axis of the simulation the discrepancy was likely to reduce. This is because 

the micromagnetic moments within the simulation are not aligned in the long axis of the 

model, they are aligned out of its long axis. Thus, as the applied field angle increases 

with respect to the long axis of the simulation the inaccuracy in magnetostatic 

calculation reduces, reducing the switching field discrepancy. 

The effect of the truncation on the micromagnetic transient state at coercivity 

was also investigated. It was found that the effect of truncation was to allow the onset of 
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reversaJ to occur earlier than for a simulation with the exact magnetostatic calculation. 

The effect of truncation is similar to that of reducing the aspect ratio, thus increasing the 

demagnetising field aiding reversal. Presented in figure (6-10) are the transient states at 

coercivity for simulations using the exact and the truncated magnetostatic calculation. 

Examining these states it can be seen that there are some minor differences between the 

micromagnetic moments; however, the major features within the reversal are very 

similar. This is characterised by the formation of two reversal layers, the position of 

these layers and their structure. 
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Exact Magnetostatic calculation. 	Truncated Magnetostatic calculation. 

figure (6-10): Comparison between the transient states for a simulation with an exact 
magnetostatic calculation and a truncated magnetostatic calculation. 
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The exchange field H E  rc  arises from the coupling between adjacent moments; it 

is analogous to spin exchange coupling in quantum mechanics [20]. The field is short 

range in nature and tends to align adjacent moments, aiding coherent reversal. The 

exchange field was determined by 

CH 
11 EXC = 	

K 	g 1 , 	 (6-26) 

	

S 	j 

where n.n is the number of nearest neighbours of cube i, M 5  is the saturation 

magnetisation, K 1  is the anisotropy constant and H. = 2Ic// M  is the anisotropy 

field. The parameter C is the inter-cube exchange constant [21] and is defined by 

- 7 17 ' 
(6-27) 

where At  is the effective energy exchange constant and a is inter-cube separation. In the 

models the inter-cube separation a varies with the position and size of the interacting 

cubes. As a result the inter-cube exchange constant C is calculated for each interaction 

field H LU  .The value of At  determines the direct magnitude of the interaction between 

adjacent moments. It has been reported to be in the range 1.0-1 0.OpJIm [3,5]. 

The crystalline anisotropy within a material refers to the preference of the 

material's moment to lie along a particular crystalline axis. This can be described by a 

field originating from the crystalline easy axis. The general formula [18] for the 

crystalline anisotropy field is 

2(K•M 1 )K 
11 ANI = 	 2 	 (6-28)

polKlim 

where M is the vector magnetisation of cube i, i? = Kk, k is the unit vector 

determining the easy axes directions, and K 1  is the magnitude of the anisotropy 

constant. 

The reduced effective field at cube i is determined by normalising the effective 

field by the anisotropy field. It is further reduced through utilising the micromagnetic 

identities given in equations (6-12) (6-13) & (6-14) 
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KLV? - HEn —(kth)k+hE vi 
 H K 	 I 

th _ 1 )+C*E 1  +h,. 	(6-29) 

6.4.4 Dynamic calculations 

With the evaluation of the effective field at the centre of each cube, the 

magnetisation of each cube can be determined. The magnetisation of each cube can be 

relaxed into the effective field direction by either the Gauss-Seidel or the Jacobi 

techniques [7J, each technique having its own characteristics. 

The Gauss-Seidel technique solves magnetisation direction for each cube 

sequentially, by relaxing, in turn, the magnetisation of each cube until a stable energy 

minima has been obtained. The sequential solution of the cube's magnetisation can 

introduce ordering effects, where a particular relaxation order sequence will obtain a 

different magnetic microstructure to another sequence. To avoid this effect the Jacobi 

technique was utilised within the model to solve simultaneously the magnetisation for 

all cubes. This technique is less efficient than the Gauss-Seidel technique as it calculates 

the magnetisation direction for each cube using the cube's magnetisation from the 

previous iteration. 

The relaxation of the magnetisation towards its energy minima for each cube 

was simulated dynamically by the Landau-Lifshitz equation [19,21,22], 

dM 	- 	A- 
- yo MxH EFF 

 — 
---- M x(M XH EFF ), 	 i=1,2.....N. 	(6-30) 

- M s  

where y, is the gyromagnetic ratio and A is the damping constant. The first term in the 

Landau-Lifshitz equation represents the torque exerted on the magnetisation by the 

effective field, commonly referred to as the precession term. The second term refers to 

phenomenological damping. This term allows the magnetisation vector to relax 

dynamically towards a localised energy minimum for each magnetised cube. 

For simplicity the Landau-Lifshitz equation can be written in a reduced form by 

introducing a reduced time r=t)f-JK and a reduced damping constant a=Aiy, which is the 

ratio of energy damping to the rate of gyromagnetic rotation. 

i=1,2,...,N. 	(6-31) 
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Since the magnetisation direction was determined by polar co-ordinates, the 

reduced Landau-Lifshitz equation for a cube was derived in terms of B and 0 as two 

coupled differential equations. 

=
(coscos 0, - a sin)h1 + 	

(cos9 sin + acos91 )h11  - h. 	(6-32) 

dr 
= (a sin - sin 0,  cos4)h1 + (—cos + a sin 0,  cos)h - a sin 	(6-33) 

Here hj~,hjx  and hiz  refer to the components of the reduced effective field hEFF  

The rate at which the magnetisation relaxes towards an energy minimum is 

dependent on the magnitude of a, the greater its value the more efficient the relaxation 

algorithm. Studies by Victoria [23] and by Thu et al. [22] have found that micomagnetic 

simulations were insensitive to the value of reduced damping constant a in hysteresis 

loops, where the external field changed slowly. The reduced damping constant used 

throughout this investigation was a.l .0. This is comparable to previous studies by other 

workers [14,24]. 

The reduced form of the Landau-Lifshitz equation was integrated using a 

order Runge-Kutta routine [25] commonly utilised throughout micromagnetics [26]. A 

Runge-Kutta routine can approximate the solution for a system of first order differential 

equations. Let the differential equations be given by 

dI 
-= f(y,x), 
dx 

(6-34) 

with y(0) = y0 . The Runge-Kutta method derivatives k 1234  are evaluated as follows 

= 
	

(6-35) 

h1 	h 
= f(.+---,x,+—), 	 (6-36) 

hk 2 	h 
= f(j+---,x+-), 	 (6-37) 

£4  = j(y+hi3 ,x,+h). 	 (6-38) 

Here In represents the step size in the Runge Kutta routine and k 234  represents the 

evaluated derivatives; once at the initial point, twice at the mid points and once at a trial 
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endpoint. Within the simulation, the components of k 1134  are the calculated derivatives 

dOi 	dO and 	at the points, x1 refers to the reduced time r, the components of j7  are 

previous iterations angles, Øj and 9, and the components of ji  are the new calculated 

angles, 01+1  and O+j. 

The solution for the Runge-Kutta method is obtained by generating a sequence 

of the evaluated derivatives 

- 	 - - 

= 	+ [k + 2k 2  + 2k 3  + k 4 ], 	 (6-39) 

= (i + l)h , 	 i=0,1,2,... 	(6-40) 

The Runge-kutta method iterates x11 until convergence of the series occurs, defined by 

Oi and Øj not changing by more than the convergence criteria for the model. 

As the direction of each cubes magnetisation changes within the Runge-Kutta 

routine, the field calculation requires to be updated at each Runge-Kutta step. As the 

step size was small within all the simulations (h=0.01), Oj and 0'  changed slowly for 

each Runge-Kutta step. Thus, the effective field at each cube remained approximately 

constant during the Runge-Kutta routine. This allowed a reduction in the processing 

time by a factor of —4 through not updating the effective field at each Runge-Kutta step. 

This approximation was verified by running simulations with the field updated at each 

step and only updating the field calculation at the beginning of each Runge-Kutta step. 

The micromagnetic transient states at coercivity for both methods were compared, 

shown in figure (6-11). The transient states showed no significant difference between 

both algorithms for a fourfold improvement in the computational time. The switching 

field and the remanence of a simulation also showed no discrepancy between both 

algorithms. As a consequence all the simulations were performed with this 

approximation in the Runge-Kutta routine. With the inclusion of the truncation length 

and the Runge-Kutta step approximation the computational time for a hysteresis ioop of 

a typical model corresponding to an array of 650 cubes took approximately a week. 
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figure (6-1 1): Comparison between the transient states for a simulation with an exact 
and an approximated Runge-Kutta calculation. 

The magnetisation of each cube was relaxed by the Landau-Lifshitz equation, 

integrated using the Runge-Kutta routine. The dynamic relaxation for all the cubes 

magnetisation continued until a stable dynamic minimum was achieved. This was 

identified by the magnetisation rotation for each cube in an iteration being less than a 

minimisation criteria, typically 0.0 10.  The minimisation criteria was determined for a 

particular set of micromagnetic parameters by running simulations with different criteria 

until an accurate and computationally fast criteria was found. 
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6.5 Simulation algorithm 

The micromagnetic parameters for the particle being modelled were determined 

from the shape of the particle, its absolute size and the material of the particle. 

The structure of the model was determined from the aspect ratio of the particle 

being modelled. For example, a particle with an aspect ratio of 3: 1 was represented by 

an array of 5x5x15 cubes. The defined micromagnetic parameters for the particle were 

the type and magnitude of the crystalline anisotropy and the applied field direction 

within the f1t plane. The calculated micromagnetic parameters were the magnetostatic 

and the exchange interaction constants h1 , and C*. These were calculated from the 

parameters of the material, its saturation magnetisation, its anisotropy constant, the 

value of the A* parameter and the absolute distance between the magnetised cubes 

within the model. 

A flow chart indicating the main features of the algorithm is presented in 

figure (6-12). For the determination of the simulation's hysteresis loop an external 

applied field loop was generated. Within this loop, the effective fields for all the cubes 

were simultaneously calculated, using the Jacobi technique. The magnetisation for each 

cube was then relaxed dynamically by the Landau-Lifshitz equation and integrated using 

the Runge-Kutta routine. After relaxation, the convergence criteria for all the cubes was 

tested. If all cubes passed, the simulation magnetisation in the applied field direction 

was saved and the external applied field updated. If any cubes failed, the simulation 

jumped back to the effective field calculation. The external applied field loop continued 

until the hysteresis loop of the model was completed. 

As a further analytical tool in determining the reversal mechanism within a 

simulation, micromagnetic transient states were saved at the test for convergence within 

the hysteresis loop. These states were saved during simulation's reversal at 

magnetisations of 0.95, E(l.O - O.ln) and -0.95. 
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figure (6-12): Row chart of simulations algorthim 
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6.6 Micromagnetic results and discussion 

The developed model has been utilised in the investigation of commercial 

magnetic particles, y-Fe203 and Cr0 2 . Two aspects have been investigated; the 

simulation of particles measured experimentally in chapter 3 and the effect of model 

parameters on the simulation. 

The simulation of the particles measured experimentally incorporated the 

physical parameters of particles measured in chapter 3 with the bulk parameters for the 

materials taken from the literature. The physical parameters were obtained from the 

results of the Scanning Electron Microscopy (SEM), where the length and diameter of 

the particles were measured. From these results, a typical particle was chosen. The 

structure of the simulation was then matched to the typical particle. For example, a 

typical particle with an aspect ratio of 6: 1 was represented by an array of cubes 5x5x30. 

As the SEM images were of insufficient clarity to identify surface irregularities, the 

magnitude of irregularities was approximated by a normal distribution. The magnitude 

of the disthbution width was based on the type of material being simulated, a 'y-Fe20 

particle was taken as having a large number of crystal and surface imperfections 

[27-30], whereas a Cr02 particle was taken as having few surface imperfection with a 

high degree of crystalline perfection [31-33]. The micromagnetic parameters for the 

simulations, hi., and C*  were calculated from the inter-cube separation and the bulk 

properties of the material. The inter-cube separation was derived from the actual 

physical dimensions of the typical particle and number of cubes used within the 

simulation. 

The simulations assumed that the particle was composed of a single crystal with 

no bulk crystalline imperfections. This is in line with other workers [3-5], However, this 

is probably unrealistic for the majority of real y-Fe203 particles [29]. The presence of 

bulk crystalline imperfections is likely to affect the reversal mechanism within a real 

particle. They may act as pinning sites or points of nucleation for reversal and could be 

reversal mode dependent. 

Simulations on the typical particle were performed at different applied field 

angles with respect to the long axis of the model, its z axis. From the results of the 
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simulations, the switching field as a function of the applied field angle was measured 

and compared directly with the experimentally measured results for real particles, 

presented in chapter 3. 

As there are many parameters within the developed model it was thought 

instructive to investigate the effect these parameters have on the simulation. These 

included, aspect ratio, particle size and the magnitude and type of surface irregularities. 

Due to limited computational time only the y-Fe203 model was investigated in this way. 

6.6.1 Simulations of a typical y-Fe203  particle 

The simulation parameters were derived to model the particles of Sample 2. This 

sample was chosen instead of sample 3 as more of its particles were measured using the 

SEM and so a more representative sample was obtained. Sample 1 was not chosen even 

though more particles were measured, since it appeared from the SEM images that these 

particles had poorly defined shapes compared to samples 2 and 3. This was unsurprising 

as sample 1 originated from the 1960's where as the other samples were produced in the 

19 80's. 

The typical particle identified in sample 2 had an aspect ratio of 6: 1 with a 

length of 0.6pm. This was represented by a 5x5x30 micromagnetic structure with 

pyramid ends and an irregular surface, presented in figure (6-9). The surface irregularity 

was represented by a normal distribution with a standard deviation of 10% of the cubes 

original width. y-Fe203 parameters were taken from the literature as: the saturation 

magnetisation M5=34OkAIm [34,35], the cubic crystalline anisotropy constant K1=-

4.6x io JIm3  [35] and the effective energy exchange constant A*=5.OpJIm  [3,5]. The 

cubic crystalline direction of y-Fe203 particles are predominately in the <110> direction 

with respect to a long axis [27,30]. Similar models by other workers have used the 

<100> cubic crystalline direction or even uniaxial anisotropy [3,5]. For a direct 

comparison of the effect of different anisotropy directions, simulations have been 

performed with both cubic crystalline directions. The simulation parameters for 

the y-Fe203 particles within this study are consistent with the numerical simulations of 

Schabes [3] and Yan etaL [5]. 
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Simulations were performed at 5 different applied field angles 10,  20°, 40°  600  

and 800  for both cubic crystalline directions. Simulations were not performed at 0 0  as 

this would create a purely symmetrical system for a model with no irregularities. Under 

these conditions reversal would be more difficult, as an unstable equilibrium condition 

occurs. An example of a simulated hysteresis loop indicating the critical parameters 

used in their evaluation can be found in figure (6-13). 
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figure (6-13): Hysteresis loop for a simulated y-Fe203 particle with a <100> cubic 
crystalline direction and an applied field direction of 400. 

From the simulated hysteresis loops, the switching field as a function of the 

applied field angle was generated and compared directly with two measured particles 

from sample 2, presented in figure (6-14). The measured switching field as a function of 

the applied angle was marginally more consistent for the simulation where the cubic 

crystalline axis was in the <100> direction rather than in the <110> direction. This is 

inconsistent with real y-Fe203 particles which are likely to have predominately <110> 

cubic crystalline axis with respect to their long axis [27]. For the applied field angle 

0=1 0, the results for both cubic crystalline axes directions <100> and <110> were 

1.0 

0, 

0.5 

I 	-0.5 
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consistent with the experimentally measured switching field. As the applied field angle 

increased, the discrepancy between the simulation results and the measured switching 

field became increasingly large. This could be attributed to assumptions and 

simplifications within the model, particularly the single crystal structure of the modelled 

particle, an over simplified model shape and the absence of any appropriate bulk 

crystalline imperfections. 
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figure (6-14): Switching field as a function of the applied field angle. 

The reversal mechanism for the simulations was investigated as a function of the 

applied field angle. This was achieved by examining transient states of the reversal 

mode. At low applied field angles less than and equal to 20 0  for both <110> and <100> 

cubic crystalline directions, the reversal mechanism is characterised by a vortex state, as 

described by Schabes et al. [24]. This state was initiated through the transformation of a 

flower state, as described by Schabes et al. [24] at remanence. It then propagated 

through the particle from one end to the other reversing the micromagnetic moments. 

An example of a typical vortex mechanism is shown in figure (6-15). 
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figure (6-15): Transient vortex configuration within the reversal mechanism of a 
modelled particle at coercivity. 

As the applied field direction increased past 20 0  for both <110> and <100> 

cubic crystalline directions, the reversal mechanism became increasingly coherent. The 

crossover from an incoherent to a coherent reversal mode occurred through the 

transformation of the vortex state. As the applied field angle increased the vortex 
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enlarged until a point was reached where the vortex state could no longer be 

energetically supported and a more coherent reversal mode was initiated. Examples of 

the transient coercive state for the model with the cubic crystalline direction of <100> 

and the applied field directions of 10  and 400  are presented in figure (6-16) and 

figure (6-17). 	
Applied field direction 

1 I 

figure (6-16): Coercive state for an applied field direction of 10  with <100> cubic 
crystalline anisotropy, indicating a vortex reversal mechanism. 
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figure (6-17): Coercive state for an applied field direction of 400  with <100> cubic 
crystalline anisotropy, indicating a more coherent mode of reversal. 

One possibility for the increased discrepancy between the measured switching 

field and the switching field of the simulation at large applied field angles could be the 

presence of bulk crystalline imperfections within the particles measured experimentally. 

These imperfections may have had a significant effect on different reversal mechanisms 

within the measured particles, either acting as nucleation sites or pinning sites during 

reversal. At low applied field angles the particle simulation indicated an incoherent 

reversal mechanism, characterised by a vortex configuration. This type of reversal might 
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easily accommodate the hard axes of bulk crystalline imperfection by deforming its 

micromagnetic microstructure, it may even act as a nucleation site, reducing the 

switching field of a particle. At larger applied field angles, the simulations indicated a 

more coherent reversal mode, which corresponded to the greatest discrepancy between 

the experimental results and those for the simulated particle. In coherent reversal the 

moments would have to propagate directly through a number of bulk crystalline hard 

axes, which would effectively oppose reversal and enhance the switching field of the 

particle. Thus, it could be proposed that bulk crystalline imperfections may act as weak 

nucleation or pinning sites for incoherent reversal, while these imperfections may act as 

pinning sites for coherent reversal. 

6.6.2 The effect of model parameters on the y-Fe 203  particle 
simulation. 

Since the micromagnetic model was so complex with a number of parameters, 

the effect of changes in these parameters, particularly on the switching field and the 

remanence, were investigated. These model parameters included aspect ratio, magnitude 

of A*  and surface irregularity. 

The magnitude and type of surface irregularities can have a dominant effect on 

the properties of a magnetic particle. These surface irregularities can generate local 

variations within the demagnetising field which can either act as a nucleation site for 

reversal or a pinning site in opposing reversal. The two basic surface structures are a pit 

and a bump, illustrated in diagram A and diagram B of figure (6-18). A pit generates 

surface poles at its sides; these poles create a demagnetising field that opposes 

demagnetisation by the applied field. The bump also generates surface poles, but these 

poles create a demagnetising field that aids the external applied field in demagnetising 

the sample. Thus, bumps essentially act as nucleation sites for reversal and pits act as 

pinning sites for reversal. 
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figure (6-18): The effect of localised fields near pits and bumps. 

Using the typical y-Fe203 particle parameters with the <110> cubic crystalline 

direction and an applied field direction of i °  the effect of different surface irregularities 

was investigated. The simulations surface irregularity was defined by a normal 

distribution with a 10% standard deviation of the cubes original width. Fora measure of 

the effect of different surface irregularities, 15 simulations were performed with the 

same standard deviation, but with a different set of random numbers. 

A histogram of the switching field of these simulations was curve fitted with a 

Gaussian distribution and is given in figure (6-19). The width of this distribution, given 

as the particle consistency parameter C/HMEItV in chapter 3 allowed a direct comparison 

with the experimentally measured switching field distribution of sample 2. 

The particle consistency parameter for the simulation results was calculated as 

0.035. Its value was a factor of 4.1 smaller than that of the experimental results in 

chapter 3 for the y-Fe203 particle of sample 2. This discrepancy could be attributed to 

either inaccurate modelling of the magnitude and type of surface irregularity or the 

imperfection free, single crystal nature of the model not being correct. 
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figure (6-19): Simulation switching field distribution, for a normal disthbuziori with a 
width standard deviation of 10% of the original width of a cube. 

The effects of the magnitude of surface irregularities at different applied field 

angles were also investigated using the typical y-Fe203 particle parameters with the 

<110> cubic crystalline direction. Simulations were performed with different surface 

irregularity magnitudes, defined by the magnitude of the standard deviation in the 

normal distribution. The results of these simulations, given in figure (6-20) indicate that 

as the magnitude of the surface irregularities increase, nucleation of the reversal mode 

occurs at lower applied fields. Thus, surface irregularities act as points of nucleation for 

reversal. It would also appear that the effect of surface irregularities at the different 

applied field angles was similar. This would seem to indicate that the different reversal 

mechanisms at the different applied field angles were affected by a similar amount by 

the surface irregularities. 
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figure (6-20): The effect of the surface irregularity magnitude on switching field as a 
function of the applied field angle for the typical ?-Fe203 particle parameters with 
<110> cubic crystalline direction. 

A model with no surface irregularities is unrealistic, as real particles are not 

purely symmetrical. This is emphasised by examining the reversal mechanism for a 

smooth regular model particle. The reversal mechanism within these models is initiated 

simultaneously from both ends of the particle. The reversal then sweeps through the 

model towards the centre. An example, of this type of reversal shown at coercivity, 

giving a symmetrical micromagnetic microstructure can be seen in figure (6-21). 

Coercivity of the same model with added surface irregularities can be seen in 

figure (6-22). A cursory examination of both micromagnetic microstructures shows the 

dramatic effect surface irregularities can have on the reversal mechanism within a 

model. The model with no surface irregularities appears to have a more coherent 

reversal mode, characterised as two coherent reversal layers, while the model with 

surface irregularities appears to have a more incoherent reversal model, characterised by 

a single vortex reversal structure. 
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figure (6-2 1): Coercive state for an applied field direction of 10  with <110> cubic 
crystalline anisotropy and no surface irregularities. 
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figure (6-22): Coercive state for an applied field direction of 10  with <110> cubic 
crystalline anisotropy and surface irregularities defined by a normal distribution with a 
standard deviation of 5% of the cube's original width. 

The effect of symmetry within the developed model has been shown to create 

unrealistically symmethcal reversal mechanisms. As a consequence of this study all 

further investigations into the effect of different model parameters were performed on 

models with surface irregularities. Unfortunately, this led to a problem of different 

models having different surface irregularities, so the comparison of "like with like" was 

not exactly being performed. For example, when comparing models with different 
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aspect ratios it should be noted that their surface irregularities were different, although 

these surface irregularities had the same distribution width. Apart from this 

disadvantage, it was thought more appropriate to model more realistic reversal 

mechanisms and gain an insight into the general trends of the reversal mechanism when 

the structure of the model is changed. 

In this study the effect of changes to A*  on the simulations results has been 

investigated. The parameter A*  as stated in section 6.4.3 defines the magnitude of the 

exchange coupling between adjacent cubes, the higher its value the greater the coupling 

and the greater the local moment alignment. Within the literature on the modelling of 

magnetic thin films and commercial magnetic particles the value of A*  has been 

proposed to be within the range 1.0-10.OpJfm [3,5]. 

Simulations have been performed with the typical y-Fe203 particle parameters of 

the previous section with the applied field direction of 10  and a cubic crystalline 

direction of <110>. The results of these simulations are given in figure (6-23). They 

indicate that switching field and remanence are dependent on the exchange energy 

constant A*.  The switching field increased with A*,  although as A*  increased beyond 

5.OpJ/m the switching field started to saturate. These characteristics are a result of a 

change in the reversal mechanism as a function of A*.  At low values of A*(c5.OpJ/m) 

the magnetostatic energy was dominant and a vortex reversal mode was energetically 

favourable. As the value of A*  increased the exchange energy starts to dominate and a 

more coherent reversal mode becomes energetically favourable. With further increases 

in A*  the switching field saturates, indicating a coherent reversal mode. The results of 

the remanence as a function of the exchange energy constant indicated the effect of the 

demagnetising field. At low values of A*  (c3.OpJ/m) the demagnetising field was 

dominant creating a flowering state, reducing the remanence of the simulation. 
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figure (6-23): Switching field and Remanence of a typical y-Fe203 particle as a function 
of the exchange energy constant A*. 

The effect of changes in A*  on the switching field as a function of the applied 

field angle has also been investigated. Simulations for the typical y-Fe203 particle 

parameters with exchange energy constants of 5.0 and 7.0 pJ/m are presented in 

figure (6-24). The results show that the switching field for A*=7.OpJ/m  are consistently 

higher than for A*=5.OpJIm; this is particularly marked at low applied field angles. 

These results seem to indicate that an increase in A*  promotes a more coherent reversal 

mode at all applied field angles. At low applied field angles, the reversal modes are 

more incoherent, thus an increase in A* had a more pronounced effect on its reversal 

mechanism and a more striking increase in the switching field was observed. At the 

higher applied field angles, a more coherent mode of reversal occurred and the effect of 

an increase in A*  was a slight increase in the coherent mode, identified by marginal 

increase in the switching field. At 400  the switching field for the simulation with the 

exchange energy constant of 5MpJ/m was marginally higher than for the exchange 

energy of 7.OpJ/m. This result could explained by different reversal mechanisms which 

have different angular dependence occurring for the different exchange energy 

constants. 
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figure (6-24): Switching field as a function of the applied field for the typical y-Fe203 
particle parameters. 

For understanding of the effect of changes in the aspect ratio, a number of 

simulations using the typical y-Fe203 particle parameters with a <100> cubic crystalline 

direction and a length of 0.6pm were performed. The switching field as a function of the 

applied field angle for aspect ratios of 3:1, 4:1, 5:1 and 6:1 is presented in figure 

(6-25). 

As the aspect ratio increased from 3: 1 to 6: 1, the volume of the model reduced 

by a factor of 4.1 and its demagnetising field reduced by a factor of 2.5. A smaller 

volume would suggest a reduced switching field assuming coherent reversal. A larger 

aspect ratio, reducing the demagnetising field would suggest an increased switching 

field. The results from the simulations showed that as the aspect ratio increased the 

switching field increased at all the applied field angles. These results would seem to 

imply the dominate effect the reduction in the demagnetising field can have on the 

reversal mechanism. In this case, reducing the demagnetising field aided coherent 

reversal at all the applied field angles. 

IM 



•—. Aspect ratio 6:1 
o—a Aspect ratio 5:1 
o—o Aspect ratio 4: 1 
v—v Aspect ratio 3:1 

I 0 

0 	10 	20 	30 	40 	50 	60 	70 	80 

Applied field angle (0) 

figure (6-25): Switching field for the typical y-Fe203 particle with different aspect ratios 

as a function of the applied field angle. 

Simulations using the typical y-Fe203 particle parameters were also performed at 

the applied field angle of i °  for an extended range of aspect ratios. The results, given in 

figure (6-26), indicate a definite change in the reversal mechanism around an aspect 

ratio of 5.5: 1. Examples of the reversal mechanism at coercivity for the aspect ratio 

4: land 9:1 are presented in figure (6-27) and figure (6-28). 

The reversal mechanism at coercivity for the simulation with an aspect ratio of 

4: 1 indicates the formation of two pronounced vortex structures. The formation of two 

reversing mechanisms within a particle was quite unusual in this numerical study, 

usually only one reversal mode was produced which then propagated through the 

particle. The reversal mechanism at coercivity for the 9:1 simulation indicated reversal 

by a coherent layer that propagated through the model reversing its micromagnetic 

moments. 
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figure (6-26): Switching field as a function of aspect ratio using the typical y-Fe203 
particle parameters. 
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figure (6-27): The reversal mechanism at coercivity for the simulation with an aspect 
ratio of 4:1. 
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figure (6-28): The reversal mechanism at coercivity for the simulation with an aspect 
ratio of 9: 1. 
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6.6.3 Simulations of a typical Cr02  particle 

Simulation parameters were derived to model the Cr02 particles of sample 4. 

This sample was chosen as more of its particles were measured with the SEM than in 

sample 6 and so a more representative sample was obtained. Sample 5 was not chosen 

as its aspect ratio distribution was much broader than sample 4. 

The typical particle chosen from sample 4 had an aspect ratio of 5:1 with a 

length of 0.6pm. This was represented by a 5x5x25 micromagnetic structure with 

pyramid ends and an irregular surface. Chromium dioxide particles are known to have a 

high degree of crystalline perfection with few surface imperfections [31,34]. As a 

consequence, the surface irregularities were described by a normal distribution with a 

narrow standard deviation width, 1% of the cubes original width. 

The model parameters taken from the literature were saturation magnetisation 

Ms.370kAJm [34,35], uniaxial crystalline anisotropy constant K 1 =.-2.5x lO Jim3  [35 

and an effective energy exchange constant A*=5.OpJim  [3,5]. There is still uncertainty 

within the literature on the magnetocrystalline easy axis direction/directions within 

chromium dioxide particles. It has been reported by Cloud [36] that the directions of the 

easy magnetisation axes within Chromium dioxide lie in (100) planes at an angle of 

—400  to a tetragonal axis. Other workers, Rodbell and Muller et al. [37,38] proposed that 

the chromium dioxide easy axis was parallel to its needle axis (c-axis). Due to 

computational time constraints, simulations were only performed with uniaxial 

anisotropy along the needle axis of the model. 

For a direct comparison with the experimental switching field data of sample 4, 

simulations were performed at 5 different applied field angles 10,  200, 400 600  and 800 . 

From the simulated hysteresis loops, the switching field as a function of the applied 

field angle was generated and compared directly with two measured particles of sample 

4, presented in figure (6-29). 
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figure (6-29): Switching field as a function of the applied field angle. 

The switching field angular dependence of the Cr02 model showed some 

agreement with the measured particles characteristics. The models switching field at low 

applied field angles (<20 0) was significantly greater than that of the measured particles. 

At higher applied field angles 20 0-600  the models switching field remained 

approximately constant (.-lOOkAIm). At the large applied field angles (>60 0) the 

measured particles switching field increased markedly more than the switching field of 

the model. The discrepancies between the properties of the measured particles and the 

model might be attributed to an over simplified model shape, the presence of bulk 

crystalline imperfections or the correct degree of surface irregularities. 

The reversal mechanisms within the Cr02 particle simulations were 

characterised by having two coherent reversal layers at coercivity for applied field 

angles of less than and including 40 degrees. Above 400  the reversal mechanism was 

similar at those angles to the mechanisms found in the y-Fe203 particle model, where the 

reversal mechanism was tending towards coherent reversal. 
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An interesting point was that at low applied field angles (<400) two reversal 

layers were initiated in the Cr02 particle model, while only one was initiated in the y-

Fe203 particle model. This could be attributed to the degree of surface irregularities 

within the respective models. A model with a low degree of surface irregularities might 

initiate reversal at both its ends at similar fields, while a model with a high degree of 

surface irregularities could initiate reversal from either end at quite different fields. So 

for models with a high degree of surface irregularities a race condition could occur, 

where reversal is initiated at one end, it then propagates through the model before 

reversal can be initiated at the other end. 
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Chapter Seven 

7.1 Conclusions and further work 

Interaction effects in recording media have been investigated by comparing the 

measured properties of isolated particles with the measured bulk properties of the media 

they constitute. It has been found that the interaction effects can significantly affect the 

characteristics of a medium. 

The effect of interactions within the y-Fe203 and the Cr02 was in line with the 

findings of Knowles [1] and was consistent with the modified Henkel plots for these 

samples, which indicated demagnetising or negative interactions. These measurements 

and the analysis can be described by a mean field approximation which shifts the 

sample's coercivity and hence its SFD to lower fields. The results for the metal particle 

system, sample 7, were contrary to the mean field approximation, since the effect of 

interactions was to shift the SFD to higher field values. This indicates positive 

interactions, i.e. interactions that oppose demagnetisation. This result was contrary to 

the modified Henkel plot for this sample and the findings of other workers [2] who have 

investigated metal particle media. Thus, it was proposed that at a microscopic level local 

inter-particle interactions appear to enhance the switching field and dominate the 

behaviour of individual particles. At a macroscopic level, however, behaviour is still 

predominantly that of a system in which interactions are demagnetising. These finding 

appeared to be contradictory. 

A suggestion for resolving this contradiction was found in the modelling study 

of Lyberatos and Wohlfarth [3]. In their study, chains of particles were introduced into a 

particulate system. This had the effect of increasing the system's coercivity; however, 

Henkel plots showed that interactions between adjacent chains dominated and exhibited 

an overall demagnetising behaviour. Only in very dilute systems did the interactions 

between paEticks in the chains start to dominate and produce positive interactions. It 

was therefore suggested that in the metal particle system studied there may be very 
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strong local alignment of particles which had the effect of increasing the system 

coercivity whilst not affecting the general negative interactions characteristic of all 

acicular particulate media. 

The packing densities evaluated from the SFD means of the individual particles 

and the experimentally determined SFD means within the y-Fe203 and Cr0 2  particulate 

media were approximately 0.65 and 0.55 respectively. These calculated values are high 

for commercial particulate media, where the volumethc packing density is of the order 

of 0.4 [4,5]. This discrepancy might be attributed to the localised formation of 

agglomerations within the samples, effectively increasing the media's packing density 

and increasing the localised interaction field within an agglomeration. 

Theoretical work by Coverdale et al. [6,7] and Satoh et al. [8] on fluid 

dispersions and on the microstructure of dried coatings supports these conclusions. 

Their investigations have indicated the presence of particle bundles and the formation of 

voids within the dried media. This would effectively increase the packing density of the 

media, increasing the localised interactions and thus reducing its coercivity. 

As there is a general trend towards smaller particulates, MP for example, the 

microscopic technique utilised within this study has become inadequate to observe this 

new generation of particles. To further the research into the magnetic and physical 

properties of isolated particles an extension to the technique with the use of electron 

microscopy has to be employed. Lederman et al. [9,10] have already used this technique 

utilising electron microscopy in the investigation of experimental y-Fe203 particles with 

very few surface imperfections. These particles exhibited a coherent reversal mechanism 

at large applied field but as the applied field angle 8 approached zero, curling became 

the more probable reversal mechanism. These results are significantly different to the 

reversal mechanisms of the commercial particles examined in this study. This difference 

highlights the importance of continuing this work into the characterisation of the next 

generation of commercial particles. 

Both an experimental and a modelling study of the effect of chaining of particles 

within metal particle media would be of interest, in particular studying the effect of 

chaining within the recording process. As chaining might effectively lock particles 

together magnetically, the minimum transition width within the media might increase 
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reducing its storage density. Mother consequence of chaining might be an increased 

level of noise relating to the physical size of the magnetic structure created by the 

chains. 

The study of chaining could be furthered by the production of aligned and 

random samples of particulate media which are susceptible to chaining. The 

characterisation of these samples, in particular the properties of the particles which 

constitute the media, their media's SFD and their noise characteristics would be 

insightful in investigating the presence and effect of chains within particulate media. It 

would also be interesting to investigate the presence of chains during the production of a 

medium. This investigation could explain at what stage chains are formed during the 

production process. The presence of chains within the dispersion could be identified 

with technique developed in this study. In essence, the presence of chains can be 

revealed by comparing the characteristics of the particles within the dispersion and the 

properties of medium produced from the dispersion. 

A micromagnetic model was developed to simulate the reversal mechanisms 

within the commercial magnetic particles studied experimentally. The model 

represented the finite shape of a particle, its bulk magnetic properties and its surface 

irregularities. The model was used to simulate the hysteresis loop of a particle measured 

experimentally. From this loop, the switching field was obtained and compared directly 

with the experimentally measured switching fields for particles with similar physical 

dimensions. The effect of changes in model parameters on the results of the simulation 

was also investigated; in particular how the particle's shape affects its measured 

switching field. 

The simulations representing typical y-Fe203 particles indicated reasonable 

agreement at the lower applied field angles between the measured switching field of a 

particle and the switching field of the simulation representing the particle. As the 

applied field angle increased the measured switching field of the particles increased 

more markedly than the switching field of the simulation. This discrepancy between the 

switching field of the particles and the simulation increased with the applied field angle. 

It was believed that this was a consequence of assumptions and simplifications within 
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the model, particularly the absence of bulk crystalline imperfections and the effect of an 

oversimplified particle shape. 

The simulations of y-Fe203 with different surface irregularities showed the 

dramatic effect irregularities had on the reversal mechanism and the switching field of a 

model. The greater the degree of surface irregularities the lower the switching field of 

the model and the more incoherent its reversal mechanism. It was found that surface 

irregularities acted as nucleation sites for reversal, lowering the switching field of the 

model. The study of irregularities also highlighted the problems of models with 

symmetrical microstructures. These models generate purely symmetrical reversal 

mechanisms, which have a higher switching field than for models with surface 

irregularities. As the real particles used within the magnetic media industry are unlikely 

to be symmetric, models representing these commercial magnetic particles should 

contain surface irregularities, as in this study. 

The exchange energy constant A*  was investigated for a model representing a y-

Fe203 particle. The results indicated that as A* increased the exchange energy started to 

dominate the reversal mechanism and the reversal mechanism became more coherent. 

The effect of aspect ratio on simulations representing y-Fe203 particles was also 

investigated. The results indicated that as the aspect ratio of the model increased, the 

reversal mechanism became more coherent. This was the result of a reduced 

demagnetising field as the aspect ratio of the model increased. 

The simulations representing a typical Cr02 particle measured in chapter 3 

indicated reasonable agreement at the higher applied field angles. At the lower applied 

field angles the switching field of the model was significantly higher than the switching 

field of the measured particle. This observation could be the result of assumptions and 

simplifications within the model, particularly the absence of bulk crystalline 

imperfections, the degree of surface imperfections and the effect of an oversimplified 

particle shape. 

Overall, the model developed in this study can be considered as a success. It 

modelled, within expectable errors, the properties of typical 'y-Fe203 and Cr02 particles. 

It also indicated the effect of surface irregularities on the properties of real particles, in 

particular how surface irregularities can act as points of nucleation for reversal and how 
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they can broaden the switching field distribution for an ensemble of particles. The 

investigation of aspect ratio and particle size on the properties indicated qualitative 

results similar to those of other workers [11,12]. 

As with most micromagnetic simulations improvements could be made by 

increasing the number of elements in the model. Other improvements could include an 

exact calculation of the magnetostatic field instead of the point dipole approximation, an 

accurate representation of the particles surface irregularities and a representation of bulk 

crystalline imperfections. As crystalline imperfections are likely to be of the order of the 

atomic swucture it is impracticable to model them accurately at the present time. 

However, a three dimensional irregular shaped model with each segment having its own 

easy axes directions would be a step forward. This would further avoid any symmetry 

effect and make the model more realistic. 
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Appendix A 

9.1 Wohlfarth relationship. 

The relationship between IIRM remanent magnetisation and the DCL) remanent 

magnetisation in a system of non-interacting magnetised bodies is linear. This 

relationship known as the Wohlfarth relationship given by 

' DCD(H) = 
	

(1) 

Here JDCD(H) and J,p.M(H) are the DCD and IRM curves normalised to the appropriate 

saturated remanent magnetisation of the sample. 

The relationship can be shown to be valid by examining the reversal process in a 

simple highly aligned particulate system, particle moments are either pointing up or 

pointing down. A schematic diagram indicating the reversal process within this simple 

system for the IRM and DCD curves can be found in figure blah. 

The initial state of the IRM has half the moments pointing up and half pointing 

down, thus generating zero net magnetisation for the system. The initial state of the 

DCL) curve has all its moments pointing down, generating a net normalised 

magnetisation of -1. From examining these values it can be seen that they conform to 

the Wohlfarth relationship. As an upward positive field is applied within the IRM and 

DCL) curve measurements the moments begin to reverse into the upward field direction. 

As half of all the moments are already within the positive applied field direction in the 

IRM state then the magnitude of reversal in the DCD measurements are twice that of the 

IRM measurements. This again conforms to the Wohlfarth relationship. After complete 

reversal of the moments within the upward field direction the net remanent 

magnetisation of both the IRM and DCL) curve are equal and equal to unity, conforming 

to the Wohlfarth relationship. 
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figure (9:1): Magnetic states within the IRM and DCD measurements of a highly 

simplified sample. 
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Abstract 

Interaction effects within particulate recording tapes have been investigated by comparing single particle behaviour with 

measured tape bulk properties. The particle systems were audio y-Fe.0 1  and 8 mm MP video tapes plus Cr0, hand spreads. 

Interactions in the -y-Fe.0, and Cr0: systems were nezative and consistent with mean field behavtour. However, the MP 

particle interactions were in the opposite sense, in contradiction to the Flenkel plots. A model for this behaviour involving 

the creation 01 chains is suggested. 

I. Introduction 

We have investigated (he interaction effects in record-

ing particle systems by companng the reversal properties 

of individual particles with bulk remanence of tapes or 
hand spreads. The angular switching Field distribution 

(SFD) for an ensemble or isolated particles was deter-

mined combining measured switching field data and tape 

texture Functions as indicated by their easy axis distribu-

tions. The SFD was compared with the differential of the 

isothermal remanence curve (IRM) for the corresponding 

tape. The difference between the two curves could be 

related to interaction effects. This paper reports on three 

wstems: an audio '-Fe.0, tane. an  mm metal particle 

NIP) video tape. and an experimental Cr0, hand spread. 

2. Experimental method and results 

The magnetisation reversal properties of isolated parti-

des have been investigated using techniques developed by 

Knowles (11. Isolated particles removed from the system 

were dispersed in a viscous liquid and viewed with an oil 

immersion objective microscope. Particles were aligned in 

a magnetic Field of a few Oe. Field pulses of increasing 

magnitude were applied at an angie to the small aligning 

tield until the particle was seen to rotate through 1800 .  

which indicated that its moment had been switched. 

With the pulsed field in the opposite direction to the 

aligning field, switching fields were measured for an en-

semble of 50 isolated particles to generate an SFD for a 

non-interacting ensemble of particles. With such a small 

number of particles. the histogram was fairly coarse and so  

it was assumed that the distribution for a large sample 

could be represented by a Gaussian curve titted to the data. 

The measured histogram for 50 metal pantcles and a 

Gaussian curve titted SFD are shown in Fig. I. 

The angular variation of switching for individuai parti-

cles was determined by varvng the angle between the 

pulsed field and the aligning tield. The measured data can 

be represented by 

14=H0 + a lOhJd . 	 ( I) 

where a and 

I, 

 are cun'e Fitting parameters. H and H, 

are the switching fields at angles & and 0 respectively. 

Typical measured data for a metal particle and a curve fit 

are presented in Fig. 2. 
The easy axis distributions (in plane and out of plane) 

were measured for a recording tape or hand spread using a 

biaxial vibrating sample magnetometer 121. For an in-plane 

H Gaasaiia 
6 Mtuwd dali 

700 	00 	100 	1300 	im 

Field (Oe) 

Fig. I. Switching Field distribution for an ensemble of isolated 
Corresponding author. 	 metal particles. 
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Fig. 2. Switching tield as a function of uncle for an isolated metal 
particle. Fur the curve lit H,, = 8846. a = 10.1 and b = 1.0288. 

determination, the sample was magnetically saturated at an 

angle H to the sample orientation axis of the system. The 

remanent magnetisation was then measured in the applied 

rield direction and onhoonal to it. The sample was (hen 

rotated through a small angle (86) and again saturated. 

The change in remanence (treated as a vector) was then 

directly proportional to the particle moments with easy 

axes within an angle 86 at right angles to the field 
direction (Nr/2 — H I to the orientation axis). The proce-

dure was repeated over a range — /2 C 6< n/2 to 

obtain the in plane easy axis distribution. The measure-

ments were repeated out of plane. correcting for demag-

netisation effects during the measurement using a tech-

nique similar to that described by Bernards and Cramer (31. 
By numerically combining the Gaussian Fitted SFD for 

an ensemble or particles and the angular variation of 

witching field with angle, both derived from the single 

particle measurements, with the measured easy axis distri-

bution or the (ape or hand spread. it was possible in 

cenerate SFDs anu remanence curves br an assembly of 

FeO — 	• -Fc.O panjd 

I.-- 	.co:pinees 

I 	I 

Field (KOel 

Fig. 3. Switching held distribution with and without interactions 
in the three tape systems. 

particles matching the tape characteristics but with no 

interparticle interactions. These were compared with mea-

sured SFDs for the tapes and hand spreads obtained by 

differentiating the IRM curves. Fig. 3 shows the results 

obtained 11w the y.Fe.O tape. Cr0. hand spread and MP 

tape. It 5hould be noted that the effects of interactions in 

the -y-Fe.01 and the Cr0, systems caused the switching 

field peak to shift to lower ilelds. whereas interactions in 

the metal particle system shifted the peak to higher fields. 

Interaction effects were also investigated using the 

established Henkel plots (-1]. In all three cases. the plots 

showed a tendency to demagnetising. or negative. interac-

(ions which are typical of all acicular particulate systems. 

3. Discussion 

The behaviour of the 'y-Fe.0 3  tape and Cr0, hand 

spread is in line with the findings of Knowles (5) and is 

consistent with the l-lenkel plots which indicated demag-

netisinti or negative interactions. These can be described 
by a mean field approximation which gives a shift in 

coercivity. and hence in the SFD. where the coercivity is 

related to packing by (61 

H(p)H0 (l —p). 	 (2) 

where the coercivity H(p) of a particulate system is 

directly dependent upon the packing fraction (p) of the 

particles within the system, and H,, corresponds to p = 0. 

The results for the metal particle system were very 

surpflsin2 and were contrary to a mean Field approxima-

tion, since the effect of interactions was to shift the SFD to 

higher field values. This indicates interactions which op-

pose demagnetisation Epositive interactions), which is con-

trarv to the Henkel plot for this tape and the Findings of 

other workers [7] for MP tapes. Thus, at a microscopic 

level, local interparticle interactions appear to enhance the 

Switching field and dominate the behaviour OF individual 
particles. However, at a macroscopic level. the behaviour 

is still predominantly that of a system in which interactions 

are demagnetising. These findings appear to be contradic-

tory. 
We have considered a number of possible explanations 

for this contradiction. Generally these would introduce a 

shift in the wrong direction and enhance the negative 

interaction etfects. One possibility which must be consid-

ered is that the measured single particles were not repre-

sentative of the distribution in the tape. or were damaged 

during removal and subsequent dispersion. The latter is 

unlikely since particles were removed by dissolving the 

binder system and dispersed using an ultrasonic bath. We 

do not believe that this process could be responsible for 

breaking or damaging particles. However, the experiment 

is selective' since many agglomerates were observed but 

ignored in the measurements, which can only be applied to 

single domain particles in the dispersion identified by their 

mode of reversal (rotation through 180 ° ). There is a possi- 
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h:lutv. albeit unlikely. that the particles which form au-

ilomerates are different than those which remain isolated. 

Any multidomain particles will also be icznoreti in the 

measurements. 

An alternative explanation for this contradiction may be 

found in a modelling study of Lyberatos and Wohlfarth 181. 
Chains of particles were introduced into a particulate 

wstem. This had the effect of increasing the coercivity. 

However. Henkel plots showed that interactions between 

adjacent chains dominated and exhibited an overall demag-

netising behaviour. Only if the system was very dilute did 

the interactions between particles in the chains start to 

dominate and produce positive interactions. We therefore 

'uggest that in the metal particle s y stem studied, there may 

be a very strong local alignment of particles which has the 

effect or increasing the system coercivity. whilst not affect-

ing the ceneral negative interactions characteristic of all 

acicular particle media. This investigation is continuing. 

4. Conclusions 

Interaction effects in recording media have been inves. 

tigated by comparing single particle properties and bulk  

media measurements. Different interaction effects have 

been found in the three systems studied. For the y-Fe.O 

audio tape and the experimental Cr0, hand spread, inter-

actions were consistent with a mean tield approach. How-

ever. for the metal particle system the interactions denved 

from single particle measurements were in the opposite 

sense to those indicated by Henkel plots. This suggests that 

(he metal particle tape contained strong local alignment 

which enhanced the coercivity without effecting the over-

all demagnetising behaviour of the interactions. 
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Angular Dependence of Magnetization Reversal in y-Fe203 Single 
Particles: an Experimental and Modelling Study. 
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.4bsrracs-The switching field for isolated Fe,O, magnetic 
particles has been investigated as a (unction of the applied (kid 
angle both experimentally and numerically. MIa'omagnetic 
simulations for a typical measured particle with cubic 
crystalline directions of <tOO' and <110, with respect to Its 
long axis were compared directly with experimental results. At 
large applied Geld angle, the agreement between experimental 
results and numerical simulations was poor. However, at the 
smaller applied Geld angles the simulations gave reasonable 
agreement with the experimental results, 

I. fr(rRooticnon 

The switching field as a function of angle has been 

investigated for individual y-Fe,O, particles removed from 
commercial audio recording taoe. Results have been 

compared with those of a microtnagnetic simulation of the 
particle incorporating typical parameters, such as length and 
aspect ratio, as measured by electron mieroscopy and 

magnetic propertIes of y-Fe,O, particles published in the 
literature. The simulations also incorporated a degree of 

surface irregularity to give a more realistic representation of 
a particle. 

IL E, PEW,ecru.. MEASIJRE.tncfl 

The switchine held as a function of the applied field angle 

of an isolated yFe 20, particle was investigated using the 
cechnicue deveiooed by Knowles (lJ and described in more 
detail elsewhere i2]. Particles were removed from audio tape 
using appropriate solvents and dispersed in a viscous resin. 

The dispersion was placed in a mtcro.slide tube and mounted 
on a modified microscope table fitted with pulsed magnetic 
field coils. A small dc field generated by permanent magnets 
was used to align the particles, which were then subjected to 

a magnetic held pulse of increasing amplitude until the 
moment of a particle was switched, after which it was 
observed to rotate slowly back to its original moment 
orientation in the small aligning field. The process was 
repeated for different directions of the pulse field so that 

switching field as a function of angle (e) could be 
determined. Typical results for two particles 'A' and 'B'. 
together with numerical results. are shown in Fig. I. 

To establish the typicality of a particle, its switching field 
was compared with other  particles by measuring switching at 
e_00 for an ensemble of 50 aligned particles. A histogram of 

this ensemble is shown in Fig. 2 and the positions of 
particles. 'A' and 'B' are indicated. 
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Per a ccmpar:son cetween exoerimental and numertcaj 

results. it :5 necssarv to know me onfl!cai characteristics of 

the particles :nvestigated. These ciaracteristics were 

eterminea usine Scanning Electron Microscoty LS.E.M.). 

images oocaineo for samples of the y-Fe,O, particles were 

analysed for particle lengin ama aspect ratio, a histogram of 

wnich is oresenreo in Fig. i. From uiis analysis a ryptcai 

particle was dcn:ifled as having an aspect ratio of 6:1 anu a 

length of O.óum. The S.E.M. images were of insufficient 
clarity to identify oer features such as surface irregularities. 

üì. Cossnrrr MODEL 

A numerical mbeel was developed to simulate the typical 

particle with otmensions Zetermined by S.E.M. and 

theoretical bulk magnetic properties of ?-Ee,O,. The model 

represents the particle as a single crystal with an aspect ratio 
016:! by an array of ixSxJO cuooios in a cubic lattice. For a 

more realistic mxci the lattice had taocreo ends and an 

irregular surface formed by allowing the outside of external 

cubeids 10 be expanoed/cont.racteo by an amount chosen from 

an overall normal distribution. An arbitrary value of 10% of 

the cuid's original Width was chosen as the standard 

deviation for the normal distribution. An example of a 

typical mcdel lattice with the same degree of surface 

irregularity is inoicated in Fig. 4. 

- 

ire  

	

- 	 Ldrv 
Here  

where n.mt is the number or nearest ne:ghbours of cubed 

t( t  is the saturation magnetization. i is the a.nisotroo 

constant and H, = is the anasotrcy field. The 

parameter C' ii the inter-cubeid exchange ccnstant defined 

by 

	

C . 

	 (4) 

where .A is the effective energy exchange constant and a is 

inter-cuboid separation. The exchange constant C is uniform 
within the bulk of the particle but varies at its sunace. This is 

a conseouence of the surface irregularity varying Inc position 

of the point cipole moment ama thus cnanging the sepratlor. 

between point dipoles, parameter a. 

The cubic a.nisoo'opy energy br a cubotd is given by 

	

d(K(31:M: 	- 

(4) 

The reduced effective field at a cuboid I is determined by 

normadising use effective fleld by use amsoo'ooy field 

it- - 

fij. & C ~boiri rn.ci 

The effective field K:r, at the centre of each cubcid was 

deterrninea b:. summing Lie ir.aividual contributions 

(magnetostazic -c , e.tchange tr  . ubic anasotropy 

J ,., and applied field ii 

fPF 	 rxc 	•l! 	 (I) 

The magne:osiat:c field at the cent.-e of a given cuid I 

was calculated, assuming a olpole approximation using 

(2) 

wnere V is the Yciume of cubeid LV is its magnetization 

and F. is Inc posit:cn vector from i to j. me excnang: tield 

was determined by 

The model used a 2acobi :echrdou: iscus3ed by Deli: 

Tot-re ci ci. 01 to oeiermtne the equilibrium raagnetizat:cn 

state for each cuid Within the model. The oiagnetizat:cn 

state for a cuboid was calculated using a unge-?utta routine 

to integrate the reduced Landau-Lifshita ecuauon (4J 

. 	 . 	 . 	 . 	 - 

'—'tin 1  X5
-

e,cC.Th X(flt <her,; 	iL2 ....... 4. (6) 
Jr 

The reduced damping constant a was chosen as 1.0 ama 

he Runge-Kutta step SiZe was set a: 0.01 fcr all the 

simulations cerformec. The minimisatton at a field step 

within the rr.odel was identified at tnt point wflere no 

moments rotated by more than 0 .01 0.  Calculations earned 

out for Lie typical y-FeO, particle were similar to those c: 

Schabes a at. 151 and Yam er c/. (6). The model parameters 

were: Mj-340emwcm 2: iC,--4.6xlO'erg/cm 3: the cubic 

crystalline direction was <110> with respect to the long axis 

of the particle: and A'—SxlO"ergicrn. Similar micromagnetic 

simulations were performed with the cubic crystalline 

aaasotroov in the dUO> direction with respect to inc particle 

long axis. Results of the simulations are sho'ii together with 

experimentally measured results in Fig. I. An example of the 
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coercive state for the mood with an applied field direction of 
i o  with a Cunic cr5talline direction of <100> is preserned in 

Fig. 5. The state indicates a typical reversal mechanism 

found in this study. This mecaanism is characteristic of a 
vortex state reversal process, as described by Schabes er al. 
171. In this example, the reversal process is initiated at the 
particle's eno. layer I. and proceeds to sweep through the 
particle. indicatea at layers 1417. 

Fig, 5. Coerave sug 'or 1 aopdaj field dj,ta, will, <ICC, cubic c'vuaAIirc 

(V. Discussion 

For aligned particles 8-0°). numerical simulations of 
particles consisting of cuboids with cubic crystalthie axes in 
the <100> and <Ito> directions are consistent with the 
experimentally measured switching field. As a function of 
the applied angle, the measured switching field 
characteristics are marginally more consistent with those 
modelled when the cubic crystalline axis was in the <100> 

direction rather than in the <110> direction. Real )'Fe,Oj 
particles are likely to have predominatel y  <110> cubic 
crystalline axis with respect to the particle's long axis (8). 

The reversal mechanism as a function of the applied field 
angle has been investigated. As the applied field direction 
increases past 200  for both <110, and cl cubic 
crystalline directions, the reversal mechanism bues 

increasingly coherent. The crossover from an incoha'ast to a 
coherent reversal occurs through the transfaination of the 

vortex state. As the applied field antic increases the vortex 
enlarges until a point is reached 'there the vertex state can 
no longer be supported and coherent reversal is initiated. In 

the coherent reversal regime. the mccel predicts a swttthing 
field which is consistent with a Stoner Wohlfarth pastacle (9J. 

Experimental measurements indicate a much larger 
switching field at angles approaching 0, Mmat. these 
particles are likely to have bulk crystalline inspaions 

which may act as pinning sites and enhance the particle 
switching fleld. This would appear to have a mat diwni,w,i 
effect on the coheant reversal. 

V. Conctusions 

The switching field of y-Fe,O, particles has been measured 

experimentally as a function of the applied field angle. The 
reversal mechanism of these particles has been simulated by 
a micromagnetic model. The results from the simulations 

gave a reasonable agreement with the experimental results 
for small applied field angles. However; as larger angles of 
the applied field the agreement between the numerical and 

experimental results became p.  It is believed that this is a 

comequence of assumptions and simplificatbons within the 
model, particularly the absence of bulk crystal iinpe*ctions 
and the effect of an oversimplified particle shape. Further 
improvements to the model could include a representation of 
bulk imperfections by a disuibution of cubic crystalline 

directions around the <110' direction together with a 

disthbution 01 the magnitudes of the aiusoaupy constant 
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