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Abstract 

Non-steroidal anti- inflammatory drugs (NSAIDs) have been in use for over 100 years 

to treat pain, exerting their analgesic effect by inhibiting prostaglandin (PG) synthesis 

via the COX pathway. Some of the NSAIDs have adverse side effects including 

ulceration of the stomach and cardiovascular events which are associated with bleeding. 

Search is still going on to find a safe NSAID. Two new coxib NSAIDs, namely 

celecoxib and etoricoxib have been developed and they exert marked beneficial effects 

in reducing pain in humans and other small animals with little or no side effects. No 

such study has been done on horses to see if they can tolerate the drug as an analgesic 

pain killer. This study was designed to investigate the effects of the two coxib NSAIDs, 

celecoxib and etoricoxib in six retired race horses to determine any adverse side effects 

of the drugs, the time course changes in their metabolism and elimination once 

administered orally in known physiological doses and the metabolites produced by each 

drug over time. The study employed well established clinical and biochemical 

techniques to measure blood-borne parameters and the metabolism of each drug. The 

results show that either etoricoxib or celecoxib had no adverse side effects on blood 

borne parameters and the stomach of the horses. Pharmacokinetic study following oral 

administration of 2 mg/kg b wt of either celecoxib or etoricoxib to the six race horses 

showed a Cmax of 1.15 ± 0.3 µg/ml, tmax, to be 4.09 ± 1.60 hr and a terminal half- life of 

15.52 ± 1.99hr for celecoxib and  a Cmax of  1.0± 0.09 µg/ml, tmax of 0.79 ± 0.1 hr and, 

terminal half- life of 11.51 ± 1.56 hr, respectively for etoricoxib.  The results also show 

that each coxib is metabolized in the horse and both the parent drug and its metabolites 

are found in the urine, plasma and faeces. The results have also shown that even small 

traces of either drug or its metabolites can be measured in urine samples even 120 hours 

following oral administration. The main metabolites found in plasma, urine and faeces 

are hydroxyl celecoxib and carboxycelecoxib when celecoxib was administered orally 

to the 6 retired race horses. Similarly, hydroxymethyletoricoxib, carboxylic etoricoxib, 

hydroxymethyl-1-N-oxide metabolite of etoricoxib and hydroxymethyletoricoxib 

glucuronide were also found in plasma, urine and faeces following oral administration 

etoricoxib .to the animals. The results for either horse haeptocytes or camel liver show 

to some extend similar metabolites. In conclusion, the results show that both drugs have 

no adverse side effects in the horse and their metabolites are completely eliminated 

within 120 hours following oral administration. 
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GENERAL INTRODUCTION 
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1.1. Historical Perspective of Horse Racing: 

Horse racing is one of mankind‟s most ancient sports and it is often referred to as the 

sport of Kings. It was the prehistoric nomadic tribes of Central Asia who domesticated 

the horse around 4500 BC. Horse racing has been a sport in the UK and the rest of the 

world and this can be traced to the 12
th

 century, when the English Knights brought back 

swift Arabian horses on their  return from their crusades (Dowie, 1977).  

Horse racing became a professional sport during the reign of Queen Anne (1702-1714). 

England became the centre of horse racing, offering large purses, and thereby attracting 

the best racehorses (Gardner, 2006). These purses made breeding and training of horses 

more profitable. The sport expanded so rapidly, that it needed a Central Governing 

Authority, to regulate race meetings, racecourses and horse breeding. The Governing 

body was set-up in 1750, and it was called the Jockey Club, which exercised complete 

control over English racing. Modern day racing has flourished because of legalized 

gambling. This has, however, brought in many crooked ways of winning the purse by 

altering the performances of horses (Berschneider & Richter, 1980). 

Horses are supposed to win a race because of their natural speed and endurance, but 

“doping” – (employment of an illegal substance to enhance the horse‟s natural 

capabilities) has become the shortcut to increase the chances of a horse to win the race 

or purse. The most commonly abused substances in horse racing are the anabolic 

steroids, narcotic analgesics like opium and morphine, erythropoietin (EPO), caffeine, 

butazolidin and the common baking soda (sodium bicarbonate).  All these and hundreds 

of other substances (including substances not on the prohibited list of the Association of 

Racing Commissioners International) may not be used on horses that are racing (ARCI 

list of prohibited substances 2009). 



 

[3] 

 

Routine dope testing in Britain started in 1963, with the introduction of paper and thin 

layer chromatography (TLC) and later in 1970s by gas chromatography (GC) and ultra 

violet spectrophotometry (UV-Vis) (Clarke & Moss, 1976). With the advancement of 

technology, mass spectrometers have become available which helps the racing chemist 

in identifying trace amounts of prohibited substances present in blood, urine, faeces and 

hair. 

1.2. Inflammation and drug treatment 

Racing of horses involves constant rigorous exercise and training of the animals leading 

to bone and joint pain and fatigue. The demands of athletic activity take their toll on the 

body of the horse, particularly the joints, tendons, bones and muscles leading to the 

release of endogenous intercellular mediators and these in turn cause inflammation 

(Paulekas & Haussler, 2009;Jenkins, 1987;Driessen et al., 2010).   

Pain is a common and distressing phenomenon (Merskey, 1986). The International 

Association for the study of pain has defined pain as “an unpleasant sensory and 

emotional experience associated with either actual or potential tissue damage, or 

described in terms of such damage” (Bonica JJ, 1979). Pain, if not treated, will lead to 

psychological distress in both humans and animals (Cambridge et al., 2000). It is often 

thought that arthritis is a human affliction, but it is very common in horses, which ends 

its racing career leading ultimately to lameness and subsequently, to the death of the 

animal.  

1.3. Treatment of pain 

The assessment and alleviation of pain in animals is an important role of the  Veterinary 

Surgeon in the field of Veterinary Medicine (E.J.Love, 2009). Large animals like horses 

cannot communicate verbally, thus in Veterinary Medicine, the Veterinarian often relies 
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on physiological indices and behavioural and locomotor changes of the animals 

(Flecknell, 2008). The behavior of a horse and interactions can be unique to the type of 

pain the animal is experiencing. A horse‟s reaction to pain is dependent upon its 

personality and the degree of pain. The most popular medications used in such 

situations are the nonsteroidal anti-inflammatory drugs also known by the acronym 

NSAIDs. Various types of analgesics such as local anaesthetics, opiods, N-Methyl D-

Aspartate (NMDA) receptor antagonists, non-steroidal anti-inflammatory drugs 

(NSAIDs) like aspirin, ibuprofen etc., have been found to be effective in controlling 

pain, of which opiods and NSAIDs are the main analgesics in animal practice (Slingsby 

et al., 2006;Vane & Botting, 2000). 

The well-known class of NSAID medications is aspirin, or acetylsalicylic acid, first 

synthesized in 1899. More than 3,000 years ago extracts of myrtle plant was used to 

treat pain and inflammation, which was later found to contain salicylic acid 

(Hammerschmidt, 1998). Hippocrates, the father of modern medicine, used the bark of 

willow, which also contains salicylic acid to relieve joint pain (Limmroth et al., 1999). 

Felix Hoffman (1868–1946), a scientist employed by the Pharmaceutical Company 

Bayer, modified the salicylic acid extracted from plant sources to produce aspirin, 

which became the largest selling pharmaceutical product in history (Vonkeman, 2008).  

1.4. Different Chemical Groups of NSAIDs 

NSAIDs are divided into six different classes based on their chemical structures. 

Though they are different in structure, they nevertheless, share a common therapeutic 

profile and mechanism of action (Vane & Botting, 2003). The major classes are shown  

in table 1.1. Of these classes of drugs, aspirin belong to the salicylic group constituting 

to the oldest NSAID that has been in the market for over 100 years. The most recent 

ones are specific inhibitors of COX-2. 
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Table 1.1: Different classes of NSAIDs with examples . 

 

Classes Examples 

Acetyl salicylic acid Aspirin 

Acetic acid 
Diclofenac, indomethacin,  ketorolac, sulindac  and 

tolmetin 

Fenamates Meclofenamate and mefenamic acid 

Oxicam Piroxicam,  meloxicam, tenoxicam and lornoxicam 

Propionic acid Ibuprofen, Ketoprofen and  naproxen 

Coxib 
Celecoxib,  rofecoxib,  valdecoxib,  parecoxib and 

etoricoxib 

 

1.5. Mechanism of Action of NSAIDs 

Non-steroidal anti-inflammatory drugs have been used in various forms and for various 

ailments for more than 3,500 years without knowing the mechanism of action of these 

drugs (Vane, 2000). Later, it was revealed that all these chemically varied drugs reduce 

the formation of prostaglandins (see Figure.1.1). The anti-inflammatory activity of 

NSAIDs is based on the inhibition of prostaglandin synthesis. NSAIDs directly act on 

prostaglandin synthesis to inhibit or reduce its synthesis and subsequent production 

(Moncada et al., 1975). 

Prostaglandins are powerful signaling lipid (Warden, 2005) agents in the human body 

(Van der Bijl & Van der Bul, 2003). The two-dozen or so members of this family of 

small lipid messengers carry out many important physiological functions including 

vasodilation, vasoconstriction, acid secretion, broncho-constriction, inflammation, 

uterine contractions, pain perception, fever and several other functions (Kiefer & 

Dannhardt, 2004). Prostaglandins are involved in bringing about and maintaining the 
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inflammatory processes by increasing vascular permeability and amplifying the effects 

of other inflammatory mediators such as kinins, serotonin and histamine (Vane & 

Botting, 1998b). Therefore, the increased blood flow generates the heat and redness of 

inflammation. Hence, controlling the formation of some prostaglandins can reduce the 

swelling, heat and the pain of inflammation (Claria, 2003). However, not all 

prostaglandins are harmful for the human body (Gnllner et al., 1980). Some of them are 

important in protecting the stomach lining, promoting the clotting of blood, regulating 

salt and fluid balance and maintaining blood flow to the kidneys.  Table 1.2 shows the 

different classes of prostaglandins (PGs) and their physiological roles in the different 

organs and tissues of the body. 

Goldblatt and Von Euler in the early 1930s independently discovered a fatty acid in 

human seminal vesicle having potent vasoactive properties in rabbit and guinea pigs 

(Sun et al., 1977) . This compound was named prostaglandin (PG) because it originated 

from the prostate gland (Voneuler, 1983). In 1964 the structures of prostaglandins E 

(PGE) and prostaglandin F (PGF) were proposed and it was demonstrated that they 

were produced from the essential fatty acid, arachidonic acid (Bergstroem et al., 1964). 

Around 1972, Piper and Vane demonstrated that NSAIDs prevented prostaglandin 

production and the mechanism of action of NSAIDs was proposed. It was then 

demonstrated that NSAIDs work by inhibiting the cyclooxygenase enzymes (COX) or 

prostaglandin G/H synthase (Ferreira et al., 1973; Vigdahl & Tukey, 1977). This study 

by Piper and Vane in 1972 led to the role of aspirin in inducing hyperacid secretion in 

the stomach and subsequent ulcer formation in the stomach. In 1982 Sir John Vane was 

awarded the Nobel prize, sharing the recognition with Sune K. Bergström and Bengt I. 

Samuelsson, for showing that aspirin works by blocking prostaglandin synthesis and for 

discovering prostacyclin and its biological significance (Harding, 2004). 
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Figure 1.1: The arachidonic acid cascade. The fate of arachidonic acid in cells as it is 

metabolized by lipoxygenases to HETEs or by cyclooxygenases to form prostaglandin 

H2 via the short-lived hydroperoxyl-containing intermediate prostaglandin G2. (Taken 

from Vane et al, 2002). 
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The process of COX pathway begins with arachidonic acid, an unsaturated 20-carbon 

fatty acid, found in the cell membranes as a phospholipid ester (see Figure. 1.1). The 

metabolism of arachidonic acid diverges down two main pathways, the cyclooxygenase 

(COX) and the lipooxygenase (LOX) pathways (Claria, 2003). Both pathways are 

important to the inflammatory process. Lipooxygenases, like cyclooxygenases, are 

enzymes that catalyze the stereo specific insertion of molecular oxygen into various 

positions in arachidonic acid and acts as the key enzyme in the leukotriene pathway 

(Fiorucci et al., 2003). However, the action of cyclooxygenase pathway is of principal 

interest in understanding the action of NSAIDs.  

NSAIDs exert their therapeutic action by inhibition of cyclooxygenase or prostaglandin 

endoperoxidase synthase (PGs). The key regulatory step is the conversion of 

arachidonic acid to PGG2, which is then reduced to an unstable endoperoxidase 

intermediate, PGH2 (Samuelsson et al., 2007). Specific PG synthases metabolize PGH2 

to at least five structurally-related bioactive lipid molecules which include thromboxane 

A2 (TxA2) in platelets (platelet activation and vasoconstriction), PGE2, PGD2 and 

prostacyclin (PGI2) in the kidney (salt and water excretion), PGE2 in joints 

(inflammation and pain), PGI2 in endothelial cells (platelet inhibition and 

vasodilatation) and PGE2 in the central nervous system (pain and fever) (Abramovitz & 

Metters, 1998; Smith, 2000; FitzGerald & Patrono, 2001). 

1.6.Cyclooxygenase isoform,  structure and function 

Figure 1.1 shows the arachidonic acid cascade pathway and table 1.3 shows the 

properties of COX-1 and COX-2. The pathway involves the synthesis of the different 

prostaglandins from arachidonic acid and employing a number of enzymes including 

PG synthase. Though the involvement of the COX pathway has been reported since the 
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Table 1.2: Prostaglandins and their physiological roles in major organ systems and tissues in 

the body.  

 

Systems Mediator(s) 

Major Site(s) of 

Synthesis Primary Effect(s) 

Cardiovascular Prostacyclin Endothelial cells Vasodilatation 

 Thromboxane Platelets Vasoconstriction 

Renal Prostacyclin Renal cortex Vasodilatation 

 PGE2 Renal medulla Salt and water excretion 

Gastrointestinal PGE2 Gastric mucosa Cytoprotection 

Hematologic Prostacyclin Endothelial cells Platelet de-aggregation 

 Thromboxane Platelets Platelet aggregation 

Respiratory Prostacyclin Endothelial cells Vasodilatation 

Musculoskeletal PGE2 Osteoblasts 
Bone resorption ,bone 

formation 

Reproductive PGE2 Seminal vesicles 
Erection, ejaculation, sperm 

transport 

 
PGE2, PGF2 

Fetal membranes 

Uterus 

Parturition/labor, menstruation, 

fertilization, ovulation 

Neurologic PGE2 Unknown Fever, hyperalgesia 
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early 70‟s, (Miyamoto et al., 1976), the detail concept of the COX pathway evolved 

only in the early 90‟s (Merlie et al., 1988; Yokoyama et al., 1988) which indicates that 

the membrane bound enzyme, cyclooxygenase has at least two types of isoforms, 

cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). These isoforms are 

encoded by separate genes and they are likely to have different cellular functions 

(Sanghi & MacLaughlin 2006). The genes for COX-1 and COX-2 are located on human 

chromosomes 9 and 1, respectively (Wu & Liou, 2005).  

Table 1.3. Properties of COX-1 and COX-2 

                                       COX-1                                        COX-2   

Gene 22 kb, chromosome 9 

mRNA 2.8 kb 

 8 kb, chromosome 1 

  mRNA 4.3 (unstable) 

 

Expression 

 

Constitutive 

 

Inducible by multiple compounds 

including growth factors, LPS and 

mitogens 

 

Location 

 

Platelets 

Stomach 

Kidney 

 

Macrophages 

Leukocytes 

Fibroblasts, endothelium, brain and 

ovaries 

 

Function 

 

Housekeeping 

 

Inflammatory 

 

 

Structurally, COX-1 and COX-2 are haeme containing enzymes with COX-1 having 

602 amino acids and COX-2 with 604 amino acids and consisting of a long narrow 

channel with a hairpin bend at the end. Each class of cyclooxygenase lends itself to 

produce different types of prostaglandins (Meade et al., 1993).  

Significant differences exist in the subcellular location of COX-1 and COX-2. COX-1 is 

equally distributed in the endoplasmic reticulum (ER) and nuclear envelope (NE), while 

COX-2 is twice as concentrated in nuclear envelope as in the endoplasmic reticulum 

(Morita et al., 1995). The structural difference between COX-1 and COX-2 has been  
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Figure 1.2: Structure of COX-1 and COX-2 (Kurumbail et al., 1996). 

 

 

Figure 1.3: Schematic representation of the inhibition of COX-1 by a nonselective 

NSAID (central black figure). The entrance channel to COX-1 is blocked by the 

NSAID. Binding and transformation of arachidonic acid within COX-1 is prevented.  

 

Middle: inhibition of COX-2 by a nonselective NSAID (central black figure).  

Right: inhibition of COX-2 by COX-2 selective NSAID. The COX-2 side pocket allows 

specific binding of the COX-2 selective NSAID‟s rigid side extension. The entrance 

channel to COX-2 is blocked. The bulkier COX-2-selective NSAID will not fit into the 

narrower COX-1 entrance channel, allowing uninhibited access of arachidonic acid into 

COX-1 (Taken from Hawkey. 1999).  
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shown schematically in figure 1.2. Figure 1.3 shows the schematic representation of the 

inhibition of COX-1 by nonselective NSAID and selective inhibition of COX-2 by 

COX-2 selective NSAIDs. 

Recently, COX-3, derived from the COX-1 gene by splicing the COX-1 mRNA has 

been found to be sensitive to acetaminophen (Simmons et al., 2005). Acetaminophen, 

unlike other NSAIDs, is known to exhibit weak inhibition of both COX-1 and COX-2 

enzymes at therapeutic concentrations. They have been found to inhibit COX-3, the 

brain isoform of COX (Botting & Ayoub, 2005). The cells, in order to synthesize 

mature mRNA to encode COX- 1 protein, remove a particular stretch of sequence, 

intron 1, and this mRNA intron 1 is included in COX-3. COX-1 has 10 introns, 

including intron 1, COX-2 has 9 and COX-3 has the additional intron 1 of COX-1 as an 

exon. COX-3 is about 65 kDa in molecular weight (Chandrasekharan et al., 2002).  

1.7. Cyclooxygenase-1: the constitutive isoform 

The isoform COX-1 is expressed constitutively in many tissues . This in turn carries out 

some homeostatic functions in the body by the action of physiological stimuli, thereby 

converting arachidonic acid into prostaglandins with specific „housekeeping‟ functions 

(Seibert et al., 1997). These prostaglandins in turn stimulate normal physiological 

functions including stomach mucus production, kidney water excretion, platelet 

formation, macrophage differentiation and others (Vane et al., 1998). In humans and 

most other animal species, the cytoprotective prostaglandins in the stomach are 

synthesized by COX-1. This cytoprotective action is due to vasodilatation, to enhance 

mucosal blood flow (Kargman et al., 1996).  

In a study Miyamoto et al., (1976) used isoelectric focusing to identify and purify 

cyclooxygenase-1 from bovine and sheep vesicular glands. They found it to be a  



 

[13] 

 

membrane bound homo-dimer of 70 kDa. This protein, together with free or protein 

bound haeme, contained both the cyclooxygenase and peroxidase activity to form, 

PGG2 and PGH2. The primary structure of cyclooxygenase-1 was later determined from 

the complementary DNA sequence of 2.7 kilo bases (William L.Smith, 2000). 

Inhibition of COX-1 would therefore interrupt some normal physiological functions 

(Shi & Klotz, 2008).  

1.8. Cyclooxygenase-2: the inducible form 

In contrast to COX-1, the COX-2 enzyme is mainly used as an inducible isoform of 

cyclooxygenase and it is produced primarily at sites of inflammation (Birbara et al., 

2003). COX-2 is known to be the dominant isoenzyme in inflamed tissues where it is 

induced by a number of cytokines, including interleukin1, tumour necrosis factor alpha 

(TNF-α), bacterial toxins etc, with the apparent exclusive role of producing pro-

inflammatory prostaglandins (Scher & Pillinger, 2009). Cells that express COX-2 in 

response to mitogens are endothelial cells, smooth muscle cells, chondrocytes, 

fibroblast, monocytes, macrophages and synovial cells (Crofford, 2000). Initially, it was 

believed that this was due to an increase in supply of arachidonic acid, but in 1990, it 

was demonstrated that the increase in prostaglandin formation following exposure of 

isolated cells in culture to inflammatory stimuli (Smith & Marnett, 1991) was due to an 

increase in cyclooxygenase enzyme expression (Fu et al., 1990). Inhibition of this 

isoform leads to the control of pain and inflammation (Noble et al., 2000). It is 

particularly interesting and awakening that the identification of cyclooxygenase-2 was, 

in many respects, a triumph of molecular biological studies (Seibert & Masferrer, 1994). 

The regulation of prostaglandin biosynthesis by COX-1 and COX-2 (known as the 

general COX concept) is shown schematically in figure 1.4. The figure shows how the 

different steps in the synthesis of the different PGs and thromboxane from arachidonic 
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acid employing a number of enzyme precursors including PGG2 and PGH2. To combat 

pain and inflammation, the COX-2 inhibition by NSAIDs is desirable and not the  

COX-1. Non-specific inhibition of COX-1 and COX-2 can lead to harmful side effects 

of the NSAIDs (Willoughby et al., 2000). 

There may be five different ways in which NSAIDs can inhibit COXs (Hawkey, 1999). 

These include  

i) Reversible competitive inhibition of both COX-1 and COX-2  

 (e.g. mefenamic acid, ibuprofen)  

   ii)   Irreversible acetylation of both COX 1 and COX 2 (e.g. aspirin)  

iii)  Slow the time dependent inhibition of both COX-1 and COX-2.  

iv)  Some NSAIDs like indomethacin, ibuprofen can cause conformational change at  

      the binding site of COX. 

v)   Specific inhibition of COX-2 (celecoxib, rofecoxib etc.).  

However, NSAIDs vary in their abilities to inhibit COX-1 and COX-2 at different 

concentrations and in different tissues (Hwang et al., 2004). Traditional NSAIDs 

 including high–dose aspirin are nonselective and can block both isoforms of COX. 

Their therapeutic efficacy depends on the degree of inhibition of the COX-2 mediated 

formation of PGE2, which causes inflammation of joints, fever and pain in the central 

nervous system (Laneuville et al., 1994). However, the inhibition of COX-1 mediated 

PGE2 formation in the gastric mucosa increases the risk of mucosal damage and 

gastrointestinal bleeding (John A Cairns, 2007). Figure 1.5. summarizes the structural 

evolution (precursors, intermediate products and the final NSAID) of some of the major 

classes of NSAIDs used to treat inflammation and pain in humans. The data shown in 

figure 1.5 also show the differences in the chemical structures of the NSAIDs. 
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Much effort has gone into developing nonsteroidal anti-inflammatory drugs (NSAIDs) 

that selectively inhibit COX-2 rather than COX-1. Thus, the rationale is not to affect the 

homeostasis functions of the prostanoids preferentially synthesized by COX-1, but in 

particular to reduce the gastro-intestinal bleeding caused by COX-1 inhibition (Raskin, 

1999). 

1.9. Some common NSAIDs used to treat horses 

The treatment and management of animals with pain, including osteoarthritis in horses 

and dogs involve both therapeutic and non-therapeutic measures (Otto & Short, 1998).  

A key consideration of non-therapeutic measure is the control of body weight in dogs. 

Present day Veterinary Clinicians recommend mild to moderate exercise to maintain 

joint motility in horses (Paulekas & Haussler, 2009). However, therapeutic intervention 

is also necessary (Lees et al., 1999). Figure 1.6 shows some commonly used NSAIDs in 

horses. The figure shows the chemical structure of each compound for comparison. 

NSAIDs are commonly used in Veterinary Medicine for the treatment of inflammation 

of musculoskeletal and other tissues (e.g. spondylitis, laminitis, mastitis), endotoxic 

shock and colic in the horse and for the control of pain, associated with either trauma or 

surgery (Stewart et al., 2008). These drugs may favourably influence the course and 

outcome of certain diseases and disorders. The ability of non-steroidal anti-

inflammatory drugs to suppress inflammation and subsequent tissue damage is 

important, since the inflammatory process may result in organ damage that renders the 

animal either unprofitable or useless for production (Kopcha & Ahl, 1989). 

Also, the suppression of pain, which causes distress to the animal is an important 

pharmacological property of NSAIDs (Driessen 2007). The chemical structures of some  
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commonly used NSAIDs are given in Figure 1.5. From the figure, it can be seen that 

aspirin had formed the prototype for the development of different analgesic and 

antipyretic drugs. 

Medications for the control of equine pain can be selected from NSAIDs, such as 

corticosteroids, opiods, α2-adrenergic agonists, anaesthetics and other CNS response 

altering agents (Short, 1995). Most NSAIDs have valuable therapeutic properties, and 

some have a great potential for toxicity. The toxic effects of NSAIDs, in particular, 

gastric ulceration, is well known in many species of animals (Martineau et al., 2009). 

Interestingly, equine toxicity seems relatively uncommon, provided the drug is  

administered at the recommended clinical dose (Lees & Higgins, 1985).  

In equine Veterinary Practice, pain management involves the administration of pain 

inhibitors to the horses (Alexander Valverde, 2005). Commonly used NSAIDs in horses 

are shown in figure 1.6. Multiple drug classes that can have an impact in transmission of 

pain in various points of the pain pathway can be used either solely or as a combination 

(Brunson & Majors, 1987). These medications block the enzymes released by the 

body‟s pathway for inflammation, thus reducing inflammation, redness and keeping the 

activity of the injured cells to a minimum (see Figure.1.4 on PGs synthesis).  

Development of a drug specific for a particular animal is tedious, expensive and time 

consuming and as a result, the drug developed for human use are being used in cattle 

camel, horses and many small animals (Grave et al., 1992). Most drug preparations 

intended for use in human have been reported as illicit substances in body fluids of 

horses at racecourses and at jumping events (Delbeke, 1995). 
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Fig.1.5: Chemical structures and evolution of major classes of NSAIDs prior to 

discovery of COX-2 (Taken from Marnett, 2009). 
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Previous studies have shown that 43% of all prescriptions in Veterinary Medicine are 

human drug preparations and about 19% of those prescriptions are disposed for horses 

(Delbeke et al., 1994). Drugs like flunixin meglumine, meclofenamic acid, naproxen, 

and phenylbutazone are approved for horses  and are frequently abused in the horse 

racing industry (Kopcha & Ahl, 1989). This introduction will now review the literature 

on the use of these different NSAIDs in horses and other animals. 

1.9.1. Phenylbutazone 

Of the medications for control of equine pain, the NSAIDs have fulfilled an important 

role in improving the comfort and well being of horses in training and racing. 

Phenylbutazone has been the drug of choice for treating musculoskeletal disorders since 

it was introduced to Veterinary Medicine in the 1950s (Kallings et al., 1999a). 

Phenylbutazone is an acidic, lipophilic non steroidal agent used extensively  to treat  

horse, since it has analgesic, anti-inflammatory and antipyretic properties (Watson et 

al., 2004). The metabolites identified to date are oxyphenbutazone and γ-

hydroxyphenylbutazone (Tobin et al., 1986). Phenylbutazone acts by inhibiting the 

cyclooxygenase enzyme system responsible for the synthesis of prostanoids such as 

PGE2.  It markedly reduces prostanoid-dependent swelling, oedema and hypersensitivity 

to pain from inflamed tissue. As a result, its main and principal use in horses is to 

resolve soft tissue inflammation. It is highly protein bound in the plasma with an 

elimination half-life of 5.5 hours (Lees et al., 1987). Phenylbutazone is given either 

orally or intravenously. It effectively relieves pain from inflammation of the 

musculoskeletal system (Mac Allister et al., 1993). It can alleviate lameness for several 

days following therapy, and it has been used to disguise lameness for the purpose of 

competitive racing (Coffman & Garner, 1972).  
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Phenylbutazone administered above a dose of 4.4 mg/kg twice daily has resulted in 

anorexia, neutropenia, hypoproteinaemia and eventually death in horses (Snow, 1981; 

Mackay et al., 1983). In blood, if its concentration is greater than 99%, then it is protein 

bound. It can also interact with other protein bound drugs like warfarin, phenytoin etc., 

resulting in toxicity. Gastrointestinal effects are the most important adverse effect of 

phenylbutazone therapy in horses (Jennifer L.Davis, 2009) .  

1.9.2. Flunixin 

Flunixin is probably the second most widely used NSAID in horses to treat pain and 

inflammation. It is commonly used as an anti-inflammatory drug for the management of 

colic, endotoxaemia and musculoskeletal disorders in the horse. Flunixin has a short 

half-life of 1.6-2.5 hours compared to phenylbutazone and peak plasma concentrations 

are reached within 30 minutes following oral administrations (Chay et al., 1982). 

Flunixin is used at a dose of 1.1 mg/kg and given once daily by oral or IV routes. In a 

study comparing postoperative analgesia of flunixin, phenylbutazone and carprofen 

Johnson et al., (1993) reported that flunixin had the longest duration of analgesic effect. 

Furthermore, Moses & Bertone., (2002) showed that the toxic effects of flunixin were 

found only when approximately five times the daily recommended dose of 1.1 mg/kg 

was administered and moreover, frequent intramuscular injections on several occasions 

could cause local tissue irritation and damage. 

The most common adverse effects associated with flunixin are vomiting, diarrhoea, 

lethargy and lack of appetite. Stomach ulcers and kidney impairment are possible with 

flunixin (MacAllister et al., 1993). Like other NSAIDs, flunixin is highly protein bound. 

In a study comparing flunixin with other analgesics, it was found that flunixin had the 

longest duration of analgesic effect of about 12.8 hours (Houdeshell & Hennessey, 

1977). 
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Figure 1.6: Chemical structures of some commonly used NSAIDs in horses to treat 

pain. 
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1.9.3. Naproxen 

Naproxen is approved by Federal Drug Administration (FDA) in the USA, as an oral 

granular preparation to be used in horses.  Naproxen is administered orally at a dose of 

10 mg/kg with a bioavailability in horse is about 50% (Mcdowell & Wickler, 1990). 

Elimination half-life for the parent drug and its metabolite is approximately 6 hours 

(Tobin, 1979). Naproxen is well tolerated and 3 times the recommended dose for 6 

weeks do not show any toxicity (Lee and Higgins 1985).  

1.9.4. Ketorolac 

Ketorolac has anti-inflammatory, analgesic and antipyretic properties and it has been 

used in humans with moderate to severe pain, including post operative and post partum 

pain. The anti-inflammatory effect of ketorolac appears to be caused mainly by 

inhibition of prostaglandin synthesis during inflammation (Litvak & Mcevoy, 1990). 

In humans, ketorolac is absorbed rapidly and completely after oral administration. The 

drug is highly protein bound (>99%). The total plasma clearance is approximately 0.03 

l/kg and the plasma elimination half-life is 5-6 hours. It is likely that either most or all 

of the drug-related materials circulating in plasma are in the form of ketorolac (>96%) 

and the only metabolite found is the pharmacologically inactive p-hydroxyketorolac. In 

human urine, about 90% of the administered dose is excreted in the form of ketorolac 

(60%), p-hydroxyketorolac (12%) and glucuronide conjugates (28%) (Mroszczak et al., 

1990). 
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1.9.5. Ketoprofen 

Ketoprofen is a propionic acid derivative available both in tablet and injection forms, 

and it is used widely in the treatment of equine colic and as an analgesic in pain (Longo 

et al., 1992). Ketoprofen exists as „R‟ and „S‟ enantiomers  having different elimination 

half lives, but is formulated as a racemic mixture (Jaussaud et al., 1993).  The 

recommended maximum dose is about 2.2 mg/kg body weight per day. It is rapidly 

absorbed and eliminated with mean serum concentration in horses are 1.58 ng/ml and 

1.56 ng/ml following IV and IM administrations and a half life of 2 – 2-5 hours (Brink 

et al., 1998).  

Ketoprofen undergoes hydroxylation to form hydroxyl ketoprofen in horses (Corveleyn 

et al., 1996). As with other NSAIDs, ketoprofen is metabolized in the liver and 

eliminated by renal excretion. Erosion or ulcers of the tongue and stomach has been 

noticed with ketoprofen administration. Some adverse effects of the drug include 

gastrointestinal tract (GI) up sets which are similar to those induced by other NSAIDs. 

Other side effects in animals include haepatopathies and renal disease  (MacAllister et 

al., 1993). Due to potential anti-platelet effects, care should be exercised using 

ketoprofen perioperatively (Adams, 2000)   

1.9.6. Carprofen 

Carprofen is a chiral non-steroidal anti-inflammatory drug marketed for the relief of 

pain and inflammation associated with osteoarthritis in horses (Armstrong et al., 1999). 

Like ketoprofen, carprofen exists as two enantiomers with a t1/2 of 18-22 hours. The 

mechanism of action of carprofen is not fully elucidated (Armstrong & Lees, 1999). 

However, Benton et al., (1997)  demonstrated that carprofen showed moderate 

inhibition both in vitro and in vivo studies exhibiting only minimal inhibition (Lees et 
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al., 1994a). Carprofen is usually administered either orally at a dose of 1.4 mg/kg or 

intravenously at 0.7 mg/kg.  

1.9.7. Tramadol 

Tramadol is a synthetic, centrally acting analgesic agent with 2 distinct, synergistic 

mechanisms of action, acting as both a weak opioid agonist and an inhibitor of 

monoamine neurotransmitter reuptake. It is structurally related to codeine and 

morphine. Tramadol is used clinically to treat moderate to severe pain in humans (Scott 

& Perry, 2000). Tramadol is extensively metabolized in humans in the liver, forming O-

desmethyl tramadol and N-desmethyl tramadol as metabolites. O-desmethyl tramadol is 

the major metabolite in humans, while in dogs it is relatively a minor metabolite (Wu et 

al., 2001).  

Intravenous administration of horses with a concentration of 2 mg/kg, showed the 

elimination half-life to be about 82 minutes, which was shorter than the 5.5 hours, 

reported in humans. Moreover, the drug is found to be completely absorbed in humans 

when given orally, while in horses, bioavailability is very low,  excluding oral 

administration (Shilo et al., 2008). 

1.9.8. Meloxicam 

Meloxicam is an enolic acid NSAID of the oxicam family  and is approved for use in 

animals in Europe, Canada and the United States (Moses & Bertone, 2002). Meloxicam 

is a long acting, highly potent anti-inflammatory drug used in the treatment of 

rheumatoid and osteoarthritis (Lees & Higgins, 1985). Meloxicam inhibits COX-2 in 

preference to COX-1 and show a greater gastrointestinal tolerance when compared to 

conventional NSAIDs (Prouse et al., 2005).  
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In human, meloxicam is extensively metabolized with less than 0.25% is excreted as the 

parent drug and it has a half-life of about 20 hours (Turck et al., 1997). Unlike in 

humans, meloxicam is not metabolized extensively by Phase 1 biotransformation in the 

horse. In horses and other animals the main pathway for meloxicam metabolism 

involves the kidneys where the drug and its two metabolites, hydroxyl meloxicam and 

carboxy meloxicam are excreted in urine, mainly un-conjugated (Dumasia & Bruce, 

2002;Dumasia & Bruce, 2002;Dumasia & Bruce, 2002;Little et al., 2007).  

1.9.9. Firocoxib 

Firocoxib is the only COX-2 inhibitor approved as a veterinary pharmaceutical drug for 

the pain management associated with osteoarthritis in horses and dogs. It provides 

therapeutic efficacy by inhibition of prostaglandin synthesis via selectively binding to 

the COX-2 isoenzyme (Mccann et al., 2004). Firocoxib is highly selective for COX-2 

and has little effect on COX-1 isoenzymes even when administered at higher 

concentrations (Letendre et al., 2008). It is marketed by MERIAL under the brand 

name „EQUIOXX‟.  

Firocoxib is not a cure for osteoarthritis, but it can help to control pain and 

inflammation associated with it, and by doing so it can improve the mobility of horses 

(Doucet et al., 2008). Kvaternick et al., (2007) studied the pharmacokinetics of 

firocoxib and established that firocoxib is well absorbed after oral administration, with 

bioavailability of 79%, elimination half life of 30 hours and Cmax of 75 ng/ml at 3.9 

hours. Firocoxib is mainly excreted through urine as an inactive metabolite namely 

descyclopropylmethylfirocoxib and as a glucuronide conjugate. Recently, Orsini et al., 

(2012) showed that firocoxib is a safe cyclooxygenase-2 specific NSAID that
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Figure 1.7: Chemical structure of coxib NSAIDS. 

http://upload.wikimedia.org/wikipedia/commons/7/7d/Firocoxib_structure.png


 

[27] 

 

 

can be used in horses for muscular pain and moreover, horses treated with firocoxib had 

significant improvement in lameness scores from baseline values.  

 1.10. New COX-2 Inhibitors    

Traditional NSAIDs prescribed to control pain and to treat inflammatory conditions 

such as osteoarthritis and rheumatoid arthritis produce their anti-inflammatory and 

analgesic effect by nonselective inhibition of the COX activity leading to pain relief and 

unwanted side effects. Selective inhibitors of cyclooxygenase-2 (COX-2) have been 

demonstrated to be clinically effective as anti-inflammatory and analgesic drugs with 

reduced gastrointestinal toxicity as compared to NSAIDs (Bombardier et al., 2000).  

During an inflammatory process, a dramatic increase in COX-2 level normally occurs 

leading to enhanced production of pro-inflammatory prostaglandins (see Figure.1.4). 

The expression of COX-2 inhibitors has been extensively studied in small animals, 

which provided strong evidence that inhibition of COX-2 enzymes can result a decrease 

in pain conditions (Wilson et al., 2006). 

Currently, there is abundant interest in the identification of a COX-2 inhibitor. The 

aggressive exploration in search of this safer selective COX-2 inhibitor led to the 

introduction of rofecoxib, celecoxib, valdecoxib, etoricoxib, lumiracoxib and deracoxib. 

The structures of these COX-2 inhibitors are given in Figure 1.8. Dup697 is the first 

among these drugs and has a diarylthiophene with a methylsulfone in one aromatic ring 

(Gans et al., 1990).  

Phenylsulfone- and phenylsulfonamide – containing tricyclic molecules have proved to 

be a fertile area for the development of new COX-2 selective inhibitors (Gauthier et al., 

1996). Few among them are the furanone of rofecoxib, the trifluoromethyldiazole of 
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Celecoxib, the chloropyridine of etoricoxib and the isoxazole ring of valdecoxib 

(Friesen et al., 1996). Rofecoxib (VIOXX) was withdrawn voluntarily by Merck from 

the market in September 2004 following an increased cardiovascular risk observed in 

APPROVE (Adenomatous Polyp Prevention on Vioxx) study (Ruschitzka, 2005). 

Subsequently, the sale of valdecoxib (Bextra) was also suspended by Pfizer in 2005 due 

to high incidence of heart attacks and strokes (Nussmeier et al., 2005).  

However, CLASS (Celecoxib Long term Arthritis Safety Study) trial conducted on 

Celecoxib found no increased risk of cardiovascular thrombotic events (Silverstein et 

al., 2000a). The mechanism underlying the adverse cardiovascular effects associated 

with the use of COX-2 inhibitors is due to an imbalance between COX-1 derived 

thrombotic thromboxane A2 (TXA2) in platelets and COX-2 derived vaso-protective 

prostacyclin (PGI2) in endothelium (FitzGerald, 2004). 

Similarly, lumiracoxib did not demonstrate significant cardiovascular side effects in 

TARGET (Therapeutic Arthritis Research and Gastrointestinal Event Trial), but serious 

haepatic side effects resulted in withdrawal of lumiracoxib from Australian market 

followed by the European market (Zarraga & Schwarz, 2007). Currently, celecoxib is 

the only available coxib commercially available in the US, while celecoxib and 

etoricoxib are available in the EU countries (Anonymous, 2012).  

1.10.1. Pharmacokinetics  and Pharmacodynamics of celecoxib and etoricoxib 

Cyclooxygenase-2 inhibitors such as celecoxib and etoricoxib are marketed worldwide 

for the relief of chronic pain in osteoarthritis and rheumatoid arthritis (Antoniou et al., 

2007). Figure 1.7 shows the chemical structures of the coxib NSAIDS. Current evidence 

has shown that that these classes of drugs produce minimal adverse effects in the 

stomach compared to traditional NSAIDs. Celecoxib was the first COX-2 inhibitor 
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introduced into clinical practice and is available in different names worldwide since 

1999 (Ault, 1998). 

Previous studies have investigated the cardiovascular safety of coxibs examining their 

effects to induce myocardial infarction, stroke and unstable angina. These initial studies 

have demonstrated that the coxibs administered in high doses and for longer periods of 

time can induce cardiovascular problem. As such both rofecoxib and valdecoxib were 

withdrawn from the market (Ruschitzka, 2007). Coxib group of drugs differ in their 

chemical structure with a complete absence of a carboxylic group which was earlier 

thought to be a prerequisite for a classic NSAID (Dannhardt & Kiefer, 2001). Thus, 

celecoxib and valdecoxib possess a sulfonamide group while rofecoxib and etoricoxib 

have a methylsulfone moiety, which could be responsible for their distinct 

pharmacokinetic properties (Zarghi & Arfaei, 2011). 

1.10.2. Pharmacokinetics and pharmacodynamics of celecoxib 

Celecoxib is the first cyclooxygenase-2 inhibitor to be introduced into clinical practice 

(McCormack, 2011). Celecoxib,4-[5-(4-methylphenyl)-3-(trifluoromethyl)-pyrazol-1-

yl]-benzenesulfonamide is a 1,5-diaryl-substituted pyrazole with a pKa of 11.1 and 

belongs to the first generation of coxibs and it was launched in 1998 (Simon et al., 

1998). Currently, celecoxib is approved for the relief of the signs and symptoms of 

rheumatoid arthritis, osteoarthritis, and for the management of pain (Yoshino et al., 

2005). The introduction of celecoxib has been the culmination of the discovery of the 

COX isoenzymes. This has paved way for the search for molecules that effectively 

inhibit COX-2 with little or no effect on COX-1. Thus, the major clinical goal to 

produce NSAIDs that have no effect on the gastrointestinal tract and kidneys was 

accomplished by the clinical introduction of celecoxib in 1999 (Karim et al., 1997). 
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Celecoxib is a potent inhibitor of prostaglandin synthesis as demonstrated by in vitro 

assay (Zhang et al., 1997). Based on human recombinant-enzyme assay, celecoxib is 

considered to be 375 times more selective for COX-2 than COX-1 (Capone et al., 

2007). Werner et al., (2002) studied the pharmacokinetics of celecoxib after a single 

dose of 200 mg in twelve human volunteers, one of whom had a CYP2C9, poor 

metabolizer genotype. In this study the authors have reported a tmax of 2.9 hours, Cmax of 

842 µg/L and the AUC from time zero to infinity to be 6246 µg/hour/litre. The oral 

bioavailabilty of celecoxib is low (about 20-40%), due to its poor solubility in aqueous 

medium (Babu et al., 2002b).  Peak plasma concentrations are attained within 3 hours of 

an oral dose. The pharmacokinetics of celecoxib is linear over the clinical therapeutic 

dose range with AUC and Cmax increasing proportional to the dose (Paulson et al., 

2000). Celecoxib is extensively distributed in the body, indicated by its large apparent 

volume of distribution.  

Paulson et al., (2001) studying the effect of food on the absorption of celecoxib reported 

that a high fat meal delayed absorption by approximately 1- 2 hour and thus increasing 

the total absorption of celecoxib by 10-20% and a steady state plasma concentration 

attained within 5 days. Celecoxib is highly protein bound and extensively distributed 

into tissues and is eliminated by haepatic metabolism with less than 1% is excreted as 

unchanged drug (Searle, 2011). Its high lipophilicity makes celecoxib sequestered in the 

body fat of the individual leading to slow and incomplete rate of absorption (Brune & 

Hinz, 2004).  

Celecoxib is extensively metabolized by CYP2C9 and to a lesser extent by CYP3A4 

(Kirchheiner et al., 2003). Three metabolites been reported to be formed namely 

hydroxylated celecoxib, carboxy celecoxib and its corresponding glucuronide. All three  
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metabolites are inactive and after a single oral dose of celecoxib, 57% are excreted in 

faeces and 27% in urine (Tang et al., 2000).  

It has been found that 35% of Caucasians are poor metabolisers of celecoxib due to the 

CYP 2C9 gene polymorphism resulting in reduced enzyme activity. These patients have 

CYP2C9*1 or CYP2C9*2 gene variants (Lee et al., 2002). Stempak (2005) in a study 

with paediatric patients genotyped CYP2C9*3 has found the AUC was higher by 10-

folds. Thus, there is an elevated risk such as cardio vascular side effects associated with 

celecoxib administration due to CYP2C9 variants. There are also significant differences 

between paediatric and adults with respect to celecoxib disposition and consdideration 

should be taken in the dosing schedules (Stempak et al., 2005).  

Paulson et al., (2000) have reported a gender differences in the clearance of celecoxib in 

rats has been reported by. Their data show that male rats eliminate the parent drug faster 

from plasma compared to female rats. Thus, female rats have a greater exposure to the 

drug than the male and they show marked difference in celecoxib pharmacokinetics. 

Emami et al., (2008) report that following administration of 200 mg of celecoxib to 12 

healthy volunteers, the Cmax was 450 ng/ml, the time required to reach a maximum in 

plasma (tmax) was 1.87 hours and the terminal half life was approximately 12 hours. 

An upper gastrointestinal tolerability trial with patients receiving celecoxib from a low 

dose of 50 mg to a supratherapeutic dose of 400 mg twice daily was compared with 

naproxen 500 mg twice daily dose and placebo. This study monitored the incidence and 

time until moderate to severe pain, dyspepsia and nausea occurred and they concluded 

that the upper GI tolerability of celecoxib was much superior to naproxen (Bensen et 

al., 2000).  
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A twelve week study to determine celecoxib (200 mg) versus diclofenac (50 mg) thrice 

a day at 43 centres in United Kingdom, reported that celecoxib was noninferior to 

diclofenac in treating arthritis pain after joint replacement (Emery et al., 2008). 

Moreover a supra therapeutic dosage of 1200 mg/day did not have any significant effect 

on platelet function or bleeding time in healthy volunteers (Leese et al., 2000). Gastro-

intestinal complications are the most important adverse effects of NSAIDs. In their 

study, Patterson et al., (1999) explored the incidence of allergic reactions with celecoxib 

in patients who were hypersensitive to sulfonamide-containing medications. They found 

that celecoxib does not inhibit the COX-1 enzyme.   At therapeutic doses, celecoxib is 

equally effective as any other commonly used NSAIDs such as ibuprofen, naproxen, 

ketoprofen and diclofenac, but with little or no adverse effect on either the 

gastrointestinal tract or kidneys (Simon et al., 2002). In a comparative study of 

celecoxib and ibuprofen, Al Sukhun et al., (2012)  recently confirmed that celecoxib has 

superior analgesic effect after postoperative pain following surgery. 

Endoscopy in patients with arthritis has shown that 12-13 weeks of 200 or 400 mg/day 

celecoxib administration caused fewer incidences of gastrointestinal ulcers when 

compared with ibuprofen (2400 mg/day). Moreover, the results reveal that a greater 

number of patients discontinued the treatment due to the adverse event with ibuprofen 

(Hawkey et al., 2004) or naproxen (1000mg/day) (Goldstein et al., 2008).  

The SUCCESS-I study involved a large population of 13,274 patients over a 12 week 

period and the data demonstrated that celecoxib at 200 mg or 400 mg/day had 

significantly lower incidence of ulcers compared with diclofenac (100 mg/day) or 

naproxen (1000 mg/day) (Singh et al., 2001). Cryer et al., (2011) in their GI-REASONS 

study which took place for a period of 6 months demonstrated a significantly higher 
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incidence of GI events with traditional NSAIDs such as meloxicam, diclofenac, 

nabumetone and naproxen when compared with celecoxib. 

In the CONDOR (Celecoxib versus omeperazole and diclofenac in patients with 

osteoarthritis and rheumatoid arthritis) study employing 4484 patients demonstrated that 

celecoxib for 6 months at 400 mg/day had significantly lower incidence of GI events 

than diclofenac (150 mg/day) and omeperazole concentrations taken together (Chan et 

al., 2010).  

However, the CLASS (Celecoxib Long Time Arthritis Safety Study) trial involving 

8059 patients and using a supratherapeutic dose of 800 mg/day, showed that celecoxib 

was not significantly less than other NSAIDs (ibuprofen 2400 mg/day or diclofenac 150 

mg/day) in inducing gastric ulcers. When combined with low dose aspirin, celecoxib 

had ulcer complications lower than other NSAIDs (Silverstein et al., 2000a). 

Figure 1.8 shows the schematic pathway of the metabolism of celecoxib in humans. The 

different chemical structures show that celecoxib undergoes extensive haepatic 

metabolism in humans predominantly by the cytochrome P450 (CYP) 2C9 isoenzyme, 

with less than 3% excreted unchanged in urine and faeces (Karim et al., 1997). Three 

metabolites of celecoxib have been identified. Carboxyl metabolite formed by the 

complete oxidation of the methyl moiety of celecoxib is the major metabolite (M2). 

Partial oxidation of the methyl moiety followed by hydroxylation forms a second 

metabolite (M3) and glucuronidation forms the third metabolite of celecoxib (M1). The 

elimination half-life is approximately 12 hrs and plasma clearance is about 450 ml/min 

(Patterson et al., 1999). The pharmacokinetics of celecoxib has not been studied in 

horses.  
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1.10.3. Pharmacokinetics and pharmacodynamics of etoricoxib 

Etoricoxib, 5-chloro-3-(4-methanesulfonylphenyl)-6’-methyl-[2,3’-]-bipyridinyl is an 

NSAID with an empirical formula C18H15ClN2O2S and a molecular weight of 358.84 

(Chauhan et al., 2005). Etoricoxib is approved as an oral medication in Europe for the 

treatment of oeteoarthritis, rheumatoid arthritis and ankylosing spondylitis 

(Anonymous, 2013). It is a COX-2 inhibitor producing dose dependant inhibition of 

COX-2 across the therapeutic dose range without inhibiting COX-1 (Dallob et al., 

2003). Etoricoxib displays linear pharmacokinetics since it is well absorbed after oral 

administration with a Cmax reaching in approximately 1 hour in a fasting state (Schwartz 

et al., 2008). The bioavailability is almost 100% and absorption rate is slow with the 

presence of food, but this does not disturb the extent of absorption (Agrawal et al., 

2002). The Cmax and AUC from time 0 to 24 hours were 3.6 µg/ml and 37.8 µg/hr/ml 

after administration of 120 mg of etoricoxib to healthy subjects respectively (Agrawal et 

al., 2003a).   

Etoricoxib has been extensively studied in humans to determine its absorption, 

distribution, metabolism and excretion. Moreover, Riendeau et al., (2001) found that 

etoricoxib selectively inhibited COX-2 in an in vitro human blood assay with an IC50 of   

1.1 ± 0.1 μM   for COX-2 (LPS induced prostaglandin E2 synthesis), compared with an 

IC50 value of 116 ± 8 μM for COX-1 (serum thromboxane B2 generation after clotting 

of the blood). 

Etoricoxib is well absorbed after oral administration in humans and peak plasma 

concentrations are achieved within 1 hour. The absolute bioavailability is ≈ 83%  and 

averaged ≈ 101% in a study of its bioavailability after fasting and a high-fat meal, with 

single and multiple doses (Agrawal et al., 2003a) . Pharmacokinetics of etoricoxib is 
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 linear at clinical relevant doses. Agrawal et al., (2001) suggest that the pharmacological 

half-life and pharmacological response support once-a-day oral dosing of the drug. A 

12-week study has found that etoricoxib (90 mg/once daily) was effective in treating 

rheumatoid arthritis than the traditional NSAID naproxen (500 mg twice daily) 

(Matsumoto et al., 2007). In a recent study, Clarke et al., (2012) conclude that a single 

oral dose of 120 mg of etoricoxib to humans,  can produce good quality pain relief after 

surgery and an amount of 120 mg is as effective as, or better than, other commonly used 

analgesics. 

The results of an in vitro study with human liver microsomes has demonstrated that 

etoricoxib is metabolized via 6‟- methyl hydroxylation, 1‟ -N-oxidation and 6‟-carboxy 

etoricoxib (Chauret et al., 2001). A schematic pathway of the metabolism of etoricoxib 

in healthy human volunteers is shown in Figure 1.9. which shows that etoricoxib 

undergoes haepatic metabolism to form 6‟-hydroxymethyl etoricoxib, 6‟-carboxy 

etoricoxib, etoricoxib-1‟-N-oxide, 6‟-hydroxymethyl etoricoxib-1‟-N-oxide and 

glucuronide of 6‟-hydroxymethyl etoricoxib in urine. 

Etoricoxib is extensively metabolized by CYP3A4 enzyme and to a lesser extent by 

CYP2D6, CYP2C9, CYP1A2 and CYP2C19 in humans resulting in the formation of 

five metabolites. None of the metabolite is pharmacologically active. The main 

metabolites are the 6‟-carboxylic acid derivative followed by the 6‟-hydroxy methyl 

derivative, which are mostly excreted renally (Kassahun et al., 2001). Terminal half life 

is approximately 22 hours, suggesting a once daily dose. About 70%  of the drug is 

excreted in urine and 20% in faeces, mostly as metabolites (Rodrigues et al., 2003). Age 

and gender do not have a significant effect on the pharmacokinetics however, etoricoxib 
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 is contraindicated in patients with renal impairment (Agrawal et al., 2004).  

Discussions on the cardiovascular safety of all COX-2 selective NSAIDS are on for a 

long time. In 2004 rofecoxib was voluntarily withdrawn from the market after the 

APPROVE (Adenomatous Polyp Prevention on Vioxx) trial, showing an increased risk 

of myocardial infarction and stroke (Bresalier et al., 2005). Similar trials with celecoxib 

and valdecoxib suggest that all COX-2 inhibitors bear a risk of cardiovascular events 

(Andersohn et al., 2006). The MEDAL (Multinational Etoricoxib and Diclofenac 

Arthritis Long term) study compared the effect of etoricoxib (60 mg and 90 mg) with of 

diclofenac (150 mg), once daily on 34,701 patients with osteoarthritis and rheumatoid 

arthritis. The study reported that the rates of cardiovascular events in patients with 

arthritis on etoricoxib are similar to those patients on the traditional NSAID diclofenac 

with long term use of these drugs (Cannon et al., 2006). Similarly, Etoricoxib versus 

diclofenac sodium on gastrointestinal tolerability and effectiveness (EDGE) trial studied 

a total of 7111 patients with osteoarthritis receiving 90 mg of etoricoxib once daily and 

50 mg of diclofenac thrice a day. The study concluded that etoricoxib was associated 

with significantly better GI tolerability compared to diclofenac (Baraf et al., 2004). 

Peleso et al., (2011) in their randomized double blind trial with 387 patients receiving 

etoricoxib at 90 mg and 120 mg versus 1000 mg of naproxen conclude that for every 2 

patients treated with etoricoxib, 1 achieved meaningful improvement compared to 1 in 

every 3 patients treated with naproxen. These initial studies have clearly shown that the 

two coxibs heve been investigated thoroughly in humans subjects examining the 

pharmacodynakic and pharmacokinetic properties compared to other NSAIDs. \however 

the literature on the use of these two coxibs on large animals is limited.   
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1.10.4. Method of Analysis of Celecoxib 

Development of sensitive and specific analytical techniques for the determination of 

celecoxib in biological samples is of paramount importance for any pharmacokinetics 

study. High performance liquid chromatography (HPLC) with either ultraviolet (UV) or 

fluorescence detection has been most widely used in the detection of celecoxib (Zarghi 

et al., 2006b). A HPLC method with solid phase extraction of celecoxib in rats in either 

the presence or absence of inflammation has been reported (Guirguis et al., 

2001;Guirguis et al., 2001). In addition, (Srinivasu et al., 2000) developed a LC method 

for the quantitative determination of celecoxib in bulk drug and pharmaceutical doses.  

Celecoxib and its processed related impurities were determined using reversed phase 

HPLC with UV detection (Rao et al., 2006) . Furthermore, Rose et al., (2000) described 

a HPLC method for the determination of celecoxib in human plasma. Briefly, they used  

a volume of 1.0 ml of plasma which was first deproteinated using acetonitrile, followed 

by solid phase extraction on C18 cartridges employing by HPLC with UV detection. The 

assay was linear in the concentration range of 25-2000 ng/ml. 

A liquid chromatography-tandem mass spectrometric quantification of celecoxib in 

human plasma and rat was also developed by (Brautigam et al., 2001). Celecoxib and 

the internal standard were extracted from plasma by solid-phase extraction with a C18 

cartridge. The mobile phase consisted of a mixture of acetonitrile-water-ammonium 

hydroxide solution 25% (85:25:0.1) and the detection was by AB Sciex API 3000 

(Applied Biosystems) mass spectrometer. The limit of quantification for celecoxib in 

human plasma was shown to be about 0.25 ng/ml. 

Subsequently, Abdel-Hamid et al., (2001) developed a robust, highly reliable and 

reproducible liquid chromatographic-mass spectrometric assay for celecoxib in human 
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 plasma using sulindac as an internal standard. The method involved extraction of the 

analyte with ethyl acetate and chromatography on a C18 column using acetonitrile-1% 

acetic acid solution (4:1) as the mobile phase. The mass spectrometer was programmed 

in the single ion monitoring mode to detect the positive ions for celecoxib and sulindac 

at m/z 382 and 357, respectively. 

Werner et al., (2002) developed a reversed-phase high-performance liquid 

chromatography coupled to atmospheric pressure chemical ionization (APCI) to study 

the pharmacokinetic profile of celecoxib following administration of a single oral dose 

(200 mg) to 12 healthy human volunteers. Similarly, Stormer et al., (2003) developed a 

reversed-phase liquid chromatography with ultraviolet absorbance detection for the 

determination of celecoxib, hydroxycelecoxib and carboxycelecoxib.  

A simple and rapid HPLC method for the determination of celecoxib in human plasma 

for pharmacokinetic application was later developed and validated by (Zarghi et al., 

2006a). The limit of quantification was 10 ng/ml and the assay enabled the 

measurement of celecoxib for therapeutic drug monitoring. The metabolism of 

celecoxib in rabbits with  combined LC/MS/MS  using precursor ion, product ion scans 

and constant neutral loss of m/z 176 yielded three phase I and four phase II metabolites 

(Zhang et. Al., 2000). A simplified solid phase extraction procedure, eliminating protein 

precipitation by using a poly(divinylbenzene-co-N-vinylpyrrolidone) sorbent was also 

developed using rat plasma (Guermouche & Gharbi, 2004). 

1.10.5. Methods of Analysis of etoricoxib 

Being the latest molecule, very few HPLC methods have been reported for the 

determination of etoricoxib in human plasma. Mathews et al., (2004) developed an 
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analytical method for the determination of etoricoxib in human plasma and urine using 

solid phase extraction followed by HPLC with photochemical derivatization - 

fluorescence detection (260 nm) using one of the structural analogues as internal 

standard. The limit of quantification was found to be 5 ng/ml. 

Rose et al., (2002), using a stable isotope of etoricoxib as an internal standard, 

developed a LC-MS-MS method with atmospheric pressure chemical ionization (APCI) 

and this was validated over a concentration range of 0.2 to 250 ng/ml. Later,  Brautigam 

et al., (2003), using phenazone as the internal standard, validated a liquid 

chromatography-tandem mass spectrometric method for the determination of the 

cyclooxygenase inhibitor etoricoxib in human plasma. The limit of quantification was 

about  2 ng/ml. A reversed phase HPLC with photodiode array detection at 234 nm, 

over a linear concentration range of 20 – 1500 ng/ml, was developed by (Brum Junior et 

al., 2006). The most recent method to quantify etoricoxib utilizes capillary zone 

electrophoresis using photodiode array at 234 nm and this method was developed by 

(Dalmora et al., 2008). This method was able to detect three photo degradation product 

and one acid hydrolysis product of etoricoxib (Matthews et al., 2004). Similarly, 

Werner et al., (2005) determined levels of etoricoxib in human plasma using LC 

coupled with APCI MS/MS after performing a liquid-liquid extraction. 

Two analytical methods for the determination of etoricoxib in bulk drug formulation 

were previously reported. One method used HPLC with UV detection while the other 

employed UV spectrophotometry at 284 nm (Shakya & Khalaft, 2007). 
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     Figure.1.8: Metabolic pathway for celecoxib in humans (Taken from Paulson et al., 2000a). 
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1.11. Structure and function of the GI tract and the kidney in drug metabolism 

Horse is a herbivore and is highly specialised for a plant diet with special dentition 

pattern with absence of canines. It has six pairs of incisors, since plant food has to be 

thoroughly ground before the digestive enzymes act upon it. The gastrointestinal tract of 

the horse serves as an important part for digestion and absorption of nutrients and also 

to detoxify xenobiotics. The size of the stomach is small, has a volume varying from 8-

15 relative to its size, weight and volume consumed. The small intestine is of 22-25 

metres and the large intestine is 7.5-8 metres in length. The small intestine is divided 

into duodenum, the jejunum and the ileum. The digestive products of the pancreas and 

the liver reach the intestine where together with the secreted digestive enzymes begin 

the process of digestion. The majority of digestion takes place in the first half of the  

small intestine. The mucosal layer of the small intestine has numerous absorptive cells - 

the enterocytes that secrete the digestive enzymes required for digestion and absorption 

of nutrients. The pH inside of the duodenum of the small intestine is usually less than 6 

and about 7.5 in the jejunum (Merritt, 1999). The large intestine is divided into cecum 

and colon which are larger in size and rich in microbes compared to other species of 

mammals, primarily to digest cellulose which are not able to be digested by mammalian 

enzymes (Aspinall, 2009). 

Generally, the GI tract plays an important role in food digestion and drug metabolism. 

The gut contains numerous proteolytic, lipid and carbohydrate enzyme which can break 

down complex molecules such as proteins, lipids and carbohydrates. In addition 

hydrochloric acid secreted by the stomach and bacteria in the GI tract facilitate the 

metabolism of other complex food and drugs. In general, most drugs consumed orally 

are either absorbed into the bloodstream, directly metabolized in the GI tract or excreted 

as a whole product with stool. 
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The liver is the largest glandular organ and has many functions vital for survival such as 

carbohydrate metabolism, fat metabolism, protein metabolism, storage and 

detoxification (Remmer, 1970). The liver has dual blood supply, comprising of the 

haepatic artery which oxygenates the organs from the aorta, and the portal vein carries 

the blood from the intestine. The portal vein of the liver filters and detoxifies the blood 

coming from the gastrointestinal tract. The liver is made up of cells called the 

haepatocyte which secrete bile acids and bilirubin which is emptied into the duodenum. 

Interestingly horses do not have a gall bladder to store bile.  (Thomas P.Colville, 2002). 

The drugs consumed by animals are absorbed directly into the blood stream from the GI 

tract as by products, due to metabolism. The parent drug and its metabolites are taken to 

the liver where they are further broken down by enzymes. The drug and its metabolites 

can be excreted in the stool or taken back to the kidneys where they are filtered into the 

urine and subsequently excreted.    

The kidneys play a major part in the excretion and removal of xenobiotics and soluble 

waste products from the blood and excess water from the body. They maintain the 

body‟s water and electrolyte balance stimulate red blood cell production through 

erythropoiesis. The kidneys of the horse weigh about 700 grams each with the left 

kidney bean shaped and the right kidney heart shaped. Oxygenated blood enters the 

kidney through the renal artery and exits via the renal vein. The functional unit of the 

kidney is called the nephrons and the equine kidney has approximately 1.5 - 2.5 million 

nephrons. The nephrons form the urine and it consists of a capillary network, 

glomerules and a tubular system. The glomerules capillaries are surrounded by 

Bowman‟s capsule. The glomerules filter the urine and ensure large proteins such as the 

blood cells do not get filtered into the urine.  
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Figure 1.9: Metabolic pathways of etoricoxib in healthy human volunteers (Taken from 

Rodrigues et al., 2003). 
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The process of biotransformation of drugs and other xenobiotics, with large alterations 

to the drug molecule mostly happens in the liver and kidneys due of its large blood 

supply and the presence of drug metabolizing enzymes. In addition drug metabolizing 

enzymes present in the mucosal lining of the gastrointestinal tract probably contribute to 

the first pass metabolism of orally administered drugs.   

1.12.  The metabolism and fate of drugs in the body 

Knowledge about the factors which determine the fate of drugs in biological systems of 

horse is essential in the field of forensic drug testing, forensic pharmacology and 

especially in doping. Correct drug dosing is of paramount importance for the welfare of 

the horse and moreover, to limit the use of performance enhancing drug in sports 

(Kietzmann & Due, 2009).  

Horses, like humans and other animals, have complex physiological systems to 

disintegrate and to detoxify foreign chemicals that enter into their body. In order for 

drugs to exert their effect, in either in doping or in treatment, they need to achieve 

adequate concentration in the body or in the location of inflammation. This in turn 

depends upon absorption, distribution, metabolism and excretion, frequently 

abbreviated as ADME (Poulin & Haddad, 2012). 

Absorption is the movement of drug from the site of administration to the blood stream. 

Distribution refers to the movement of the drug from the blood stream to the tissues. 

Metabolic reactions typically convert drugs into more hydrophilic form, making them 

more easily excreted by the body.. Compounds, including drugs and their metabolites 

are usually excreted  from the body mainly by the renal and  bile systems (Chu & 

Nomeir, 2006). 
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Oral administration is a convenient way to deliver a drug (Nuno Martinho, 2011). The 

major site for absorption of the drug in the body of an animal is the gastrointestinal 

tract. It is affected by stomach emptying and intestinal mobility, the environment in the 

intestinal lumen and the metabolizing enzymes present in the intestinal mucosa, lining 

and the liver (Kumar & Clark, 2009;Kumar & Clark, 2009). Drugs, by active and 

passive mechanisms, permeate the intestinal wall. As the drug reaches the blood stream, 

the cardiovascular system helps in the distribution of the drug molecule throughout the 

biological systems. Specialized proteins carry the drug from the intestine to the blood 

stream during an active mechanism. Hydrophilic drugs are passed on to cells through 

intercellular spaces via passive mechanism (Levine, 1978). 

Metabolism is a process in which xenobiotics, (eg. drugs) are made more hydrophilic by  

endogenous enzymes, to be easily excreted (Alavijeh et al., 2005). The liver and the 

intestines are the major sites of metabolism for an orally administered drug. Drug 

metabolism is normally divided into two phases, phase I and phase II. The chemical 

reactions that are associated with these phases are given in table 1.4.   

Oxidation, hydrolysis and reduction are the most common phase I reactions, catalyzed 

by cytochrome P450 (CYP) enzymes in the liver. Glucuronidation and sulphation are  

the commonest phase II reactions for haepatically cleared drugs (Guengerich, 

2001).Understanding the mechanism of action of a drug, the dosage, dosage interval and 

excretion profile are important parameters to be borne in mind in the field of horse 

racing as it is important to administer the correct dosage and to put the horse in top form 

to compete in a race. In order to assess these, usually different pharmacokinetic (PK) 

parameters are used as important scientific tools. The goal of these parameters is to 

obtain maximal efficacy in treated animals. 
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Table 1.4: Reaction classes of Phase I and Phase II metabolism 

                  Phase I                                             Phase II  

              Oxidation                                        Glucuronidation 

              Reduction                                        Sulfation 

              Hydrolysis                                       Methylation 

              Hydration                                        Acetylation 

              Isomerisation                                  Glutathione conjugation 

              Dithioacetylation 

 

Bioavailability (F) is a key pharmacokinetic parameter and it refers to the rate and 

extent to which an active substance is absorbed from its pharmaceutical form and 

becomes available at the site of action (Toutain & Bousquet-Melou, 2004a). Several 

factors can influence the oral bioavailability of a drug. These include solubility, 

lipophilicity, stability and ionization, together with the several processes such as 

physiological, biochemical and pathological processes that occur in the lumen of the  

intestines. The fraction of drug that escapes the intestinal metabolism undergoes 

metabolism in the liver before reaching the systemic circulation (Routledge & Shand, 

1979).  

Clearance (Cl), Volume of distribution (Vd), and half life (t ½) are other important PK 

parameters, which are often used to study the fate of a drug in the body (URSO et al., 

2002). The ability of the body to eliminate the drug per unit time is termed as clearance. 

The time required for the plasma concentration of the drug to be scaled down to half, 

after reaching a pseudo equilibrium is termed as the half –life (t ½) of the drug. Terminal 

half-life is a key in clinical application to set dosing intervals, thereby avoiding drug 
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accumulation (Toutain & Bousquet-Melou, 2004b). Vd is the proportionality constant 

between total amount of drug in the body and plasma concentrations.  

1.13.  Liver enzymes and drug metabolism 

The study of the metabolism of drugs by in vivo and in vitro methods gives vital 

information for laboratories involved in drug testing in sports (Teale & Houghton, 

2010). Those drugs that are eliminated quickly, the detection of metabolites is more 

desirable. Moreover, in vitro experiments are particularly useful if a large number of 

biotransformation, especially in steroids, is possible thus leading to many possible 

metabolites. It would be difficult on the part of an analyst to identify the most 

appropriate analyte in controlling the misuse of therapeutic and performance enhancing 

drugs, without the information from in vivo and in vitro studies (Houghton & Maynard, 

2010). Practical implications like the availability of animals for study and ethical issues 

including whether the drug or its metabolite(s) has toxicological profiles following 

administration are very important to address. These can be solved by employing both in 

vivo and in vitro studies. In the case of the latter, it is possible to  use liver tissues or  

liver fractions (Thummel & Wilkinson, 1998). It has been revealed that compared to 

liver microsomes, liver tissues are especially useful in obtaining the complete in vitro 

metabolite profile, because it retains all the enzymes and cofactors essential for both 

phase I and phase II metabolism (Dogterom, 1993).  

Drug metabolism is  a process which involves the breakdown of a compound by 

enzymes in the body in order to make drugs and their metabolites more water-soluble 

and thus, more readily excreted in the urine or faeces (Slaughter & Edwards, 1995). The 

most common way of metabolizing drugs involves the alteration of functional groups on 

the parent molecule through a series of phase I and phase II reactions via the 

cytochrome P450 enzymes. These enzymes are most predominant in the liver but can 
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also be found in the intestines, lungs and other organs (Anon, 2000). Changes in the 

activity of these enzymes can lead to inactivation of an active compound, activation of 

an inactive compound, formation of an active metabolite for an active compound and in 

turn this can also lead to toxic effect of an active or inactive compound (Lin & Lu, 

1997).   

The advancement of bioanalytical and biochemical technologies has provided 

opportunities to study the in vitro metabolism and the in vitro metabolite profile 

generally reflect the in vivo metabolic pattern (Powis, 1989).  The cytochrome P450 

super family (CYP) is an enzyme group in humans critical for oxidation reactions in the 

phase I metabolism of xenobiotics (Anzenbacher, 2001). The name P450 was originally 

a description of a red pigment found in liver microsomes with an absorbance maximum 

at 450 nm in its reduced carbon-monoxide form (Omura & Sato, 1964). The cytochrome 

P-450 plays a significant role in the metabolism of more than half of the drugs used 

today (Guengerich, 1995). Though expressed in several tissues, the liver and the small 

intestine are the primary sites of interest for these enzymes for metabolizing drugs and 

other xenobiotics (Krishna & Klotz, 1994). The number of CYP isoenzymes are  

constantly increasing and as of 2012 more than 18500 CYP isoenzymes have been 

found both in humans and animals (Nelson, 2013). The CYP enzymes are classified into 

families and subfamilies based on their amino acid sequence and enzymes sharing more 

than 40% sequence identity are grouped to the same family (Wang & Chou, 2010). 

            The CYP enzymes of the family 1,2 and 3 are known to be important for drug 

metabolism and it has been studied that the activity of the CYP enzymes vary between 

individuals which may be due to genetic factors, environmental factors or either 

induction or inhibition of the enzymes (Bozina et al., 2009). Fink-Gremmels (2008) in 

his study reveal that large inter species and intra species differences prevail when 
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comparing enzyme activity in different animals. The study of CYP enzymes in animals 

help in creating model systems in drug development for humans.  

1.14. Cytochrome P450 enzymes in horses 

The knowledge about CYP enzymes in other species of animals is limited compared to 

human enzymes and it is nevertheless important since companion animals and animals 

for food production are treated with various drugs (Gusson et al., 2006). It is often 

impractical to study in vivo drug administration to large animals such as horse, because 

of its availability for research purpose and the expense associated in maintaining them. 

Horse racing is a billion dollar industry and racing labs are constantly challenged with 

new compounds that have the potential for abuse. These new compounds might 

metabolize quickly and most often not present as an intact parent compound in urine or 

other biological matrix, thus making a search for the unknown metabolite of the 

compound more challenging (Nebbia et al., 2003).    

The human cytochrome P450 enzymes have been well characterized in the 

biotransformation and subsequent elimination of many xenobiotics. These 

characterization studies have given an understanding of the specific CYP enzyme 

involved in the metabolism of individual drugs. As in humans, better knowledge of 

equine enzyme system will allow the field to understand and predict drug interactions, 

alterations and the pharmacokinetics.  

Members of the cytochrome P450 3A and 2C family are responsible for the metabolism 

of a vast majority of therapeutic substances in humans and similar information of the 

expression and activity of members of P450 family in horse is either limited or non 

extinct. Though horse liver microsomes have been used in drug metabolism studies, 

these studies have not provided information about the specific enzyme involved in 

metabolism (Chauret et al., 1997).  
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Few years ago, Knych et al.,(2009) have cloned, sequenced, expressed and 

characterized an equine CYP450 orthologue, designated CYP2C92 and is shown to 

have sequence homology with other members of the CYP2C family in other species. 

Tyden et al., (2004) investigated the gene expression of CYP 3A in the intestine and the 

liver in horse using real-time RT-PCR and showed that the CYP3A gene expression was 

 the highest in the intestine than the liver. Thus, their study has highlighted that the 

intestine will metabolize a larger portion of all xenobiotics entering through the oral 

route with the CYP 3A enzymes than the liver in horses. Again very recently, Knych et 

al., (2010) have cloned and sequenced three equine cytochrome P450 monooxygenases 

of the 3A family and designated than CYP3A89, CYP3A96 and CYP3A97. These new 

enzymes showed high degree of homology between the isoforms and shared a 75% 

identity to CYP3A4 of humans. 

1.15. Metabolite profiling and identification in vitro 

The aim of in vitro metabolite profiling is to tentatively predict the number of 

metabolites formed by various biotransformation reactions and abundances of the 

formed metabolites. Moreover, the nature of occurred biotransformation reactions and 

their sites in the molecule are elucidated, meaning identification of the chemical 

structures of the formed metabolites (Olavi Pelkonen, 2009).  

Tang et al., (2000) studied the in vitro microsomal metabolism of celecoxib in humans 

and showed that it forms one major metabolite, hydroxycelecoxib and no carboxy 

celecoxib was detected. Similarly, Wilhelmi et al., (2009) investigated the in vitro drug 

metabolism of celecoxib using bovine liver microsomes and in their study they found 

carboxycelecoxib as the major metabolite.  
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Kassahun et al., (2001) studied the role of human liver cytochrome P450A in the 

metabolism of etoricoxib and they showed that it is metabolized via 6‟-

methylhydroxlation when incubated with NADPH- fortified human liver microsomes 

resulting in only traces of 1-N oxide. In their study on etoricoxib with microsomes 

Chauret et al., (2001) detected and structurally identified two metabolites, namely 6‟-

hydroxy methyl and 1-N oxide. Furthermore, when incubated with haepatocytes from 

dog, they identified a third metabolite of 30 mass units greater than the parent etoricoxib 

which was later characterized to be 6‟-carboxy etoricoxib. They also noted a new 

metabolite with 192 mass units greater than the parent drug and this compound was 

identified as a glucuronic acid fraction of 6‟-hydroxy methyl etoricoxib.  

1.16. Gastrointestinal safety of COX-1 and COX-2 inhibitors in horses 

COX-2 selective inhibitors are known to have better gastrointestinal (GI) safety profile 

compared to traditional NSAIDs providing either similar or enhanced anti-inflammatory 

effects compared to first generation coxibs (Deeks, 2002). Most commonly reported 

adverse side effects include nausea, dyspepsia, diarrhoea, abdominal pain and flatulence 

in humans (Farkouh et al., 2004;Bombardier et al., 2000). In a human study named 

Vioxx Gastrointestinal Outcome Research (VIGOR), Bombardier et al. (2000) 

compared rofecoxib with naproxen which was the first large-scale trial to provided 

evidence of lower incidence of GI events with COX-2 inhibitors.  

Celecoxib Long-term Arthritis Safety Study (CLASS), compared celecoxib with 

traditional NSAIDs like diclofenac, and it reported lesser side effects of 0.76% versus 

1.45% for diclofenac (Silverstein et al., 2000a). The gastrointestinal adverse events 

were lower when compared  with diclofenac in the Etoricoxib Versus Diclofenac 

Sodium Gastrointestinal Tolerability and Effectiveness (EDGE) trial (Baraf et al., 

2007). The Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) 
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programme – the largest randomized trial also concluded that etoricoxib has 

significantly less common GI ulcers than diclofenac (Laine et al., 2007). 

In the racing industry, NSAIDs are widely used to treat inflammation and they help to 

mask lameness while reducing pain, swelling and inflammation, but they can also be 

very harmful to the racing horse (equine athlete). NSAIDs can contribute to GI ulcers, 

colic, renal and liver toxicity and also they can decrease a horse‟s health and racing 

performance. 

Many drugs are used in horses and one of the oldest drug, aspirin, has been used for a 

long time for its anti-inflammatory and analgesic activity, but it has been discontinued 

because it was found to prolong bleeding time in horses for up to 48 hours (Cambridge 

et al., 1991). Phenylbutazone was introduced into Veterinary Medicine in the early 

1950s and it was also found to have analgesic, anti-inflammatory and antipyretic 

activities, which extend for more than 24 hours, due to the slow excretion of its 

oxyphenylbutazone metabolite (MacAllister et al., 1993). Phenylbutazone, which is 

commonly called „BUTE‟ by Veterinarians, causes haemorrhages and ulcers in the 

mouth, oesophagus and stomach. Phenylbutazone is mostly used to disguise lameness 

for  the  purpose of  competitive racing (Shannon K.Reed et al., 2006). In  a  study, Mc 

Connico et al. (2008) investigated the pathophysiological effect of phenylbutazone and 

they conclude that prolonged administration of BUTE can cause hypo-albuminemia and 

neutropenia. Dipyrone is another drug that has been used, but not well investigated in 

horses. High doses of dipyrone may result in abnormal blood cell production damaging 

the bone marrow  of  the horse (Rohner K & Demuth D, 1994). Flunixin meglumine is a 

very potent cyclooxygenase inhibitor which is in current use to treat horses.  In these 

animals it helps to reduce a  variety of painful and inflammatory conditions like colic,  
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eye injuries, respiratory diseases, general surgery, and musculoskeletal disorders (Stelio 

P.L.Luna et al., 2007). 

Lees & Higgins (1985) studied the pharmacology and therapeutic use of meclofenamic 

acid and found a decrease in blood protein concentration, together with mouth ulcers, 

edema, and depression. Ketoprofen is another NSAID, comparable to flunixin in its 

effect, but it was found to produce less toxic effects and ulcers than other COX-1 

inhibitors (Jackman et al., 1994). 

Firocoxib is the only cyclo-oxygenase inhibitor developed for the use in animals till 

date for the treatment of osteoarthritis and inflammation. Cook et al. (2009) compared 

the effects of firocoxib and flunixin meglumine and they concluded from their study 

that both are effective analgesics, but firocoxib was more advantageous in horses during 

recovery from ischaemic intestinal injury. In another study, Back et al. (2009) used a 

force plate measurement technique to titrate the dosage of firocoxib required for 

effective treatment of lameness and they found that a dose of 0.1 mg/kg body weight 

was sufficiently enough to reduce pain in chronic lameness. In a more recent study, 

Marc Koene et al. (2010) employed 96 horses to validate the efficacy of firocoxib and 

they concluded that firocoxib was safer and did not alter the haematology and 

biochemical parameters in the horses. Deracoxib, a new COX-2 inhibitor drug,  has 

been in the market quite recently, and it was specifically developed for pain relief in  

dogs (Bienhoff et al., 2012). Adverse side effects  such as damage to the kidneys has 

been reported in cats since these small animals  cannot eliminate the drug (Khan & 

Mclean, 2012).  
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1.17. Liquid chromatography-Mass spectrometry  

Combined liquid chromatography-mass spectrometry (LC/MS) has become the 

analytical work horse of choice for the quantitative and qualitative analysis in 

forensic/pharmaceutical drug testing due to its speed, resolution, selectivity and 

sensitivity (Kamel & Prakash, 2006;Prakash et al., 2007).  Combined LC/MS is not 

limited to only non volatile, polar and thermally labile compounds, but also for 

thermally stable, volatile and apolar materials which can also be detected by this 

instrument. Searchable databases like the WILEY or the NIST, are not available for 

LC/MS which makes it a difficult equipment for rapid screening of unknown 

compounds, but measurement of accurate mass of the compound makes it the ideal 

instrument in research and drug discovery. A mass spectrometer measures either the 

weight of a molecule or its fragment(s) and separates it according to its m/z (mass 

divided by charge) value. However, a HPLC coupled to a mass spectrometer offers 

advantage in the separation of polar compounds such as drug metabolites. Matrix 

components and co-eluting peaks, which usually cause ion suppression or signal 

enhancement, can be isolated by chromatography, thus increasing the resolution and 

sensitivity (Staack & Hopfgartner, 2007;Matuszewski et al., 2003). Typical quantitative 

LC/MS applications in pharmaceutical research are in vitro ADME assays in drug 

permeability, metabolic stability and inhibition studies (Chu & Nomeir, 2006). 

Metabolite profiling and drug excretion study would be an example for qualitative 

LC/MS analysis in drug testing laboratory for reliable identification of metabolites in 

biological matrices.  
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1.18.  Mass Spectrometry 

Mass spectrometry (MS) is a technique where the mass weight of a molecule can be 

measured (Ho et al., 2003). The resolved molecules being eluted by the liquid 

chromatography are transformed into gas phase ions, passed through electric and 

magnetic fields and the response of these trajectories are measured (Fenn et al., 1989). 

Quadrupole mass spectrometers were first introduced in 1968 and the first triple 

quadrupole was developed at Michigan State University in the late 1970s (Yost & Enke, 

1978). 

Mass spectrometric detection has been the choice in many different field of application 

similar to the different kinds of analyzers developed over the years. Quadrupole (Q), 

triple quadrupole (QqQ), iontrap (IT) and quadrupole-time of flight mass analyzer (Q-

TOF) have been designed and developed over years for accurate mass determination 

and structure elucidation of molecules. The functions of these mass analyzers are 

described below.  

1.19. Triple Quadrupole Mass Spectrometry 

A quadrupole MS consists of four perfect rods with each opposing rods connected with 

an oscillating electric field  and a radio frequency between them, through which ions 

travel and are separated according to their m/z value (Skoog & Leary, 1992). A 

simplified schematic picture of a quadrupole is shown in figure 1.10. Ions released from 

the ion source are accelerated by an electric field in between the space and the four 

parallel rods with each opposite pairs of rods connected by an electric potential. One 

pair has a positive potential and the other is negative. Additionally, a radio frequency 

(RF) current is also applied on each pair of rods. Ions with specific m/z mass intervals 

oscillate along the central axis in a stable manner and reach the detector. Those masses 
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 which are out of range or those masses that are unspecific oscillate undesirably. They 

then  hit the rods, get neutralized and are subsequently lost (Herbert & Johnstone, 

2003). 

A triple quadrupole mass spectrometer (QqQ) has two quadrupoles (Q) and a 

connecting collision cell in between. The first quadrupole (Q1) acts as a mass filter 

which transmits the ions to the collision cell (q). The collision cell in most instruments 

is another quadrupole and rarely could be a hexapole or a octapole. The collision cell 

has a RF potential applied and also it has a supply of an inert collision gas such as argon 

to convert kinetic energy of the ions into internal energy. This result in bond breakage 

and dissociation of ions into small fragments, a process called collision-induced 

dissociation (CID). The collision cell accelerates the ions into the third quadrupole (Q3) 

which in turn analyses the fragments and sends  them to the detector (Dass, 2007). 

Triple quadrupole instruments enable tandem mass spectrometry (MS/MS) in space and 

it can be operated in different scan modes as illustrated in Figure 1.11.  

In the normal MS mode, either Q1 or Q3 quadrupole could be selected without the 

collision cell to obtain a full mass spectrum. In the product ion scans a specified m/z 

value which is selected in the Q1, passes on to q, where it undergoes CID with collision 

gas and the products are scanned in Q3. The precursor ions are selected in Q1 in 

precursor ion scan and the products are scanned in Q3. This is is the opposite of product 

ion scan. A drug molecule during metabolism, adds on a mass charge of 176 Da or 80 

Da depending on glucuronic acid or sulphate conjugation. In a neutral loss scan, both 

Q1 and Q3 are set to scan ions with a specified mass offset of 176 Da or 80 Da between 

them. Thus, the mass spectrum shows the precursor ion that loses the m/z of 176 Da or 

80 Da in the collision cell and indicating the presence of glucuronic acid or sulphate 

conjugation within the sample. 
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Finally, excellent sensitivity and selectivity are achieved in selected reaction monitoring 

mode (SRM). In this process, one mass ion is filtered by Q1, fragmented in q, and the 

product fragments are allowed to pass through Q3 and to the detector. Since the 

fragmentation pattern is unique for each individual xenobiotic, molecules having the 

same precursor ions can be clearly separated from one another by Q3 product ions.     
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Figure 1.10:  Schematic diagram of a triple stage quadrupole mass analyzer (Taken from Jinsong & Josh, 2012). 

http://www.intechopen.com/source/html/29249/media/image4.jpg
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Mode of operation Q1 q (Collision cell) Q3 

 

 

 

Figure.1.11: Schematic description of different scan modes that can be use in a triple quadrupole mass spectrometer  

(Taken from Thurman & Ferrer, 2002). 
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1.20. Working hypothesis:  

In the horse racing industry it is sometimes very difficult to distinguish between doping 

and pain treatment relief of the animals employing NSIADs. Knowledge and 

understanding of the metabolism of some new c(Braeutigam et al., 2003)oxib NSIADs 

including celecoxib and etoricoxib will help the racing industry, the race horse owners 

and the Equine Veterinarians in treating the horses effectively and to determine any side 

effects and more so, to distinguish any misuse of the drugs for racing gain. 

1.21.  Main Aims 

The main aim of this study was to investigate any adverse effect each drug may have in 

the animals and furthermore to determine the fate, metabolism and elimination time of 

the two NSAIDs, celecoxib and etoricoxib in retired race horses and whether the drugs 

or their metabolites can produce adverse effects to the horses. 

1.22. Specific Aims 

The specific aims of this thesis were: 

 To undertake a thorough literature search in the proposed area of study. This 

involved review of literature on NSAIDs, physiology and anatomy of the horse, 

pharmacokinetics and pharmacodynamics of commonly used NSAIDs in 

humans and in animal species. Literature search also involved the review of 

latest analytical techniques used in the detection of celecoxib and etoricoxib in 

blood, urine and faeces of human and other animal species such as dogs and 

monkeys. 

 To study the pharmacokinetics effects of the two non-steroidal anti 

inflammatory drugs, etoricoxib and celecoxib in retired race horses. This part of 
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the study involved oral administration of the drug to the horses followed by the 

collection of blood, urine and stool samples. The pharmacokinetic parameters 

were analyzed using Microsoft excel and online pharmacokinetics software.  

 To study and measure the different metabolites formed by the drugs 

administered and to analyze the routes of elimination for each drug, the time of 

elimination, the quantity of each and the mass of each metabolite. In this study, 

blood, urine and faeces were analyzed for the parent compound and its 

metabolites for each coxib over time using HPLC/MS/MS techniques. 

 To use commercial horse liver microsomes in vitro to investigate the             

metabolism of etoricoxib and celecoxib. Each drug was incubated with horse 

liver microsomes overtime and the different samples were analyzed for the 

biotranformation of the parent drug to its corresponding metabolites. 

 To study the metabolism of etoricoxib and celecoxib using fresh camel liver 

tissues. Each drug in known concentrations was incubated with camel liver 

slices overtime. Thereafter, both the parent drug and its metabolites were 

measured in samples using LC/MS/MS. 

 To measure the levels of a number of blood-borne clinical biochemical 

parameters  and ions (chloride, phosphate, Na
+
, K

+
, Mg

+
, Ca

2+
, Fe

2+
, Zn

2+
,  and 

Cu
2+

)  following oral administration of each coxib. Both Atomic absorption 

spectroscopy, haematology analyzer and biochemical auto analyzer were 

employed to measure the various parameters. 

 To analyze the data statistically and to write up the PhD thesis. 

 
 

 

 



 

[62] 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

MATERIALS AND METHODS 
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2.1. MATERIALS 

Animals:-      Six retired race  horses ( 2 males, 2 females and 2 castrated males) 

Equipment:-  THERMO FINNIGAN LC/MS/MS , iCE 3000 series flame and Zeeman 

                        furnace Atomic Absorption Spectrometer (AAS), Zymark Rapid trace,   

                        Zymark TurboVap, SYSMEX XT 2000i from Thermo Scientific, USA. 

                        Haematology Analyzer and Hitachi 912 Auto-analyzer from ROCHE, 

                        France, VacElut vacuum manifold from VPS Systems, Germany.  

 

Chemicals:-   HPLC grade chemicals – methanol, ethyl acetate, hexane and acetonitrile   

                      (All purchased from FISHER Scientific, UK).  

                       NADPH, β-glucuronidase from Helix pomatia, potassium dihydrogen   

            phosphate, sodium phosphate  and magnesium chloride (All purchased  

           from SIGMA-Aldrich, USA).                

 

Reagents:-    0.1% formic acid and   acetic acid from Sigma Aldrich USA,. 

                     500 mg, 3 ml C18 cartridges from Agilent, USA., and Isolute HCX 200 mg 

                      (All purchased from BIOTAGE, Sweden.   (Similarly, all biochemical   

                      and haematological kits were obtained from La Roche, France). 

                               

Drugs:-        Celecoxib and zaleplon with greater than 99 % purity were obtained as     

                     A gift from IPCA Laboratories, Indore, India. Etoricoxib was also donated  

                     as a gift by M/s. Reddy Laboratories, Hyderabad, India.   

 

 Others:-      Horse liver microsomes was purchased from Xenotech, Lenexa, Kansas, 

                     USA and camel liver tissues were obtained  from the local abattoir in  

                     Dubai, UAE. 
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2.2. METHODS 

2.2.1.  Animals  

Six adult horses (12 – 18 years) were used for the study. They were obtained as kind 

donations for the purpose of research after their successful term as race horses. It was 

not possible to obtain others due to excessive expenses in purchasing and upbringing the 

animals. All animals were housed in uniform air-conditioned stable barns (see figure 

2.1.). Horses are large animals and they need sufficient space for movement and 

exercise. Each individual barn measured 16 x 20 feet with floor covered with wood 

shavings to absorb moisture. The horses were given regular walking exercise for 30 

minutes every morning on a 50 meter long dirt track. Maintenance of the horses in air 

conditioned stalls called barns involved medical expenses, the cost of food, water and 

supplements together with appointment of stable attendants called horse grooms. The 

job of the grooms included feeding the horses, exercising them on a daily basis, 

cleaning the barns and collection of biological samples. The Central Veterinary 

Research Laboratory in Dubai, UAE had the facility in terms of space and funds to 

house 6 horses and thus they were used in the study. 

Regular physical examination was performed on each horse by the Local Hospital 

Veterinary Doctor on arrival at the Institution and all the horses were found to be 

healthy. Their weights (mean ± SD) were 474.1±21.7 kg (range 410-500 kg). The 

animals were fed twice a day with hay, alfalfa and grains and they all had free access to 

water. None of the horses had any disease history in their stable records. The study was 

approved by the Animal Ethics Committee of the Central Veterinary Research 

Laboratory in Dubai, UAE and by the Animal Ethics Committee of the University of 

Central Lancashire, Preston, United Kingdom.  
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2.2.2. Drug material 

Etoricoxib, celecoxib and the internal standard zaleplon were donated by M/s r.Reddy‟s 

Laboratories Ltd. Hyderabad, India and Ipca Laboratories Limited, Indore, India. All 

had an assay purity of ≈ 99.8%. Horse liver microsomes were bought from Xenotech, 

USA and the fresh camel liver tissues were obtained from the local abattoir immediately 

after humane killing of the animal. 

2.2.3.  Treatment group and study protocol 

Table 2.1: Details of the in vivo study design 

_______________________________________________________________ 

     Studies          Dosages                    Study drugs                Wash-out period 

_______________________________________________________________ 

      I                    1 mg/kg                    Etoricoxib                         2 weeks 

      II                  0.5 mg/kg                  Etoricoxib                        2 weeks 

     III                  2 mg/kg                   Etoricoxib                          2 weeks 

     IV                  2 mg/kg                   Celecoxib                          2 weeks 

_______________________________________________________________ 

 

2.2.4. Drug administration and sample collection 

The study involved a single oral dose treatment of either etoricoxib at either 0.5 mg/kg, 

1 mg/kg b wt, 2 mg/kg or celecoxib at 2 mg/kg b wt to six horses using a naso-gastric 

tube. The administration of each dose of the drug was done in the presence of a Clinical 

Veterinary Doctor. The drug was mixed in 250 ml of distilled drinking water and 

poured into the tube using a funnel. The funnel was rinsed with another 100 ml of 

drinking water to ensure complete delivery of the drug into the stomach. Feed was 

withheld to these horses 10 hours before and 6 hours after the administration but, water 
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Fig.2.1. A typical photograph showing the race horses housed in stable and employed in 

the study. 
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was made available at all times. A 18 gauge catheter was placed either into the right or 

left jugular vein for collection of blood samples. The study protocol was also approved 

by the Ethics Committees and the drug administration was performed by a qualified 

Veterinarian attached to the Equine Hospital, Dubai, UAE. Blood samples were 

collected into heparinised tubes at 0 (control), 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 8, 24, 48, 

72, 96, 120, 144, 168 hours, respectively. Samples were transported to the laboratory in 

ice cooled boxes within 5 minutes of collection. One portion of the each blood sample 

was subjected to haematology and biochemical studies, while the remaining sample was 

centrifuged, plasma separated and kept frozen at - 20°C until use for drug analysis. A 

custom made diaper was tied to the animal for the collection of urine and faeces was 

collected as nature delivered at the same period of time. Urine and faeces samples were 

collected whenever the animal disposed for seven days after administration and were 

pooled into morning and evening urine and faeces composites and stored at - 20°C until 

used for drug analysis. 

2.3. Measurements of blood-borne biochemical and anion and cation parameters  

       following oral administration of either etoricoxib or celecoxib 

 

Baracho et al. (2009) using Sysmex K-800 previously studied the cardiovascular and 

haematological effects produced by chronic administration of etoricoxib in rats. This 

previously described method was employed in this study with minor modification. In 

this study an attempt was made to investigate the effect of the COX-2 selective 

inhibitors, etoricoxib and celecoxib on the haematological and biochemical parameters 

in samples of horse blood using Sysmex XT-2000i (KOBE, Japan) compared to 

untreated control samples. The instrument employed in the study to undertake the 

measurements was an automated haematology analyzer for animal blood. RBCs and 

 platelet count were analyzed by the RBC detector of the equipment using Hydro 

Dynamic focusing method where cells were counted as they were forced to pass through 
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a small tunnel, causing disruptions in a laser light beam or electricity flow. The analysis 

of  WBC was done by an optical detector block based on flow cytometry.  Haemoglobin 

was estimated by the HBG detector based on the sodium laurl sulfate (SLS) 

haemoglobin detection method. 

Briefly, a volume of 4 ml of horse blood sample for each time point was submitted for 

haematological and biochemical analysis using the SYSMEX XT 2000i haematology 

analyzer. They included red blood cells (RBC), haemoglobin (Hb), packed cell volume 

(PCV), mean cell volume (MCV), mean cell haemoglobin concentration (MCHC), 

platelets (PLT), white blood cells (WBC), neutrophils (NEU), lymphocytes (LYM), 

monocytes (MONO), eosinophils (EOS) and basophils (BASO). All values were 

expressed appropriately against the machine standards as %, g/l, mmol/l etc. 

Similarly, a Hitachi 912 Auto-analyzer was used to estimate the different biochemical 

and clinical parameters in blood while the concentration of each cation  in plasma 

samples was measured using an atomic absorption spectroscopy The principle of the 

equipment method was mainly calorimetric and photometric detections. A small volume 

(4 ml) of each sample of blood was applied to either equipment which  measured the 

concentrations of iron, creatinine kinase (CK), lactate dehydrogenase (LDH), aspartate 

aminotransferase (AST), alanine aminotransferase (ALT), Gamma-glutamyl transferase 

(GGT), alkaline phosphatase (ALP), creatinine (CREA), blood urea nitrogen (BUN), 

total protein (TP), albumin (ALB), magnesium (Mg), calcium (Ca), phosphate (PHOS), 

sodium (Na), zinc (Zn), copper (Cu), potassium (K) and serum amyloid A (SAA) 

against each appropriate respective standard. All values were expressed appropriately 

against the machine standards as %, g/l, mmol/l etc. A typical chart showing the values 

of all blood borne parameters estimated in this study, both prior to administration and 

after administration of either celecoxib or etoricoxib, together with the normal reference 
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values for all haematological and biochemical parameters is shown in the Appendix 

(table 1).  

 2.4. Optimization of the method and extraction of etoricoxib from plasma 

Braeutigam et al. (2003) previously described a detailed method both for the extraction 

and optimization of etoricoxib using solid phase extraction and analysis in human 

plasma by tandem mass spectrometry with electrospray ionisation. Similarly, Rodrigues 

et al. (2003) studied the effect of a single dose administration of etoricoxib and 

characterized its metabolites in plasma, urine and faeces in rabbit. These two methods 

were employed in this study for the extraction of etoricoxib and to study its metabolites 

in plasma, urine and faeces of the horses. In this method and in the present study, 

optimization of the extraction procedure was achieved by extracting positive control 

samples (10, 100 and 200 ng/ml) were spiked either into plasma, urine or faeces and 

extracted to study the selectivity, specificity, recovery, accuracy and precision. This 

initial method was repeated more than 25 times in order to achieve maximum 

optimization of the extraction procedure. 

2.5. Preparation of etoricoxib stock solution and standards for plasma analysis 

The stock solution of etoricoxib was prepared by weighing 1 mg of the reference 

material into a 10-ml volumetric flask and diluting it to volume with acetonitrile and 

deionised water (1:1, v/v) to obtain a concentration of 100 µg/ ml. The working solution 

for etoricoxib was prepared by diluting 100 µl of the stock standard to 100 ml into a 100 

ml volumetric flask with deionised water to obtain a concentration of 100 ng/ml. The 

solution was stable for at least 6 months when stored under light-protected condition at 

4 ºC. 
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Internal standard was prepared by weighing 1 mg of zaleplon into a 100 ml volumetric 

flask and dissolving up to mark to get a concentration of 10 µg/ml with deionised water. 

Furthermore, a volume of 1 ml was pipetted into a 10 ml volumetric flask and made up 

to mark giving a concentration of 1 µg/ml solution of zaleplon. 

About 100 ml of drug free plasma was collected from previously non-administered 

healthy horses, pooled, vortex-mixed and used for the preparation of calibrants. Plasma 

samples as calibrants were prepared at concentrations of 2, 5, 10, 20, 50, 100, 200, 500 

ngs/ml by adding 20, 50, 100, 200, 500, 1,000, 2,000 and 5,000 µl of 100 ng/ml 

etoricoxib to 1 ml plasma. Zaleplon as internal standard (200 µl) was added to each. A 

plasma sample without etoricoxib added into it was used as „0‟ or negative control. 

2.6.  Extraction of etoricoxib from plasma samples  

Briefly, following administration and collection, a volume of 1 ml of each plasma 

sample was extracted using Isolute HCX cartridges (3 ml, 200 mg). Prior to extraction, 

a volume of 200 µl of zaleplon (internal standard 1µg/ml) was added, vortex-mixed and 

centrifuged at 4000 g for 10 min. The extraction cartridges were placed on a 24-place 

vacuum manifold connected to a vacuum suction pump. The pressure was adjusted on 

the guage manually as requested. The cartridge is conditioned with 1 ml methanol 

followed by 1 ml phosphate buffer (pH 6.0). Calibrants and prepared samples were 

cautiously loaded onto the cartridge and allowed to pass through the cartridge under 

gravity or at low vacuum. The cartridge was washed with 1 ml phosphate buffer 

followed by 2 ml 1% acetic acid. Cartridge was dried under vacuum for 5 minutes. The 

analytes were eluted with ethyl acetate – ammonia (98:2). The solvent was evaporated 

under a stream of oxygen free nitrogen in a Zymark TurboVap at 56ºC. The residue was 

reconstituted in 50 µl mobile phase. The negative control and the 2, 5, 10, 20, 50, 100, 

200, 500 ngs/ml drug spiked plasma (calibrants) were run on an LC/MS/MS in selected 
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reaction monitoring mode. The area of the drug divided by the area of the internal 

standard was calculated and a plot of a standard graph curve, abundance verses 

concentration was plotted. A typical standard curve with real calculations is shown in 

the Appendix (table 2).  

2.7. Etoricoxib extraction recovery, assay precision and accuracy 

The extraction recovery of etoricoxib from plasma was evaluated in triplicates at three 

concentrations (10, 100 and 200 ng/ml) by comparing the peak areas of etoricoxib and 

zaleplon to the  peak areas of corresponding compounds in samples prepared by spiking 

extracted drug free plasma with the same amount of compound.  

Within-day accuracy and precision were evaluated by analysis of quality controls at 

concentrations of 10, 100 and 200 ng/ml (n=5 at each concentration) on the same day. 

The same experiment was repeated on three different days to assess the between-day 

accuracy and precision. Accuracy was calculated as the percentage ratio of measured 

concentration to nominal concentration. Precision was expressed as the coefficient of 

variation. The lower limit of quantification (LLOQ) of the assay was also determined 

during this process. 

2.8. Extraction of etoricoxib and metabolites from urine samples  

Samples 0 (control), 1  to 12, 12- to 24, 24- to 36, 36- to 48, 48- to 60, 60- to 72, 72- to 

84, 84- to 96, 96- to 108, 108- to 120, 120- to 132, 132- to 144, 144- to 156, 156- to 168 

hours collection intervals were thawed at room temperature and mixed thoroughly using 

a rota-mixer. Thereafter, a volume of 10 ml of urine from each time interval was 

adjusted to pH 5.2. A volume of 100 µl of β-glucuronidase solution (10,000 Fishman 

units, raw extract from Helix pomatia, (SIGMA ALDRICH) was added to each tube and 

incubated overnight at 37°C. in an incubator.  
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Figure 2.2 Photograph showing the THERMO FINNIGAN TSQ ACCESS       

LC/MS/MS 
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After incubation, the samples were adjusted to pH 6.2, centrifuged at 4000 g for 20 

minutes. A Zymark Rapidtrace solid phase sample extraction module was used to 

extract urine samples. Isolute HCX cartridge was sequentially preconditioned with 

methanol and 0.1 M phosphate buffer (pH 6.0). A volume of 5 ml of the urine sample 

was loaded to the cartridge at a rate of 0.02 ml/sec. The cartridge was then washed with 

1 ml of 0.1M phosphate buffer (pH 6.0) followed by 1ml of 1M acetic acid. Thereafter, 

the extraction cartridge was dried under oxygen free nitrogen (OFN) for 4 minutes and 

eluted with 5 ml of freshly prepared ethylacetate :  ammonia (98:2). The eluant was then 

transferred to a clean kimble tube and dried under OFN at 56°C. 

 2.9. Extraction of etoricoxib from faeces 

Faeces samples were thawed at room temperature, an amount of 10 grams of the sample 

was accurately weighed and dissolved in 10 ml distilled water and thoroughly vortex-

mixed for 10 minutes and then centrifuged at 5000 g for 20 minutes. A volume of  10 

ml of the clear liquid was adjusted to pH 5.0 and 100 µl of β-glucuronidase solution 

(10,000 Fishman units, raw extract from Helix pomatia, SIGMA ALDRICH) was added 

to each tube and incubated overnight at 37°C. in an incubator. The pH was adjusted to 

pH 6.2 and drugs were extracted by solid phase extraction using ISOLUTE HCX 

cartridges. Zaleplon was used as an internal standard. 

2.10. Determination of etoricoxib concentrations 

A THERMO FINNIGAN TSQ QUANTUM ACCESS LC/MS instrument operated in 

the positive ion ESI mode was used in the quantification of the parent drug and its 

metabolites in plasma, urine and faeces. Chromatographic separation of the extracted 

plasma, urine and faeces sample was performed using a THERMO HYPERSIL C18 

column (10 x 2.1 mm I.D., 5 µm particle size).The LC mobile phase consisted of 

acetonitrile : 0.1% formic acid, was run as a gradient and the total run time was 10 
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minutes. Quantification was performed by selected ion monitoring (SIM) or selected 

reaction monitoring (SRM) of the protonated precursor ion and the related product ion 

for etoricoxib and its metabolites using the internal standard method with peak area 

ratios and a weighing factor of 1/x.  

Authentic standard of etoricoxib (M+H) ion at m/z 359 was available to support the 

characterization of parent etoricoxib in the blood, urine and faeces samples. The 

collision cell of the mass spectrometer was set to scan for the possible hydroxylated 

metabolite (M+16), carboxylation (M+32), oxidation (M+30) and glucuronic acid 

metabolite (M+176) of etoricoxib.  

2.11. Assay procedure for celecoxib 

Braeutigam et al. (2001) previously reported a solid phase extraction method coupled 

with liquid chromatography tandem mass spectrometry for the detection of celecoxib in 

human plasma. Similarly, Paulson et al., (2000a) had earlier studied the metabolism and 

excretion of 
14

C celecoxib in plasma, urine and faeces of healthy male volunteers. These 

two methods were employed in the study on celecoxib.  

2.12. Preparation of stock solution of celecoxib and internal standard 

The stock solution was prepared by dissolving 10 mg of celecoxib in acetonitrile into a 

10 ml volumetric flask to give a concentration of 1 mg/ml. This was stored at 4 ºC. 

Acetonitrile was further added to the stock solution to obtain working standard 

concentrations of 100, 10 and 1 µg/ml. Zaleplon (1 µg/ml) was used as internal 

standard. Appropriate calibration standards were prepared at a concentration of 10, 20, 

50, 100, 500 ng/ml  in 1 ml plasma.  A volume of 200 µl of internal standard was added 

to each test sample and calibration standard plasma sample. 
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2.13. Extraction of celecoxib from plasma samples 

The administration and calibration plasma samples were extracted using WATERS 

SepPak C18 cartridges (500 mg, 3 ml). Briefly, the C18 cartridge was conditioned with 3 

ml of methanol followed by 3 ml of 0.1 M potassium dihydrogen phosphate (KH2PO4, 

pH 6.0).  A volume of 1 ml plasma was applied on to the bed of the cartridge and passed 

under slow vacuum. The column was rinsed sequentially with 1 ml 0.1 M KH2PO4, pH 

6.0 : methanol (90:10) and 1 ml 1.0 M acetic acid. Following drying for 2 minutes, the 

drug and its metabolites were eluted with 4 ml dichloromethane. The organic solvent 

containing celecoxib–related materials was dried under gentle flow of nitrogen on a 

CALIPER TurboVap at 40 ºC. The residue was reconstituted in 50 µl mobile phase. 

2.14. Celecoxib extraction recovery, assay precision and accuracy  

The extraction recovery of celecoxib from plasma was evaluated in triplicates at three 

concentrations (10, 100 and 200 ng/ml) by comparing the peak areas of celecoxib and 

zaleplon to the  peak areas of corresponding compounds in samples prepared by spiking 

extracted drug free plasma with the same amount of compound. 

Within-day accuracy and precision were evaluated by analysis of quality controls at 

concentrations of 10, 100 and 200 ng/ml (n=5 at each concentration) on the same day. 

The same experiment was repeated on three different days to assess the between-day 

accuracy and precision. Accuracy was calculated as the percentage ratio of measured 

concentration to nominal concentration. Precision was expressed as the coefficient of 

variation. The lower limit of quantification (LLOQ) of the assay was also determined 

during this process. 
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2.15. Extraction of urine and faeces for celecoxib metabolite profiling 

Urine samples were pooled as „0‟ hour (control), 1-12, 12-24, 24-36, 36-48, 48-60, 60-

72, 72-84, 84-96, 96-108, 108-120, 120-132, 132-144, 144-156 and 156-168 hours. An 

aliquot of 10 ml of each urine sample was adjusted to pH 5.2. Approximately, 10,000 

Fishman units of β-glucuronidase was added and incubated at 37 ºC in an incubator 

overnight. 

An amount of 10 grams of faeces was weighed and to it 10 ml of distilled water added, 

mixed thoroughly on a magnetic stirred for 15 minutes. Then the slurry is poured into a 

15 ml centrifuging tube and centrifuged at 4000 g for 15 minutes. A volume 7 ml of the 

top clear liquid was adjusted to pH 6.2 and enzyme- hydrolyzed at 37 ºC in an incubator 

overnight. 

The enzyme hydrolysed samples were centrifuged and to 5 ml of urine or 5 ml of 

faeces, a volume of 300 µl of zaleplon (1 µg/ml) was added as internal standard. 

Samples were loaded onto WATERS SepPak C18 cartridge after conditioning with 

methanol and 0.1M KH2PO4 (pH 6.0). The cartridge was washed with 1 ml 0.1M 

KH2PO4 (pH 6.0): methanol (9:1) and 1 ml of 1.0 M acetic acid and dried under vacuum 

for 2 minutes. The cartridge was eluted with 4 ml of dichloromethane, dried and 

reconstituted with 50 µl of the mobile phase. 

2.16. LC-MS-MS conditions for celecoxib administration samples 

The LC unit consisted of a THERMO FINNIGAN LCQ DECA XP instrument 

connected to a Surveyor auto-sampler and Surveyor LC pump. Chromatographic 

separation of the extracted plasma, urine and faeces sample was performed using a 

THERMO HYPERSIL C18 column (10 x 2.1 mm I.D., 5 µm particle s i z e ) .  The 
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mobile phase consisted of acetonitrile : 0.1% formic acid in water, run in a gradient 

mode. The mass spectrometer was operated in the negative ion mode performing 

product ion scans for celecoxib and its metabolites. Celecoxib standard was available to 

characterize the M-H ion of celecoxib (m/z 380) in plasma, urine and faeces. Screening 

for the possible metabolites, namely hydroxyl, carboxylic acid and glucuronide of the 

carboxylic acid metabolite was also performed. 

2.17. Pharmacokinetic Methods 

The plasma concentration of etoricoxib and celecoxib, and actual sampling times 

relative to the drug dose, were employed to estimate the pharmacokinetic parameters for 

each treatment in each horse. The AUC0-t was the area under the plasma concentration-

time curve from time 0 to time of the last quantifiable concentration after a single dose, 

calculated using the linear trapezoidal rule.  

The Cmax was the maximum plasma concentration observed and Tmax was the time at 

which Cmax was obtained by inspection of the concentration – time data. The terminal 

t1/2 was estimated from the best fit parameters of a single exponential to the log-linear 

portion of the plasma concentration-time curve.  

2.18. In vitro drug metabolism using either commercial horse haepatocytes or   

          isolated camel liver fragments 

 

Hill (2003) previously described an in vitro protocol for the measurement of compound 

metabolic stability using liver microsomes and the method is used in the  current study. 

Commercial horse liver microsomes were obtained bought from Xenotech USA at a 

concentration of 20 mg/ml of protein. In this study, all the incubations were performed 

in duplicates in a shaking water bath at 37ºC. The experimental protocol was the 

following - an amount of 1.9 mg of celecoxib or 1.79 mg of etoricoxib were weighed 
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and dissolved in 5 ml of DMSO to obtain a final concentration of 1 mM. The 

incubations were carried out by the addition of  0.1 M sodium phosphate buffer (pH 7.4, 

432 µl) containing  13 µl microsomes, 5.0 mM MgCl2 (5 µl) and 10 mM NADPH (50 

μl) to each sample of either etoricoxib or celecoxib previously dissolved in DMSO. 

Briefly, the incubation mixture components, except NADPH, were premixed, and the 

resulting mixture was kept at room temperature for 3 minutes. The incubations were 

commenced by addition of NADPH. The experiment involved incubation of liver 

microsomes for either 0 (control), 30, 60, 90, 120, 150 or 180 minutes with either drug 

and the cofactor NADPH. At exact time intervals, particular experiment vials were 

removed, the reactions were stopped with 100 μl of ice cold methanol and centrifuged at 

4000 g for 20 minutes. The clear aqueous layer was dried under a stream of nitrogen 

and subjected to LC/MS analysis as previously described in section 2.11 and 2.19 of the 

method described above. 

2.19. Metabolic study using fresh camel liver 

Fresh camel liver was obtained from the local abattoir immediately after humanely 

killing the animal for food consumption. They were placed onto an ice cold saline  

solution and transported to the laboratory. The liver tissues were cut into small 

fragments of 5 mm thickness and incubated with either celecoxib or etoricoxib as 

described in section 2.18.  

2.20. Statistical analysis of data 

All pharmacokinetic and blood-borne biochemical parameters were presented according 

to descriptive statistics as either  mean ± standard deviation (mean ± SD) or as mean ± 

standard errors of the mean (mean ± SEM). Where appropriate, linear regression and 

correlation analysis was applied to find the relationship between peak area ratios and  
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drug concentrations. Test (drug treated) and control (non drug treated) values were 

compared using Student‟s t-test and/ or ANOVA test. A value of p<0.05 was taken as 

significant. 
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ANIMAL CHARACTERISTICS, 

HAEMATOLOGICAL AND BIOCHEMICAL 

FACTORS IN BLOOD FOLLOWING ORAL 
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3.1. INTRODUCTION 

Both celecoxib and etoricoxib belong to coxib class of non steroidal anti-inflammatory 

drugs (NSAIDs) used in the treatment of pain in osteoarthritis in humans (Bingham et 

al., 2007). These two COX-2 NSAID drugs have the potential role to reduce pain and 

inflammation together with reduced gastrointestinal risks when compared to other 

pharmacologically-related drugs. Changes in the blood borne parameters following oral 

administration of such common NSAIDs like phenylbutazone and flunixin have been 

demonstrated previously in horses (Ansay, 1983).  

To date, no proper studies have been done in large animals such as horses measuring 

blood-borne clinical parameters as well as any possible development of stomach ulcers 

that may occur in the animals following oral administration of either etoricoxib or 

celecoxib employing physiological doses.. Therefore, the first part of the study was 

designed to investigate the effects of the two COX-2 inhibitors, etoricoxib and 

celecoxib examining the stomach for ulcer formation and  measuring the levels of a 

number of blood-borne biochemical parameters including  RBC, WBC, platelets, MCV, 

MCH, haemoglobin, albumin, lipids, liver and kidney function enzymes,  ions (chloride, 

phosphate, Na
+
, K

+
, Mg

+
, Ca

2+
,  Zn

2+
, 

+
 and Cu

2+
)  and anions (Cl

-
 and phosphate)

 

following oral administration of each coxib to the six retired race horses employing 2 

mg/kg b wt of either etoricoxib or celecoxib.  

3.2 METHODS 

As described in Chapter 2. 
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3.3. RESULTS 

3.3.1 Animal characteristics:  

This study employed 6 healthy retired race horses (2 normal males, 2 castrated males 

and 2 female). The mean (± SEM) weight of the 6 horses was 474.1±21.7 kg. The 

results show that within the 3 - 4 years of the study, the weight of each horse remained 

more or less the same. From eye observations and reports from the local Veterinary 

Surgeon, all the horses were of good health and they show no symptoms or signs of 

diseases or distress. The ages vary from 12 - 18 years (15.1 ± 2.6 years; n = 6). 

Moreover, the temperature of each horse was measured on a regular basis (either daily 

or weekly) and it was found to be 37.0 ± 1.3ºC). Endoscopic examination of the 

stomach of each horse either before or 15 days after continuous oral administration of 

either celecoxib or etoricoxib show that there was no significant or detectable change in 

the mucosa of the stomach wall (Figure 3.1 b & d, treated) compared to untreated horses 

(Figure 3.1 a &c). Further figure 3.2., shows the development of deep ulcers after 

continuous drug administration to a race horse. 

3.4. Measurement of haematological and biochemical parameters 

Blood samples were collected from each horse prior to administration of either 2 mg/kg 

etoricoxib or 2 mg/kg celecoxib and after the administration of each drug over a period 

of 120 hours or 5 days. These two doses were selected for treatment based on the 

previous studies in humans (Agrawal et al., 2003a; Paulson et al., 2001). Initial study 

showed no marked differences in the measured haematological and biochemical blood -

borne parameters with either 2 mg/kg etoricoxib or 2 mg/kg celecoxib over the study 

period. Thus, all the samples were analyzed and the data pooled and presented below 

for both drugs.   
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Figure 3.3 shows the effect of  oral administration of etoricoxib and celecoxib on the 

concentrations of  different blood parameters including red blood corpuscles (RBC), 

packed cell volume (PCV), eosinophils (EOS), monocytes (MONO), haemoglobin (Hb), 

and basophils (BASO). The results show that both NSAIDs had no significant effect on 

these haematological parameters compared to untreated condition (p>0.05).  

Figure 3.4 shows the effect of oral administration of  etoricoxib and celecoxib on the 

concentrations of such blood borne parameters as total white blood cell (WBC), mean 

cell haemoglobin (MCH), mean cell haemoglobin concentration (MCHC), lymphocytes 

(LYM), mean cell volume (MCV), neutrophils (NEU) and platelets (PLT). Like figure 

3.2., the data show no significant (p> 0.05) change in the different blood parameters 

comparing untreated (no drug) condition with treated (drug) condition in the presence of 

the NSAIDs. 

Figure 3.5 shows the effect of oral administration of etoricoxib and celecoxib on such 

blood borne biochemical parameters as creatine kinase (CK), lactate dehydrogenase 

(LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-

glutamyl transpeptidase( GGT), creatinine (CREA), blood urea nitrogen (BUN), total 

blood plasma protein (TP) and albumin (ALB). Again, the results clearly show that the 

oral administration of the two NSAID drugs had no significant (p> 0.05) effect on these 

measured blood-borne markers and mediators comparing the values obtained prior to 

administration of the drug to the horses except for creatinine. The data showed a small, 

but a significant (p<0.05) increase in blood creatinine concentration following 

administration of the two NSAIDs compared to untreated conditions. 

Figure 3.6 shows the effect of oral administration of etoricoxib and celecoxib on blood 

plasma levels of either calcium (Ca
2+

), phosphate (Phos), sodium (Na
+
), potassium (K

+
),  



 

[84] 

 

chloride (Cl
-
), copper (Cu

2+
), zinc (Zn

2+
) and serum amyloid a (SAA). The results 

clearly show oral administration of etoricoxib and celecoxib had no significant (p> 

0.05) changes on the concentrations of the different cations and anions as well as SAA 

measured in plasma compared to values obtained prior and after administration of the 

two NSAIDs. 

Since the pooled data showed a significant increase in blood creatinine levels following 

the administration of the two coxib drugs, it was decided to show the whole time course 

data for the two NSAIDs. Figure 3.7A shows the time course changes in the plasma 

levels of creatinine prior to (0 hour) and following administration (1 – 120 hours) of 

either 2 mg/kg etoricoxib or 2 mg/kg celecoxib. Figure 3.7B shows the combined data 

after pooling all the time point results for pre and post administration of the two 

NSAIDs. These results clearly show that etoricoxib can elicit a significant (p>0.05) 

increase in plasma creatinine levels, especially between 1 and 12 hours following oral 

administration, compared to control (before administration of the drug). Following the 

time, plasma creatinine levels decrease to almost normal levels seen in pre-

administration samples after 12 hours following administration. In contrast, celecoxib 

had little or no effect on the plasma creatinine levels compared to untreated controls 

(Figure 3.7 A/B). 
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Fig.3.2. Extensive deep ulceration in a race horse after continuous 

medication. (taken from www.egus.com) 
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Figure 3.3: Bar charts showing the blood concentrations of RBC (10
12

/L), PCV (L/L), EOS (%), MONO (%),  

Hb (G/dL), BASO (%) in pre admin and post administration of etoricoxib (2 mg/kg b wt) and celecoxib (2 mg/kg b wt) in horses.  

Data are mean ± SEM, n =12 (combined data). Note that p>0.05 for administration of the drugs compared to untreated pre-administration condition. 
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Figure 3.4: Bar chart showing the plasma concentrations of WBC (10
9
/L), MCH (pg), MCHC (g/dL),  LYM (%), MCV (fL), NEU (%), PLT (10

9
/L) in 

pre admin and post administration of etoricoxib (2 mg/kg b wt) and  celecoxib (2 mg/kg b wt) in horses. Data are mean ± SEM, n =12 (combined data). 

Note that p>0.05 for administration of the two NSAIDs compared to non-treated/pre-administration condition. 
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Figure 3.5: Bar charts showing the plasma concentrations of CK (U/L), LDH (U/L), AST (U/L), ALT (U/L), GGT (U/L),  

CREA (µmol/l), BUN (mmol/l), TP (g/l) and ALB (g/l) in pre administration and post administration of etoricoxib (2 mg/kg b wt) and  

celecoxib (2 mg/kg b wt) in  6 horses. Data are mean ± SEM, n =12 (combined data). Note that p > 0.05 for the oral administration  

of the two NSAID drugs compared to untreated  conditions except for creatinine where p<0.05. 
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Figure 3.6:  Bar charts showing the plasma  sample concentrations of Ca
2+

 (mmol/l), PHOS (mmol/l), Na
+
 (mmol/l), K

+
 (mmol/l), Cl

-
 (mmol/l),  

Cu
2+

 (µmol/l), Zn
2+

 (µmol/l) and  SAA (µg/ml), in pre administration and post administration of  2 mg/kg b wt etoricoxib and 2 mg/kg b wt celecoxib 

in  6 horses.  Data are mean ± SEM, n =12 (combined data), p>0.05 for post administration compared to untreated or pre-administration data. 
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Figure 3.7: (.A) Time course changes in the plasma levels of creatinine either before  (0 hour) or after the oral administration of either 2 mg/kg b wt 

etoricoxib or 2 mg/kg b wt celecoxib in horses. B. Bar charts showing the plasma levels of creatinine either before or after administration of either  

celecoxib or etoricoxib. In figure 3.6B all the data for the different time points were combined for each NSAID. Data in (A) and (B) are mean ± 

SEM, n=6        p<0.05 for post administration compared to pre-administration of etoricoxib but not celecoxib.   
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3.5. Discussion 

This study was designed to investigate the effects of oral administration of the two 

COX-2 inhibitors, etoricoxib and celecoxib in horses, measuring their adverse effects, if 

any, on the well being of the animals, ulcer development in the stomach and on a 

number blood borne haematological and biochemical parameters including whole 

blood, plasma enzymes and ions. NSAIDs are the most widely prescribed class of anti-

inflammatory drugs to treat pain and fever (Meek et al., 2010). The major 

pharmacological effect of the NSAIDs is to inhibit the activity of COX enzymes 

resulting in the decreased levels of pro-inflammatory prostaglandins. One major side 

effect of NSAIDs is the formation of ulcers in the stomach (Thiefin, 2005). There are 

different types of NSAIDs including the common aspirin and aspirin- like drugs which 

exert their effects by inhibiting the COX enzyme production, but in doing so they also 

inhibit COX-1 enzyme frequently called the house keeping enzyme giving protection to 

the stomach mucosa. Many new class of NSAIDs are now being developed that spare 

the COX-1 enzyme, thus protecting the stomach lining from formation of ulcers and 

bleeding (Dannhardt, 2002).      

This study has employed six retired race horses of ages between 12-18 years and 

weighing around 474.1 ± 21.7 kg. The horses were administered with the NSAID orally 

and subsequently, blood samples were collected either before oral administration of the 

drug or after the administration of the drug over a period of 120 hours or 5 days. The 

results of this study have clearly shown that either NSAID drug had no significant effect 

on either the weights of the horses or the well being over the experimental period. 

Moreover, the endoscopic data also show that either drug had any detectable effect on 
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the mucosal lining of the stomach following continuous administration of the drug for 

15 days. 

 The two physiological concentrations of the drugs (2 mg/kg of etoricoxib and 2 mg/kg 

of celecoxib employed in this study) have previously been used in other studies using 

the equivalent dose to the weight of the animal employing either rats (Behal et al., 

2009) or humans (Schwartz et al., 2007). In these previous studies, it was demonstrated 

that administration of either celecoxib or etoricoxib had no detectable effect on the 

stomach lining (mucosa of the stomach). These doses (concentration vs animal weight) 

are considered to be safe in inhibiting COX and in reducing prostaglandin levels in the 

animals and at the same time they can reduce fever and inflammation (Modi et al., 

2012).  

The results presented in this study have also shown that either 2 mg/kg etoricoxib or 2 

mg/kg celecoxib had no detectable effect either on haematological and blood-borne 

biochemical parameters compared to untreated conditions, except for creatinine. The 

data presented in this study have shown that RBC and different types of WBC remained 

more or less the same prior to the administration of each NSAID or over a period of 120 

hours following the administration of either of the NSAID. In addition, haemoglobin 

content, the number of platelets, blood urea nitrogen, albumin, total protein, creatine 

kinase, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, 

alkaline phosphate, serum amyloid A and gamma-glutamyl transpeptidase levels remain 

the same comparing values obtained before administration of each drug and post 

administration of the drug. Similarly, the plasma concentration of some anions like 

phosphate and chloride and cations as sodium, potassium, calcium, magnesium, zinc 

and copper remain more or less the same comparing pre-administration with post 
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administration. These results are more or less similar to those obtained by other studies 

employing either human or different animal species including rats (Behal et al., 2009). 

The present study has clearly shown that etoricoxib, but not celecoxib can elevate 

plasma creatinine levels compared to untreated (non drug) samples. This increase was 

more marked, 1-12 hours following etoricoxib administration. This increased level is 

within the reference range (88-177 µmol/L) but more at the upper level (Zapata et al., 

2005). This is an interesting finding since only etoricoxib can elevate plasma creatinine 

and not celecoxib. The reason for this difference is not known.  

Plasma  creatinine play a major role in determining kidney function test (Morris et al., 

1982). A high level denotes a tendency for kidney damage compared to normal values 

(Morgan et al., 1977), but this value was not pathological. However, it suggests that 

care has to be taken when administering a high dose of etoricoxib to horses. The data 

also suggest that the animals can probably tolerate celecoxib much better than 

etoricoxib, since 2 mg/kg bwt of celecoxib had no effect on blood creatinine levels 

compared to untreated condition. In this study only 2 mg/kg b wt of etoricoxib was used 

for the oral administration. It may be worthwhile to ascertain whether a high dose of 

etoricoxib can induce larger increase in plasma creatinine.  

Apart from the small, but significant increase in plasma creatinine following the oral 

administration of etoricoxib, compared to untreated condition, the present results show 

that the two NSAIDs are safe to be used in horses at least in the concentrations 

employed in the study. Moreover, they do not seem to have any adverse effects on 

either the stomach mucosa or the blood and its different components, including 

haemoglobin, liver and kidney functions, gastrointestinal tract, muscles and cation and 

anion imbalance in the body. In a previous study employing rats, it was demonstrated 
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that etoricoxib at both low anti inflammatory therapeutic (0.64 mg/kg b wt) and high 

pharmacological doses (1-3 mg/kg b wt) help to replenish protective cells in the colon 

via changes in nitric oxide (NO) metabolism. Moreover, these two doses did not 

interfere with both the growth and the health of the animals as well as functional 

parameters of the kidneys and colon (Behal et al., 2009). 

In other studies, it was demonstrated that chronic administration doses (10 mg/kg b wt 

and 30 mg/kg b wt) of etoricoxib to rats can produce marked adverse effects on blood 

pressure and other haematological parameters. The significant elevation in mean arterial 

blood pressure was associated with concurrent increases in RBC, platelets, haematocrit 

and haemoglobin (Baracho et al., 2009; Tacconelli et al., 2004). Together, the results 

obtained in the present study and those from the previous studies have clearly shed light 

on the correct anti inflammatory therapeutic dose of the NSAID when administering 

them to animals, including humans and horses. 

Although nonsteroidal anti-inflammatory drugs are widely used to control pain because 

of their efficacy and safety profile, there are concerns about their safety on long term 

usage. A vast majority of healthy human subjects have been found to tolerate the drug 

without adverse effects while, a minor percentage of individuals are susceptible to 

serious renal toxicity (Bennett et al., 1996). The liver is the major organ for metabolism 

and the kidney plays a major part in the concentration and elimination of xenobiotics 

and is more susceptible to their toxic effects. These adverse events are manifested by 

elevation serum creatinine and blood urea nitrogen leading to permanent damage of 

kidney tissues in persons who have abused analgesic mixtures for many years (Dunn, 

1984). All NSAIDs inhibit cyclooxygenase, the enzyme that is required for the 

conversion of arachidonic acid into prostaglandins. These prostaglandins are involved in  
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the inflammatory process and are also present in the kidneys where they balance the 

effects of vasoconstrictions by causing vasodilatation leading to renal blood supply and 

glomerular filtration. In case of renal toxicity due to NSAIDs, the renal blood flow is 

decreased, which results in decreased glomerular filtration.  

In normal steady-state conditions, the daily urinary creatinine excretion is equal to daily 

creatinine production. In situations of renal toxicity due to NSAIDs, the glomerular 

filtration rate falls, with subsequent diminished excretion of creatinine resulting in a rise 

in serum creatinine concentration (Perrone et al., 1992). An elevation of serum 

creatinine occurs within 24 hours of exposure to the NSAID and falls back to normal 

levels after complete excretion or discontinuation of the drug (Garella & Matarese, 

1984). Several drugs such as salicylates, cimetidine, corticosteroids and vitamin D 

metabolites have been reported to increase plasma creatinine levels without influencing 

its glomerular filtration (d‟Agate, 1996; Baylis et.al., 1979; Compston et al., 1979; 

Dubb et al., 1978). 

The incidence of NSAID-induced renal complications are relatively low and are 

typically fully reversible if the offending NSAID is discontinued. The cardinal signs of 

NSAID-associated neprotoxicity are an elevated serum creatinine and blood urea 

nitrogen with diminished urine volume and a swift and timely discontinuation will 

reverse the condition to normal levels, if not the syndrome may progress rapidly, 

necessitating dialysis (Blackshear et al., 1985). The selective COX-2 inhibitors are a 

unique and relatively new class of NSAID, commonly prescribed for pain relief mostly 

for symptoms of rheumatoid and osteoarthritis in patients with gastritis and peptic 

ulcers. Most trials, comparing selective COX-2 inhibitors with traditional NSAIDs, 
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emphasis has been directed to the gastrointestinal safety and the renal safety profile 

study is generally excluded or not studied (Rifkin & Perazella, 2005). 

Brater et al., (1985) studied the effect of ibuprofen, naproxen and sulindac in men and 

concluded that these traditional NSAIDs did not have any altered renal effects at  doses 

of 600 mg, 375 mg and 200 mg, respectively on observing the values of blood urea 

nitrogen and serum creatinine in eleven healthy human volunteers. Similarly, Whelton 

et al., (1990) studied the renal effects of ibuprofen, at doses of 800 mg three times daily; 

piroxicam, 20 mg daily; and sulindac, 200 mg twice daily for 11 days in patients with 

asymptomatic renal failure. Serum creatinine, effective renal plasma flow, glomerular 

filtration rate, systemic drug kinetics and peripheral blood platelet thromboxane B2 

production were monitored. They concluded that ibuprofen; the widely used 

nonprescription drug increased the serum creatinine level from day 2, which may lead 

to acute renal failure, thus, leading to discontinuation of the trial. Thereafter, serum 

creatinine levels decreased and approached to baseline levels. Moreover, no statistically 

significant changes in serum creatinine, glomerular filtration rate were observed in 

piroxicam and sulindac administration.  

More recently, acetaminophen has been found in some patients to develop 

asymptomatic aminotransferase elevation with more than five days of treatment. 

Incidentally, no published prospective studies of liver injury has been reported (Watkins 

et al., 2006). Dixit et al.,(2010) reported that 15 patients studied at The University 

Medical Center, Tucson, USA, had abnormal serum creatinine levels after ingesting 

recommended dose of NSAIDs and took 37 ± 42 days for the normalization of serum 

creatinine levels after discontinuation of the administration. 
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Several case reports of renal toxicity in adolescents using NSAID have been reported by 

Nakahura et al., (1998). These are very particular with the use of ibuprofen 

intermittently for 9 months, in another case the use of ibuprofen daily for 6 months and 

in the third case, the use of a combination of naproxen for a week, followed by 

ibuprofen for several weeks and ketorolac intermittently for 4 months. All these case 

reports were asymptomatic for a week and later developed an increase in serum 

creatinine leading to chronic interstitial fibrosis of the kidney. The nephrotoxicity was 

resolved within 2 months with the withdrawal of these non-salicylated NSAID. 

Sturmer et al., (2001) in their study on 802 patients undergoing joint replacement 

therapy estimated renal function using serum creatinine levels and suggest that users of 

NSAIDs with a short half-life (less than 4 hours) were not more likely to have impaired 

renal function, whereas use of NSAIDs with longer half-life (4 hours or longer) are 

more prone to impaired renal function.  

Hegazy et al., (2011) studied the cardio-renal effects of the newer NSAID celecoxib in 

seven hundred and ninety two patients with arthritis, administering celecoxib 400 mg 

twice daily compared with 396 patients taking ibuprofen 300 mg three times a day. 

They report that celecoxib had lower incidence of hypertension and edema compared to 

ibuprofen. Serum creatinine was significantly increased in patients treated with 

ibuprofen in comparison with celecoxib. In another report with dipyrone, it was found 

to cause acute renal insufficiency in children with increased levels of urea, creatinine 

and other electrolytes within 1 week of drug exposure and normalization of serum urea 

and creatinine was achieved within 3-16 days after discontinuation (Abu-Kishk et al., 

2010). 
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Zhao et al.,(2001) compared the renal related adverse reactions of rofecoxib and 

celecoxib based on adverse drug reactions in the World health Organization/Uppsala 

Monitoring Centre and report that as with traditional NSAIDs, both rofecoxib and 

celecoxib were associated with renal related adverse drug reactions. However, rofecoxib 

had showed a significant increase in serum creatinine (2.38 vs 0.70; P<0.01) compared 

to celecoxib resulting in withdrawal of celecoxib from the Australian market to adverse 

renal effects.  

In a controlled arthritis trial with 5000 patients over a two year period, celecoxib 

showed no increase in both serum creatinine concentration and blood urea nitrogen. 

Thus, it was concluded that celecoxib is well tolerated by patients having a risk for 

NSAID-induced renal toxicity, such as the elderly and those with hypertension 

(Whelton, 2001). 

Two large studies such as the CLASS and VIGOR has concentrated on the comparative 

gastrointestinal safety and renal adverse reaction of the coxibs and the non-selective 

NSAIDs. In the CLASS study, celecoxib (400 mg twice daily) was compared with 

diclofenac and ibuprofen in the treatment of osteo and rheumatoid arthritis. It has been 

reported  that a small proportion of patients developed renal impairment as judged by an 

increase in serum creatinine to over 159 µM compared to an higher incidence in patients 

taking either diclofenac or ibuprofen (Silverstein et al., 2000b). Similarly VIGOR study 

compared rofecoxib (50 mg ) and naproxen (500 mg twice daily) and reported that 

adverse reactions related to renal function were not significantly different in both 

administration trials (Bombardier et al., 2000) 
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Curtis et al., (2004) studied the renal effects of etoricoxib (60, 90, 120 mg) versus 

naproxen (500 mg/ twice daily), ibuprofen (800 mg/thrice daily) and with that of 

placebo in about 4,700 patients between June 1999 and November 2000. These authors 

conclude that there was no clinically meaningful dose related incidence of elevated 

serum creatinine in patients receiving etoricoxib irrespective of the dose. Furthermore, 

they report that the risk of renal adverse events were low when compared with naproxen 

and ibuprofen. 

Thus, in conclusion, the results of the present study have shown that low anti-

inflammatory therapeutic doses of either celecoxib or etoricoxib can produce virtually 

no adverse effects on the six retired race horses employed in the study. Based on the 

present findings, it can be concluded that the two specific COX-2 inhibitors, celecoxib 

and etoricoxib are safe drugs to use at therapeutic doses to treat pain, at least in horses. 
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CHAPTER – 4 

 

 

PHARMACOKINETICS AND METABOLISM 

OF CELECOXIB AND ETORICOXIB IN 
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4.1. INTRODUCTION 

NSAIDs are valuable analgesic therapeutic agents that are widely prescribed worldwide 

for the relief of pain in spite of significant health burden due to their problematic side 

effects (Stevenson, 1984). Gastro-protective agents are generally used to decrease their 

harmful toxicity. The advent of COX-2 class of drugs offer better tolerance and efficacy 

compared to traditional NSAIDs (Antman et al., 2007). Etoricoxib and celecoxib are 

two new generation COX-2 inhibitors in the market for pain relief in conditions of 

severe osteoarthritis (Turner et al., 2004). The pharmacokinetics and metabolism of 

these two drugs have been well established at least in humans and to some extent in 

small animals such as rats and rabbits (Radwan et al., 2012;Vadnerkar et al., 2006),  but 

there is limited scientific information on the therapeutic usage of these two NSAIDs in 

large animals like horses and camels, which are involved in the racing industry. As 

such, it would be meaningful to study both their pharmacokinetics and metabolism in 

horses. In turn, this could lead to possible detection in post race blood or urine samples. 

Moreover, the results may give a guideline to the racing industry, the owners of the race 

horses and the Veterinary Clinical Doctors of a possible withdrawal times using these 

human medications in horses before the race. As such, this study investigated the time 

course changes in the pharmacokinetics and metabolism of the two NSAIDs, celecoxib 

and etoricoxib for comparison, 

4.2. Method 

As described in chapter – 2 
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4.3. Results 

4.3.1. Optimisation of extraction method for celecoxib and etoricoxib 

The detailed method for the extraction of celecoxib and etoricoxib is described in 

chapter -2 of this thesis. The procedure for extraction is based on literature published by 

Braeutigam et al., (2001) for celecoxib and by Braeutigam et al., (2003) for etoricoxib. 

In the previous studies, most of the publications described a solid phase extraction 

method using a Bond Elut C18 cartridge for celecoxib and a cationic exchanger cartridge 

such as Oasis HLB marketed by Waters, USA. The extraction method in the present 

study used a Bond Elut C18 cartridge supplied by Agilent USA., and a cationic 

exchanger cartridge named IST HCX supplied by Biotage, Sweden. Isolute HCX 

cartridges are similar to Oasis HLB cartridges in all aspects.  

The experiments conducted at the Equine Forensic Unit, CVRL, Dubai, UAE, is a 

sports drug testing laboratory, accredited by National Association of Testing Authorities 

(NATA), Australia since 1999. The laboratory analyses approximately 14,000 samples 

annually using procedures as described in chapter-2 for the presence of performance 

enhancing drugs such as NSAIDs, stimulants, β-blockers, anabolic steroids etc. These 

procedures are commonly used in all drug testing laboratories worldwide. Moreover, the 

extraction methods employed in these experiments are similar to those described by 

Braeutigam et al., (2001 & 2003) and are accredited by NATA, Australia.  Celecoxib 

and etoricoxib are two newly introduced NSAIDs in the market and such similar drugs 

such as firocoxib, rofecoxib and valdecoxib are routinely screened at this laboratory on 

a day to day basis. The solid phase extraction cartridges and all reagents used in the 

present experiments are same as published in the literature.  
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Figure 4.1: Original chart recordings of chromatograms showing (A) the retention time of zaleplon (IM), (B) the absence  

of any signal at the RT of celecoxib,  (C) the peak for zaleplon (IS) and (D) the peak for celecoxib spiked in blank plasma. Chromatograms  

are typical of 6 such different experiments employing 6 different horses. 
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4.3.2. Celecoxib analytical method validation 

Selectivity and specificity 

The selectivity and sensitivity of the extraction and analytical method for celecoxib and 

its metabolites were investigated in plasma samples obtained from horses either before 

or after the administration of the drug. Figure 4.1 shows typical original chart 

recordings of chromatograms of (A) blank horse plasma spiked with zaleplon as internal 

standard, (B) blank horse plasma without any endogenous traces of celecoxib, (C) blank 

horse plasma spiked with zaleplon as internal standard and (D) blank horse plasma 

spike with the drug, celecoxib at 10 ng/ml. The results show that at an optimum flow 

rate of 200 µl/min for the mobile phase and other chromatographic conditions described 

in chapter 2., the peaks for celecoxib and the internal standard were well resolved and 

interestingly, no peak tailing was noticed during the measurements. 

The present results also show that no interfering peaks were observed in the 

chromatograms of blank horse plasma or the chromatograms of blank plasma from all 6 

healthy horses participated in the study. In addition, the results show that no 

endogenous plasma components were eluted at the retention time of celecoxib, when 

extracted using C18 cartridges and subjected to LC/MS/MS analysis using THERMO 

HYPERSIL C18 analytical column.  

Precision and accuracy 

 

The intra-day and inter-day assay precision and accuracy for low, medium and high 

concentration of celecoxib in horse plasma are summarized in Table 4.1 showing a 

percentage of CV, ranging from 5.6 to 9.8 and 4.9 to 8.0 respectively. The limit of 
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detection for celecoxib giving a good signal to noise ratio of above 3:1 was 5 ng/ml and 

the limit of quantification was 10 ng/ml.  

Table 4.1: Intra and inter-day variability of the LC/MS assay for determination of 

celecoxib in three different concentrations in plasma (n=5). Data are mean ± SD. 

                                Intra-day variability                         Inter-day variability 

___________________________________________________________________ 

 C (ng/ml)                  Mean ± SD         CV%                      Mean ± SD         CV% 

___________________________________________________________________ 

  10                          10.42 ± 1.02       9.80                          9.95 ± 0.80         8.03 

 

  100                        99.8 ± 5.7           5.7                            101 ± 4.44          4.4 

 

  200                       199.81 ±  11.2     5.6                            201.6 ± 9.8          4.9             

 

4.4. Pharmacokinetics of celecoxib 

Table 4.2 shows that the pharmacokinetic parameters of celecoxib given as an oral dose 

and at a concentration of 2 mg/kg but using LC/MS methods. All the animals used in 

this study following oral administration of celecoxib were healthy and they show no 

sign of distress as described in chapter 3 of this study. The results show that after oral 

administration of celecoxib at a concentration of 2 mg/kg bwt, an average maximum 

concentration (Cmax) was found to be 1,157.87 ± 323.58 ng/ml, while the time to reach 

peak plasma concentration (Tmax) was just 4.09 ± 1.6 hrs. The extent of drug absorption 

which was characterized by the area under the plasma concentration-time from zero to 

infinity (AUC0-∞) was shown to be 29927.56 ± 6751.04 ng/ml/hr. The mean (± SEM) 

plasma concentration-time profile of celecoxib after administration of celecoxib to the 

six healthy retired race horses is also given in Figure 4.2 for comparison. A chart 

showing real values recorded during the pharmacokinetic experiments for celecoxib is 

added to the Appendix (table 3). 
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Table 4.2: Calculated pharmacokinetic parameters of celecoxib following oral 

administration of 2 mg/kg in horses. Data are mean ± SD, n=6. 

 

                                  Parameters                               (Mean ± SD) 

C max (ng/ml)                                 1,157.87± 323.58 

K                                                     0.03 ± 0.01 

tmax (hours)                                         4.09 ± 1.60 

t1/2 hours                                            25.52 ± 8.40 

AUC total (ng/ml/hr)                           29927.56± 6751.04 

        C(0)                                                               537.46 ± 228.13 

 

4.5. Metabolism and excretion of celecoxib in plasma, urine and faeces  

Following oral administration of 2 mg/kg body weight of celecoxib, the metabolism of 

the drug was determined in plasma, urine and faeces over time. 

Plasma: The mean (± SEM) cumulative excretion of celecoxib in plasma after a single 

oral dose in 6 different horses is shown in Figure 4.2. The result show that there was a 

rapid increase in plasma levels of celecoxib reaching a maximum of about 1 µg/ml at 

about 4 hours after administration. Thereafter, the level of celecoxib decreases gradually 

reaching detectable levels up to around 80 hours following administration. The product 

ion scan for either a probable hydroxylation or carboxylation of the parent drug yields 

traces of metabolite 1 (M1) which could not be quantified due to its low abundance seen 

in plasma. In contrast metabolite 2 (M2) was excreted in abundant quantities comprising 

of more than 95% of the metabolite produced from celecoxib. 
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Urine: The urine LC/MS profile has indicated that celecoxib is extensively metabolized 

in horse and this is indicated by its low concentration in urine samples. Figure 4.3 

shows the excretion of celecoxib in (A) the six different horses employed in the study 

and (B) the results for the mean (± SEM) excretory data for all six animals.  Celecoxib 

peaks at around 18 – 24 hrs with a maximum concentration of 4.8 ± 1.44 ng/ml (mean ± 

SEM, n=6) after oral administration. The results on figure 4.3 also show that celecoxib 

can be detected in urine for up to 60 hours after a single dose of oral administration to 

each horse. This low concentration in equine urine suggests extensive metabolism and 

therefore a high probability of urinary metabolites.  

Hydroxylation and carboxylation are the simplest metabolic reaction that occur in more 

than 95% of xenobiotics that enter the biological system (Leucuta et al., 2006). Based 

on this assumption, this study further investigated the metabolites produced from 

celecoxib in urine samples using either product ion scan for a hydroxyl (addition of m/z 

16 Da) or carboxylation (addition of 30 Da). The results yielded both M1 metabolite of 

m/z 396 and M2 metabolite of m/z 410. The M1 metabolite having a m/z 396 is 16 mass 

units higher than the parent molecule celecoxib acquired in the negative ion mode. An 

„OH‟ group has a mass of 16 and gets attached to the methyl group of celecoxib 

molecule to form hydroxymethyl celecoxib. Further the hydroxymethyl celecoxib 

attaches oxygen to its structure to form carboxy celecoxib (COOH-celecoxib).  

Figure 4.4 shows the time course of the excretion profile of M2 in the six different 

horses (A) and (B) shows the mean (± SEM) levels of celecoxib, COOH celecoxib (M2) 

and hydroxymethyl celecoxib (M1). In the absence of commercially available 

metabolite standards and quantification based on mass spectral identification, the data  
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Figure 4.2: Time course changes (mean ± S.E.M) of plasma concentration of celecoxib following oral administration of a single  

dose of 2 mg/kg b wt to 6 healthy horses. Note the rapid increase in plasma levels of celecoxib and its slow decline possibly due  

to its metabolism. 
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Figure 4.3: Time course changes in celecoxib excretion in (A) urine samples of 6 horses employed in this study  and (B) the mean (± SEM) data for the  

six animals. Note the small detection volume (ng/ml) for celecoxib in urine. 
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show that about 105.53 ± 19.09 ng/ml of COOH-celecoxib and ≈ 3 ng/ml of OH-

celecoxib can be measured at 24 hours after an oral dose of 2 mg/kg of the NSAID drug 

to the 6 horses. The COOH celecoxib metabolite of celecoxib accounts for significantly  

(p<0.05) more than 90% of the metabolite formed and it is the major metabolite in urine 

followed by a small trace amounts of M1 metabolite (OH-methyl celecoxib) and the 

parent celecoxib, both  accounting for 1-2% in urine. The high abundance of COOH 

celecoxib in urine suggests that celecoxib undergoes hepatic metabolism where it is 

converted by hydroxylation to form hydroxymethyl celecoxib, which is further oxidized 

at the hydroxyl group to form the major COOH celecoxib metabolite. In passing, it is 

noteworthy that there is no evidence for the presence of any glucuronic acid conjugate 

when using a neutral loss screen in the LC/MS screen. 

Faeces: Figure 4.5 shows the excretion of celecoxib and its M2 metabolite (COOH-

celecoxib) over a period of 5 days in faeces. The results show that at day 1 following 

oral administration, celecoxib is detected at a concentration of 287.77±53.84 ng/ml 

(mean ± SEM, n=6) and is seen as the major drug component compared to a 

significantly (p<0.05) lower level of COOH celecoxib metabolite at day 1. The 

concentration of the COOH celecoxib metabolite was about 91.12±40.22 ng/ml (mean ± 

SEM, n=6). After 2 days following oral administration, the levels of either celecoxib or 

COOH-celecoxib decreased to almost zero level in the faeces samples. There were no 

traces for the presence of hydroxymethyl celecoxib from the day of administration till 

the final day of faeces collection. 
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Figure 4.4: Time course changes in levels of (A) COOH-celecoxib (M2 metabolite) in 6 different horses and (B) the mean (± SEM) levels of  

celecoxib ( solid squares), OH-methyl celecoxib (solid triangles) and COOH-celecoxib (asterix)   in urine samples.  Note the large excretion  

of COOH-celecoxib (M2 metabolite) in urine compared to M1 ( OH-methylcelecoxib) or celecoxib. n=6;  p<0.05 for COOH-celecoxib  

compared  to either celecoxib or OH-methylcelecoxib. 
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4.6. Identification of COOH-celecoxib and OH-methyl celecoxib 

The results so far have shown that celecoxib can be broken down in the body of the 

horses to produce two metabolites, the major COOH-metabolite (M2) and the minor 

OH-methyl celecoxib (M1) which are excreted predominantly in urine and faeces, but 

not in plasma. The next logical step of the study was to ascertain whether the two 

metabolites have been derived from the parent compound celecoxib in order to 

substantiate the findings. This is of particular significance in drug metabolism 

especially in the racing industry. Thus the LC/MS analysis was used to determine 

whether the two metabolites were true “finger prints‟ of celecoxib. This is a novel 

analytical technique which is done only by LC/MS. 

Figure 4.6 shows the mass spectrum of celecoxib acquired in the negative ion mode 

with (M-H) ion m/z 380 and which has fragmented to give products of m/z 316, 296, 

276 and 256. Interpretation of the mass spectrum of m/z 316 could have arisen from the 

loss of SO2 (64) from the parent molecule. The product ions m/z 296, 276 and 256 are 

generated by the sequential loss of HF (20) from the m/z 316. Similarly, when celecoxib 

was acquired in the positive ion mode, it gives a (M+H) m/z of 382 which looses a m/z 

of 20 (HF) sequentially to give fragments of 362, 342 and 322 (see Figure. 4.7).  Blood, 

urine and faeces samples acquired in either negative or positive ion mode to undergo the 

corresponding fragmentation has well characterized sequential loss of HF. 

Metabolite M2 – The (M-H) ion of M2 metabolite of m/z 410 in the negative ion mode 

as shown in figure 4.8, has a mass to charge unit of  30 more compared to celecoxib 

which has a mass of 380. This finding suggests that M2 metabolite could be a 

carboxylic acid metabolite of celecoxib which could be detected up to 96 and 48 hours 

in urine and faecal samples, respectively following oral administration.  The 

fragmentation or the collision induced dissociation of m/z 410 produces characteristic
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Figure 4.5:  Time course changes of faecal excretion of celecoxib (solid squares) and its M2 metabolite COOH-celecoxib.  

Data are mean ± SEM. p<0.05 for celecoxib compared to COOH celecoxib. Note that maximal excretion of parent drug 

 and M2 metabolite occurred at day 1 following oral administration.  
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Figure 4.6:  Original chart recordings of  (A) Collision induced dissociation chromatogram of celecoxib and (B) the corresponding mass spectrum of 

authentic standard of celecoxib acquired in the negative ion mode. These original traces are typical of 100 or more such different experiments.
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Figure 4.7: Original chart recordings of (A) collision-induced dissociation  

chromatograms of celecoxib and (B) the corresponding mass spectrum of authentic  

standards  of celecoxib acquired in the positive ion mode. These chromatograms are 

typical of 100 or more such experiments.
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fragments of m/z 366, 302, 282, 262 and 242. A loss of 44 (CO2) from the parent drug 

forms 366, while a loss of 64 (SO2) from 366 forms 302. Similarly,  a further sequential 

loss of 20 (HF) forms 282, 262 and 242. These results have clearly confirmed that the 

M2 metabolite is COOH-celecoxib and is derived mainly from the basic structure of 

celecoxib. 

Metabolite M1 – The (M-H) ion of M1 shown in Figure 4.9 has a mass unit of 16 

greater than that of the parent compound celecoxib. This suggests that it could be a 

hydroxylated metabolite since it has a m/z value of 396 and therefore is hydroxymethyl 

celecoxib. Hydroxymethyl celecoxib could not be detected in faeces samples. 

The results of this study have also shown that a neutral loss scan for m/z 176 with either 

urine or faeces did not give any indication for the presence of glucuronide metabolites 

for celecoxib in horses. 
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Figure 4.8: Original chart recordings showing (A) extracted ion chromatograms and (B) mass spectrum of carboxylic acid metabolite  

acquired  in negative ion mode of celecoxib obtained from urine samples 24 hours post administration . These chromatograms are typical  

of 100 or more such experiments. 
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Figure 4.9: Original chart recordings showing (A) extracted ion chromatograms and (B) mass spectrum of hydroxylmethyl metabolite  

acquired in negative ion mode of celecoxib obtained from urine samples after 24 hours post administration. Data are typical in excess  

of 6 or more such experiments. 
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Figure 4.10: Original chart recordings showing (A) chromatogram and (B) mass spectrum of hydroxyl celecoxib and carboxyl celecoxib metabolites of 

celecoxib acquired in positive ion mode from in urine samples after 24 hours administration.. Data are typical of 6 or more such different experiments. 
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4.7.  Etoricoxib analytical method validation 

Selectivity and Specificity  

The extraction and analytical method was validated to determine the matrix effect, 

sensitivity and stability by extracting samples spiked with zaleplon as internal marker 

and without the drug in plasma obtained from the horses prior to the administration of 

etoricoxib. Figure 4.11 shows original chromatograms of plasma samples with (A) 

zaleplon as internal marker and no signal at the retention time of  etoricoxib and (B) 

blank plasma sample spiked with internal standard, zaleplon and etoricoxib spiked at 10 

ng/ml. The data have demonstrated that no interference from endogenous peaks was 

observed at the retention time of either etoricoxib or the internal marker zaleplon. The 

data also show that extraction of plasma using a C8-HCX, a mixed mode cartridge does 

not result in a signal at the retention time of the drug studied.  

Precision and Accuracy 

The intra-day and inter-day precision and accuracy are summarized in Table 4.3 

showing a percentage of CV, ranging from 2.40 to 6.59 and 1.03 to 6.52, respectively. 

The LOD and LOQ based on a good signal to noise ratio of 3:1 was 1 ng/ml and the 

limit of quantification was 5 ng/ml. 

Table 4.3: Within and inter-day variability of the LC/MS assay for determination of 

etoricoxib in three different concentrations in plasma (n=5).  Data are mean ± SD. 

 

   C (ng/ml)           Intra-day variability                  Inter-day variability 

                     _________________________________________________ 

            Mean ± SD         CV%                    Mean ± SD         CV% 

         10                  9.75 ± 0.64       6.59                       10.03 ± 0.65          6.52 

        100               102.04 ± 4.67     4.67                       100.97 ± 3.93        3.90 

        200               201.32 ± 4.82     2.40                       199.63 ± 2.06        1.03 
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Figure 4.11: Original chart recordings of chromatograms showing (A) the retention time of zaleplon (IM), (B) the absence of any signal  

at the RT of etoricoxib,  (C) the peak for zaleplon (IS) and (D) the peak for etoricoxib spiked in blank plasma. Chromatograms  

are typical of 6 such different experiments employing 6 different horses. 
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4.8.  Pharmacokinetics of etoricoxib 

The results of the pharmacokinetic analysis following oral administration of etoricoxib 

at either 0.5 mg/ kg, 1 mg/kg or 2 mg/kg are summarized in table 4.4. The 

pharmacokinetic parameters were estimated using non compartmental method 

employing in-house developed programme to estimate the pharmacokinetic parameters 

of etoricoxib 

Prior to oral administration of etoricoxib, all the animals were healthy and they show no 

sign of distress as described in chapter 3 of this study. The results show in table 4.4 that 

after oral administration of etoricoxib at a concentration of either 0.5, 1 or 2 mg/kg b wt, 

an average maximum concentration (Cmax) was found to be 383.72±72.93 ng/ml, 

512.46±67.80 ng/ml and 975.84±97.98 ng/ml, respectively. The absorption of 

etoricoxib appears to be rapid, with the time to reach peak plasma concentration (Tmax) 

was just 1.0 ± 0.51 hr, 0.82 ± 0.11 hr and 0.79 ± 0.1 hr for the three different doses, 

respectively. The extent of drug absorption which was characterized by the area under 

the plasma concentration-time from zero to infinity (AUC0-∞) was shown to be 1,289.87 

± 666.8 ng/ml/hour, 4,184 ± 1,275.32 ng/ml/hour and 5,697.14 ± 4,566.78 ng/ml/hour 

for the 3 doses, respectively. The mean (±SEM) plasma concentration-time profile after 

oral administration of etoricoxib at a dose level of either 0.5 mg/kg, 1 mg/kg or 2 mg/kg  

to the six healthy retired race horses is also given in Figure. 4.11 for comparison. The 

results show a rapid increase in etoricoxib for each dose, reaching a maximum within 1 

hour of oral administration and then decline slowly to basal levels within 5 – 40 hours 

depending on the concentration. Chart showing actual values and calculations 

performed for the three doses (0.5, 1 and 2 mg/kg bwt of etoricoxib is shown in 

Appendix (table 4, 5 and 6). 
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Table 4.4: Calculated pharmacokinetic parameters of etoricoxib following oral administration of either  0.5 mg/kg, 1 mg/kg or  

2 mg/kg bwt. Data mean ± SD, n=6 

 

Parameters 

(Mean ± SD) 

0.5 mg/kg 1 mg/kg 2 mg/kg 

C max (ng/ml) 383.72 ± 72.93 512.46 ± 67.81 975.84 ± 97.98 

K    0.07 ± 0.03 0.09 ± 0.01 0.06 ± 0.01 

tmax (hours) 1 ± 0.51 0.82 ± 0.11 0.79 ± 0.1 

t1/2 hours 10.06 ± 3.73 8.30 ± 1.44 11.51 ± 1.56 

AUC total (ng/ml/hr) 1,289.87 ± 666.8 4,184 ± 1275.32 5,697.14 ± 4566.78 

C(0) 197.79  ± 82.95 291.60  ± 94.85 628.42 ± 50.85 
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4.9. Metabolism and excretion of etoricoxib in plasma, urine and faeces 

Six horses were administered etoricoxib and the concentrations of etoricoxib and its 

metabolites were determined in plasma, urine and faeces samples over time. Etoricoxib 

was administered at a concentration of either 0.5, 1 or 2 mg/kg b wt and the plasma 

excretion profile was studied at all the concentrations. A positive ion mode LC/MSMS 

was employed for the detection of etoricoxib and its metabolites in preference to less 

sensitive negative ion mode analysis.  

Plasma: The mean concentration-time profiles of etoricoxib in plasma following 

administration of either 0.5, 1 or 2 mg/kg b wt are shown in Figure.4.12. The results 

show that etoricoxib levels increase rapidly reaching 383.72±72.93 ng/ml, 512.46 ± 

67.81 ng/ml and 975.84 ± 97.98 ng/ml in less than or approximately  an hour for the 

three different doses. Additionally, 6‟- hydroxymethyl etoricoxib with m/z 375 (M+H) 

and with m/z of 16 greater than the administered parent etoricoxib was detected in 

plasma. These results are shown in Figure.4.13 and they accounted for about 80% of the 

concentration of etoricoxib. Similarly, mass spectral identification made it possible to 

quantify the concentration of the metabolite formed from etoricoxib.  Pure metabolite 

standards are not commercially available, hence, as shown in Figure.4.13, and based on 

the mass spectral identity, quantification of 6‟-hydroxymethyl etoricoxib showed a 

concentration of 364.31 ± 36.48 ng/ml  (mean ± SEM) after an oral administration of  1 

mg/kg b wt of etoricoxib to the 6 horses. The concentration of 6‟-hydroxymethyl 

etoricoxib peaked at around 3 hours after oral administration. In agreement with data 

presented in Figure 4.13, etoricoxib was the major component from the first time point 

through 24 hours post administration sample of etoricoxib. Plasma detection of 

etoricoxib was possible for up 72 hours, while 6‟-hydroxymethyl etoricoxib was  
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Figure 4.12: Time course plasma excretion curves of etoricoxib given as an oral administration at a dose of either 0.5,  1 or 2 mg/kg b wt. Data  

are mean ± SEM, n=6. Note that etoricoxib is absorbed rapidly after administration and decreases slowly to reach a non-detectable  

level at 50-60 hours. 
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detected for a longer period, estimated to be about 96 hours. It can be concluded from 

these results that plasma may be a better matrix for the screening and the detection of 

etoricoxib or its metabolites in the horse racing industry in order to determine any form 

of illegal use of the drug prior to the race. 

Urine: Similar to celecoxib, solid phase extraction of unhydrolysed urine followed by 

mass spectrometry revealed etoricoxib to be present in low concentration and thus 

indicating extensive metabolism. Investigating the metabolism of etoricoxib using 

product ion scan in a triple stage quadrupole instrument showed peaks for possible 

hydroxylation, carboxylation and oxidation (M3) of the parent etoricoxib.  Etoricoxib 

presented characteristic fragmentation at two sites of the molecule. These two losses 

were found to be a fragmentation signature of etoricoxib. In unhydrolysed urine, an 

entity corresponding to the oxidation of etoricoxib was observed to have a m/z of 375 

(M+H) which co-eluted with another huge peak as shown in Figure 4.14.  This peak was 

a sixteen mass unit greater than etoricoxib and it is similar to the metabolite identified in 

plasma indicating the formation of 6'-hydroxymethyl etoricoxib. Furthermore, a peak of 

m/z 389 indicated the formation of a 6'-carboxy etoricoxib and another peak with a m/z 

charge of 391 indicating an oxidation and subsequent formation of 6'-hydroxymethyl-

etoricoxib-1'-N-oxide. 

Since it was not clear about the huge peak co-eluting with 6'-hydroxymethyl etoricoxib, 

hydrolysis of urine with β - glucuronidase at 37º C overnight, showed a m/z 551 in mass 

spectrometry. This peak has m/z 176 greater than that of the hydroxymethyl etoricoxib 

metabolite and thus, could be a hydroxymethyl glucuronic acid metabolite of etoricoxib. 

Neutral loss scan for a loss of m/z 176 yielded m/z 375 which further confirmed the 

formation of a hydroxymethyl glucuronic acid metabolite of etoricoxib. 
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Figure 4.13: Time course changes in the levels of etoricoxib (solid triangles) and its metabolite, OH-methyl etoricoxib (solid squares) in  

plasma for horses. Data are mean ± SEM, n=6. Note the rapid increases of both substances within the first few hours after oral administration  

and also their rapid decline within a day of administration. The values decreased to almost zero level after 80 - 90 hours following oral administration. 
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Figure 4.14: Time course changes in levels of etoricoxib (solid diamond), OH-methyl etoricoxib (solid squares) and COOH-etoricoxib (solid triangles) 

and etoricoxib – 1-N-oxide (solid circles) in urine samples. Note the large excretion of COOH-etoricoxib in urine compared to OH-methyletoricoxib or 

etoricoxib.  
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The data presented in Figure 4.14 reveal that etoricoxib is apparently undergoing 

extensive metabolism in urine giving a value of about 10 ng/ml in approximately 12 

hours and subsequently, reaching to non detectable levels within 60 hours after 

administration of 1 mg/kg b wt of etoricoxib. The metabolites were quantified and based 

on the masses and the results suggest that 6'-hydroxymethyl etoricoxib was the major 

metabolite in urine showing a concentration of  310.13 ± 48.11 ng/ml (mean ± SEM)   

at 4 hours post administration. This was followed by 6‟-carboxylic acid etoricoxib 

which was detected at a concentration of 149.52 ± 24.05 ng/ml (mean ± SEM) after 8 

hours post administration. The data  in Figure 4.15 further show that incubation of urine 

with β-glucuronidase can result in a decrease in the concentration of the 6‟-carboxylic 

acid etoricoxib and a concomitant increase in the level of 6'-hydroxymethyl etoricoxib. 

The results also show that 6'-hydroxymethyl-etoricoxib-1'-N-oxide and the unchanged 

etoricoxib were found to be less than 10%. 

Faeces: Figure 4.16 shows the time course excretion profile of etoricoxib and its 

metabolites in faeces. The results show that 6‟-hydroxymethyl etoricoxib is seen in 

large amounts and similar to urine, is the major metabolite seen in faecal samples of 

horses. The 6‟-hydroxymethyl etoricoxib metabolite concentration in faeces peaks at 

about 2 days to give a value of 78.20 ± 6.56 ng/ml (mean ± SEM) and this is detected 

for up to 5 days after oral administration of etoricoxib to the 6 horses. This is followed 

by 6‟-carboxylic acid etoricoxib seen in a concentration of approximately 32.69 ± 6.53 

ng/ml  (mean ± SEM) and it is detected for about 4 days. In contrast,   etoricoxib and 6'-

hydroxymethyl-etoricoxib-1'-N-oxide were detected in very low levels for up to 3 days. 

There was no evidence for the presence of any glucuronic acid conjugate of 6‟-

hydroxymethyl etoricoxib. 
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Figure 4.15: Time course of hydrolyzed urine excretion of etoricoxib and its metabolites. Data are mean ± SEM, n=6. Note that 6‟-hydroxymethyl 

etoricoxib peaks at around 4 hours and is detected up to 120 hours after oral administration of etoricoxib to the   six horses. 
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Figure 4.16: Time course of hydrolyzed faecal excretion of etoricoxib and its metabolites. Data are mean ± SEM, n=6. Note that 6‟-hydroxymethyl 

etoricoxib and its 6-hydroxymethyl-etoricoxib metabolite were almost un-dectable in the faecal samples. In contrast,  6-hydromethyl-etroricoxib  and 

6-carboxy-etoricoxib peak at 2 hours and they were detected for  around 4 and 5 hours , respectively in the samples of the 6 horses.
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4.10. Identification of hydroxymethyl, carboxylic acid and hydroxymethyl-   

         etoricoxib-1'-N-oxide metabolite of etoricoxib 

 

The metabolism of etoricoxib after an oral administration of 1 mg/ kg b wt to 6 horses 

shows that etoricoxib is extensively metabolized with less than 10% is excreted 

unchanged and is broken down into 6‟-hydroxymethyl etoricoxib, 6‟-carboxylic acid 

etoricoxib, 6'-hydroxymethyl-etoricoxib-1'-N-oxide and glucuronide of 6‟-

hydroxymethyl etoricoxib.  

Figure 4.17 shows the mass chromatogram of etoricoxib and the corresponding mass 

spectrum acquired in the positive ion mode and having a m/z value of 359 (M+H) which 

on fragmentation loses a m/z 79 (SO2CH3) to give a m/z 280. A m/z of 375 for 

hydroxymethyl etoricoxib with its characteristic loss of 79 as a fragment of m/z 296 is 

shown in Figure 4.18. In addition, 6‟- hydroxymethyl etoricoxib has also been identified 

in the plasma of the horses following oral administration of etoricoxib. Figure 4.19 

shows a peak of m/z 551, typical of a mass of glucuronic acid metabolite of 6‟-

hydroxymethyl etoricoxib. The formation of hydroxymethyl etoricoxib from the 

glucuronide of hydroxymethyl etoricoxib following enzyme hydrolysis of urine samples 

and confirmed by mass spectrometry, loses 176 Da to form a peak of m/z 375. The 

results suggest that there was no evidence of the glucuronic acid metabolite of 6‟- 

hydroxymethyl etoricoxib in faeces of the horses following oral administration of 

etoricoxib. This observation was substantiated by mass spectrometry measurement of 

either unhydrolyzed or hydrolyzed faecal samples of the etoricoxib. There is a greater 

chance that the glucuronic acid conjugate is hydrolyzed by the gut bacteria in the 

intestine of the animal. Thus, 6‟-hydroxymethyl etoricoxib, both free and conjugated 

forms, are the major metabolite in horse urine. Figure 4.20 shows the extracted ion  
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Figure 4.17:  Original chart recordings showing (A) collision- induced dissociation 

chromatograms of etoricoxib and (B) the corresponding mass spectrum of authentic 

standard of etoricoxib acquired in the positive ion mode. These chromatograms are 

typical of 100 or more such experiments.
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Figure 4.18: Original chart recordings showing (A) extracted ion chromatograms and (B) mass spectrum of 6‟-hydroxylmethyl metabolite acquired in 

positive ion mode of etoricoxib obtained from hydrolyzed urine samples 24 hours post administration. Data are typical in excess of 50 or  

more such experiments. 
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Figure 4.19: Original chart recording showing (A) extracted ion chromatograms and (B) 

mass spectrum of glucuronic acid metabolite of 6‟-hydroxymethyl etoricoxib acquired 

in positive ion mode and obtained from urine samples 24 hours post administration. 

These chromatograms are typical of 50 or more such experiments. 
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chromatogram and the corresponding mass spectrum of m/z 389, which is most likely to 

be a carboxylic acid metabolite of etoricoxib. 

The 6‟-hydroxymethyl etoricoxib further undergoes oxidation to form the 6‟-carboxylic 

acid metabolite of etoricoxib. The 6‟-carboxylic acid etoricoxib is not present in horse 

plasma. Figure 4.21 shows the extracted ion chromatogram and the corresponding mass 

spectrum of m/z 391 typical of N-oxidation of 6‟- hydroxymethyl etoricoxib to form 6‟-

hydroxymethyl etoricoxib-1‟-N-oxide. This metabolite was found in very low levels 

both in urine and faeces. Although authentic pure standards  for 6‟-hydroxymethyl 

etoricoxib, 6‟-carboxylic acid etoricoxib, 6‟-hydroxylmethyl etoricoxib-1‟-N-oxide and 

glucuronic acid metabolite of 6‟-hydroxymethyl etoricoxib were not available in this 

study, it was nevertheless still possible to identify their  presence either in urine or 

faeces. This was done with some certainty based on their mass to charges and the 

corresponding mass spectrum.  
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Figure 4.20:  Original chart recordings showing (A) extracted ion chromatograms and (B) mass spectrum of 6‟-carboxylic acid metabolite of etoricoxib 

obtained from urine samples from horses. Traces are typical of over 50 such different experiments.  
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Figure 4.21: Original chart recordings showing (A) extracted ion chromatograms and (B) mass spectrum of hydroxymethyl-1‟-N-oxide metabolite  

of etoricoxib in urine samples from horses. There traces are typical of more than 50 such different experiments. 
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4.11. Discussion 

The development of pain, especially in the horse racing industry, is a major problem for 

race horses and their owners. The normal or traditional way in treating the pain is to 

give the horses oral doses of non-steroidal anti-inflammatory drugs (NSAIDs). There 

are different types of NSAIDs on the market and many of them have adverse side 

effects especially gastric ulcers (Ferreira et al., 1973;Vane, 1994).  

Recently, safer NSAIDs called coxibs have been developed to treat pain in human as 

well as other animals. To date, not much study has been done on the metabolism of the 

coxibs in large animals such as camels and horses which are normally used in the racing 

industry. Therefore, the main purpose of this study was to investigate the metabolism of 

two commercially available coxibs namely, celecoxib and etoricoxib, measuring their 

absorption and disposition in six retired race horses following  oral administration of 

either 2 mg/kg b wt of  celecoxib or either 0.5, 1 or 2 mg/kg b wt of etoricoxib.  

The rationale for this study is to help, not only the Veterinarians who look after the 

health of the horses, but also the racing industry fraternity, including the owners of the 

race horses about the possible withdrawal times when using these two COX-2 inhibitors 

in horses for the treatment of osteoarthritis or pain. This study also attempts to enhance 

knowledge and understanding of the possible metabolites derived from celecoxib and 

etoricoxib following their metabolism and moreover, their detection times in biological 

samples. In turn, the results may provide vital information to the racing forensic 

laboratory in both detecting and preventing the misuse of performance enhancing 

substances like celecoxib and etoricoxib on a race day. In this study, the six retired race 

horses were given orally either celecoxib or etoricoxib at physiological doses and the 

fate (metabolism and by products or metabolites) of each drug was analyzed in plasma, 
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urine and faecal samples over duration of 5 days employing established LS/MS 

techniques.  

The results of this study show that all six animals were able to tolerate the two NSAIDs 

favourably without any side effects (see chapter 3) and it was not difficult to obtain the 

urine, blood and faecal samples for measurements. For analysis, the ion efficiency of 

celecoxib in the positive ion and negative ion mode was tested by infusing 10 ng/ml at a 

flow rate of 5 µl/min. The positive ion mode fragmentation of celecoxib yielded only 

one fragment of m/z 362, which is a loss of m/z 20. No other ions fragments were 

formed for celecoxib and hence, positive ion mode fragmentation was found not 

characteristic for detection of celecoxib. The present results also show that the negative 

ion mass spectrum of celecoxib and its metabolites produced three fragments with loss 

of m/z 20 corresponding to hydrogen fluoride (HF), each of which was found to be very 

characteristic of celecoxib and its metabolites in identification and interpretation of the 

mass spectrum data.  

The pharmacokinetics of celecoxib after an oral administration of 2 mg/ kg b wt shows 

that Cmax was 1,157.87±323.58 ng/ml, tmax was 4.09 ± 1.60 hours and t1/2 was 25.52 ± 

8.40 hours. These pharmacokinetic parameters obtain in this study are in full agreement 

and in accordance with the parameters reported in other animal species, including dogs 

(Paulson et al., 2001).  In their study on celecoxib metabolism in dogs following oral 

administration,  Paulson et al (2001) found the tmax to be 3.3 ± 1.7 hours and t1/2 to be  

around 5.1 ± 0.5 hours. In another study, Itthipanichpong et al., (2005) administered 

celecoxib orally to Thai human volunteers and they showed that the peak plasma 

concentration of the  coxib reached within 2.55±1.22 hours and the elimination half life 

was 8.79 ± 5.49 hours. Similarly, Emami et al., (2008) have reported a tmax of 1.87 ± 
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0.18 and a t1/2 of  12.76±1.44 hours in their study when  celecoxib was  administered 

orally to 12 healthy male volunteers. Together, the present  pharmacokinetic data  

obtained from  horses in this study and those previously reported in the literature 

employing either dogs (Paulson et al, 2001) or human ((Itthipanichpong et al., 2005)  

are more or less in complete agreement for celecoxib irrespective of species differences.  

The results presented in this study have demonstrated that after an oral administration of 

celecoxib to 6 healthy horses, the peak plasma concentration of the drug reached about 

1 µg/ml in four hours. This was followed by a rapid decline within the first 6-8 hours 

and the level decreased gradually to reach almost zero level after 75-80 hours following 

administration. Similarly, celecoxib at a peak concentration of 287.77 ± 53.84 ng/ml 

was excreted in faeces after 24 hours of oral administration, followed by a rapid decline 

to almost zero level after 80 hours following administration. In contrast, celecoxib was 

found in small amount in urine, accounting for 4.8 ± 1.44 ng/ml after 24 hours 

following oral administration. This then declined to almost zero level after 60 hours of 

administration. This excretion profile of celecoxib as an unabsorbed drug in faeces 

suggests that the major route of excretion is probably biliary. The clearance of celecoxib 

in humans is about 27% in urine and 70% in faeces (Antoniou et al., 2007).  

The data presented in this study show that the plasma metabolite profile of celecoxib in 

the six horses revealed the presence of two metabolic pathways for the COX inhibitor. 

The first includes the hydroxylation at the methyl group in the phenyl ring of celecoxib 

to form hydroxyl-methyl celecoxib, which then gets oxidized at the hydroxyl group to 

form carboxylic acid metabolite of celecoxib. The second includes/could be either 

oxidation of the methyl group or hydroxylation of the phenyl ring. Interestingly, the 

hydrophenyl metabolites derived from celecoxib are eliminated in rabbit plasma (Zhang 
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et al., 2000). The plasma metabolic profile for such animal species as mouse, dogs and 

rhesus and cynomolgus monkey show COOH celecoxib as the major metabolite 

compared to hydroxymethyl celecoxib. Moreover, they show no evidence of 

hydroxyphenyl metabolite (Paulson et al., 2000b).    

The results of this study show that following oral administration of celecoxib, only low 

concentration of the parent drug was eliminated in urine at a low concentration of 

around 4.8 ± 1.44 ng/ml and traces could still be detected for up to 60 hours suggesting 

extensive metabolism. COOH-celecoxib at a concentration of 105.53 ± 19.09 ng/ml was 

measured in urine samples following 24 hours of oral administration of celecoxib. This 

value declined rapidly to almost zero level following 96 hours of administration. Only 

small traces of hydroxymethyl celecoxib at a concentration similar to the parent 

celecoxib concentration was detected in the urine samples.  

In the present study, an interesting observation was noticed on the metabolism of 

celecoxib in the six horses where the COX-2 inhibitor was the main component in the 

faeces. The parent drug was measured at a high concentration of about 287.77 ±53.84 

ng/ml following 24 hours of oral administration and this amount was detected for up to 

72 hours following administration. In contrast, the metabolite, COOH-celecoxib was 

detected at a peak concentration of 91.12 ± 40.22 ng/ml following 24 hours of oral 

administration of celecoxib. Thereafter, COOH-celecoxib declined to almost 

undetectable levels 96 hours following administration. One possible explanation for the 

presence of a high amount of the parent celecoxib in the faeces is that the drug was not 

properly absorbed by the intestine of the horse. Another possible explanation is the 

COX-2 inhibitor is slowly metabolized in the GI tract. This is an interesting area worthy 
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of further research. In a previous study Paulson et al (2001) reported that COOH-

celecoxib was the major 

 metabolite detected in faecal samples whereas hydroxymethyl celecoxib was the minor 

metabolite detected in urine and faeces of mouse, rabbit, dog and monkey. In addition, 

these authors reported that dog, cynomolgus and rhesus monkey excreted no unchanged 

drug (Paulson et al., 2000b). In another study, Paulson et al (2000b) reported that 

conjugation of the hydroxyl and carboxylic acid metabolite of celecoxib with glucuronic 

acid can occur in the body following the metabolism of celecoxib. In contrast, the 

results of the present study employing the six race horses have shown no evidence of 

glucuronide conjugation during the  metabolism and excretion of celecoxib.  

The present results show that the LC/MS retention time of celecoxib is identical to that 

of authentic celecoxib standard. The m/z 380 and the collision- induced dissociation 

fragmentation pattern in the negative ion mode were consistent to the deprotonated ion 

of celecoxib standard. Authentic pure standards of the metabolites of celecoxib were not 

available commercially and syntheses of these metabolites are outside the remit of this 

study. However, the mass spectrum and the CID fragmentation pattern of the COOH-

celecoxib, hydroxymethyl celecoxib were similar to previously published reports 

(Zhang et al., 2000). 

 In addition to celecoxib, the present study investigated the pharmacokinetics of 

etoricoxib after an oral administration of  0.5, 1 or 2 mg/kg b wt. The results  shows that 

Cmax was either 383.72±72.93 ng/ml, 512.46 ± 67.81 ng/ml or 975.84± 97.98 ng/ml and 

AUCtotal was either 1,289.87±666.8 ng/ml/hr, 4184±1275.32 ng/ml/hr or 5,697.14 ± 

4,566.78 ng/ml/hr for the three different doses of 0.5, 1 or 2 mg/kg b wt, respectively. 

The results reveal that AUCtotal and Cmax values increased approximately 
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proportionately with the increased doses. Absorption of etoricoxib appears to be rapid 

with the tmax occurring approximately within 1 hour (either 1 ± 0.51 hr, 0.82 ± 0.11 hr or 

0.79 ± 0.1 hr for  0.5, 1 or 2 mg/kg b wt dose) after oral administration. In their study, 

Dallob et al., (2003) reported a median time of about 1 hour for the occurrence of Cmax 

and tmax following the characterization of etoricoxib in humans. In the present study, the 

t½ was shown to be 10.61 ± 3.19 hr, 8.30 ± 1.44 hr and 11.51 ± 1.56 hr for the three 

different concentrations administered to race horses. The slight difference in t½ seen in 

the present study is probably due to the dose of etoricoxib and more so the animal 

species.   

In a previous study by Agrawal et al., (2001) to investigate the  dose proportionality, 

have reported a mean t½ value of approximately 22 hours. In another related study on 

the pharmacokinetics of etoricoxib in patients with hepatic impairments by Agrawal et 

al., (2003b) reported a t½ of approximately 27.3 hours. Similarly, a Cmax of 3.1 µg/ml, 

tmax of 0.5 hours and a terminal half life of 25.4 hours have been reported in rats for a 

single oral dose of 15 mg/kg b wt of etoricoxib (Radwan et al., 2009). Interestingly, the 

terminal half life of etoricoxib was around 11.51 ± 1.56 hr for the highest dose of 2 

mg/kg b wt employed in this study. This is a markedly higher and a different value 

compared to those reported in humans. This discrepancy may be due to large size of the 

liver and heavy hepatic blood flow in horses compared to humans. The concentration of 

celecoxib and etoricoxib along with their metabolites in blood, urine and faeces is 

shown in table 4.5. 

Following oral administration, the peak plasma concentration of etoricoxib occurred 

within 1 hour after administration and the unchanged drug was detected for up to 72 

hours following oral administration. The plasma samples also showed 6‟-hydroxy 
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Table 4.5: Concentration of either celecoxib or etoricoxib (mean±sd, ng/ml ) and their metabolites in blood, urine and faeces.  

 

    BLOOD URINE FAECES 

CELECOXIB   1157.87 ± 323.58 4.8  ± 1.44 287.77  ± 53.84 

COOH-CELECOXIB   927.97 ± 103.21 105.53  ± 19.09 91.12  ± 40.22 

OH-CELECOXIB   traces ≈ 3 --- 

 
0.5 mg/kg 383.72 ± 72.93 

      51.22 ± 16              ≈ 3  ETORICOXIB 1 mg/kg 512.46 ± 67.81 

  2 mg/kg 975.84 ± 97.98 

6'-HYDROXYMETHYL ETORICOXIB   364.31 ± 36.48 310.13 ± 48.11 78.20 ± 6.56 

 6'-COOH ETORICOXIB   --- 149.24.05 32.69 ± 6.53 

 6'-HYDROXYMETHYL-1-N-OXIDE 

ETORICOXIB   
---      37.64 ± 57 traces 
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methyl etoricoxib as the possible metabolite which could be detected for nearly 96 

hours. Etoricoxib in urine was in low levels. Mass spectral analysis of the unhydrolysed 

urine demonstrated the presence of 6‟-carboxy etoricoxib together with 6‟-

hydroxymethyl etoricoxib as a large hump and 6‟-hydroxymethyl etoricoxib-1‟-N-

oxide. This large hump was found to have two peaks co-eluting together with masses 

m/z 375 and 551. Following the hydrolysis of urine samples, the results have shown the 

presence of 6‟-hydroxymethyl etoricoxib as the major metabolite with no traces of m/z 

551. This observation has indicated that the m/z 551 was 176 Da units more than m/z 

375 suggesting a glucuronic acid fraction of 6‟-hydroxymethyl etoricoxib. The 6‟-

carboxy etoricoxib was the major metabolite in humans (Rodrigues et al., 2003).  

Study of the metabolism of etoricoxib in urine and faeces of horses in this study showed 

that 6‟-hydroxymethyl etoricoxib and not 6‟-carboxy etoricoxib is the major metabolite. 

The hydroxylation of the 6‟-methyl moiety was more predominant than the 1‟-N-

oxidation. This is in full agreement the finding which was previously reported  in an 

vitro study (Chauret et al., 2001). Like celecoxib, etoricoxib is metabolized via methyl 

hydroxylation and further oxidized to form its corresponding carboxylic acid (Paulson 

et al., 2001). Unlike etoricoxib, celecoxib is excreted as a large fraction in faeces 

(Paulson et al., 2000a).  

In conclusion, the results of this study have clearly shown that both celecoxib and 

etoricoxib as either parent drugs or either of their hydroxylated or carboxylated 

metabolites can be detected in plasma, urine and faecal samples of horses following oral 

administration. The parent celecoxib was identified readily in post administration 

plasma samples, peaking at about 1 µg/ml, 4 hours after dosing and declining thereafter. 

The concentration of the parent celecoxib in urine was very low (<5 ng/ml) when 
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compared to plasma, suggesting extensive metabolism. The major and minor 

metabolites were carboxycelecoxib and hydroxyl-methylcelecoxib with no evidence for 

 the presence of glucuronidated metabolites of celecoxib. Similarly, etoricoxib levels in 

either plasma, faecal or urine samples show more or less the same pattern of metabolism 

compared to celecoxib. Together, the present results have validated the metabolism of 

the two coxibs in horses over time. These results may be of paramount importance for 

the horse racing industry especially during the administration of the two drugs as 

analgesics to horses before a race in order to reduce pain. Traces of the drugs and 

metabolites can be detected in small quantities for almost 4-5 days following oral 

administration. 
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CHAPTER - 5  

 

METABOLIC PROFILLING OF CELECOXIB 

AND ETORICOXIB USING ISOLATED LIVER 

MICROSOMES AND TISSUES 
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5.1. Introduction 

Real life drug metabolism studies are usually conducted on live animals in vivo in order 

to provide important results of all possible transformations of the drug over time. 

However, for ethical reasons, it is not possible to study the in vivo metabolism in most 

cases especially if the drug can induce adverse side effects. An elucidation of 

metabolism is an important part of any ADME studies since it can  increase knowledge 

and moreover,  enhance understanding of the metabolic pathway(s) of the drug. The 

process also helps to develop analytical methods for drug screening in complex matrices 

such as urine, plasma and stool samples. Screening of unknown biological samples 

following a race is very challenging and thus, in vivo and in vitro metabolic studies 

provide vital information especially if the parent drug is either quickly eliminated or 

completely metabolized by the racing animal.   Typically, standards can be purchased, 

but in most instances, pure reference standards for possible metabolites are not 

commercially available and moreover, the synthesis of most metabolites in a laboratory 

is extremely laborious.  

The liver is the most important organ in the body which is involved in the 

biotransformation of xenobiotics and within this main organizational unit, the 

microsomes are commonly used to understand the phase I metabolism of drugs. The 

metabolites formed can be tentatively identified by tandem mass spectrometry 

fragmentation pattern. These metabolites produced by microsomes can be used as 

reference compounds to identify similar compounds in biological samples. The 

preparation of liver microsomes is a cumbersome process and moreover, it is very 

expensive if procured commercially. Fresh liver has to be cut into small pieces, 

homogenized and centrifuged at high speeds using ultra centrifuge which would not be 
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 available in most laboratories. The use of fresh liver slices or fragments, instead of 

microsomes, is a cheap option to employ in performing the same in vitro experiments. 

Thus, in this study an attempt was also made to use camel liver tissues, which can be 

employed as an  alternative to microsomes, less expensive and moreover, less time 

consuming compared to the harvesting of microsomes from liver.  

In order to corroborate the metabolic profiles of celecoxib and etoricoxib in horses in 

vivo, the present study employed horse liver microsomes and fresh camel liver 

fragments to investigate the time course metabolism of the two coxibs in vitro for 

comparison. 

5.2 Method 

As described in chapter-2 

5.3. Result 

5.3.1 Metabolism of etoricoxib by horse liver microsomes 

 The metabolic profile of etoricoxib in in-vitro by horse liver microsomes supplemented 

with NADPH was done employing LC/MS, similar to that described earlier in chapter-4. 

The results show the formation of one metabolite which was confirmed by LC/MS to be 

6‟-hydroxy methyl etoricoxib and with a mass to charge of 375 Da. The CID pattern of 

this metabolite formed in the presence of NADPH had fragments of m/z 357, 339, 330, 

296 and 278, similar to those shown earlier in Figure 4.17 for etoricoxib. Based on the 

LC/MS analysis performed on a TSQ Quantum ACCESS in the positive ion mode, the 

mass (M+H) ion was shown to be 16 Da which was higher than etoricoxib (m/z 375). 

This interesting finding has indicated that the metabolite formed is more or less similar to 

the metabolite detected in urine in the horses in vivo. The results also show that in the 
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absence of NADPH, the incubation mixture containing etoricoxib and liver microsomes 

failed to produce any detectable trace of the metabolite when screened by LC/MS, 

indicating that the metabolite formation was enzymatic and NADPH dependent. The 

present results also reveal that a selected ion monitoring for m/z 375 displayed a single 

peak at the retention time, similar to that of the urinary metabolite 6‟-hydroxy methyl 

metabolite obtained in the in vivo studies for the horses. The presence of etoricoxib-1‟-N 

oxide with m/z 375 (exact mass as 6‟-OH-methyl etoricoxib) was not confirmed even 

with selected ion monitoring (SIM) run on an LC/MS. Thus, the absence of etoricoxib-1‟-

N oxide in vitro confirms that the metabolite is not present even in urine, after the 

administration of etoricoxib in vivo. Therefore, the corresponding glucuronide conjugate 

of m/z 551 detected in urine matrix has probably derived from the conjugation of 

glucuronic acid to the 6‟-hydroxy methyl etoricoxib. The results presented in Figure 5.1 

also show no evidence for the presence of 6‟-carboxy etoricoxib and 6‟-hydroxymethyl-

etoricoxib-1‟-N-oxide. In contrast, both 6‟-carboxy etoricoxib and 6‟-hydroxymethyl-

etoricoxib-1‟-N-oxide were obtained as metabolites in urine and faeces samples from 

horses. 

5.3.2. Metabolism of celecoxib by horse liver microsomes 

In this series of experiments, LC/MS/MS technique was also used to measure the two 

metabolites derived from celecoxib following its incubation with horse liver 

microsomes in the presence and absence of NADPH over a period of 0 minute (control) 

to 180 minutes. The qualitative results are presented in Figure 5.2 and they show the (A) 

the presence of celecoxib in the microsomal mixture and (B and C) the complete 

absence of characteristic peaks for hydroxyl celecoxib and carboxy celecoxib, 

respectively.  
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Figure 5.1: Original chart recordings showing the LC/MS/MS chromatogram (above) and SIM fragment ion (below) of  (A) etoricoxib (m/z 280), (B)  

6‟-hydroxymethyl etoricoxib (m/z 278), (C) 6‟- carboxy etoricoxib (m/z 328) and (D) 6‟-hydroxymethyl-etoricoxib-1-N-oxide (m/z 330) obtained after 

etoricoxib incubation with horse liver microsomes, n=3. 
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Figure 5.2: Original chart recording showing the chromatograms and SRM fragment ion of  (A) celecoxib, (B) the  absence of hydroxy-celecoxib  

shown as no characteristic peak and (C)  the absence of  carboxy celecoxib shown as no characteristic peaks in horse liver microsomal incubation; n=3. 

A 
B C 
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5.3.3 Metabolism of etoricoxib and celecoxib by camel liver tissue. 

The procedure for the in vitro metabolic study using camel liver tissue is same as that 

used for horse liver microsomes. Either etoricoxib or celecoxib was separately 

incubated with camel liver slices of 0.25 – 0.5 cm cubes or fragments in the presence 

and absence of NADPH from time 0 minute (control) to 180 minutes.  

Following incubation of etoricoxib with fresh camel liver slices, there was no metabolite 

detected in the control sample which had no NADPH. Figure 5.3 shows original chart 

recordings of chromatograms and corresponding SIM fragment ions following incubation 

of etoricoxib with camel liver slices in the presence of NADPH. The results show 

etoricoxib can be metabolized by the liver tissues to produce the metabolite, namely 6‟-

hydroxymethyl etoricoxib within 30 minutes following incubation.  

In addition, the data further reveal that after 60 minutes of incubation in the presence of 

NADPH, etoricoxib together with its metabolites, 6‟-hydroxymethyl etoricoxib,  6‟-

carboxy etoricoxib and and 6‟-hydroxymethyl etoricoxib-1‟-N-oxide were also detected 

in the incubation medium. This confirmation was based on their masses and 

fragmentation pattern on  LC/MS/MS. Similarly, Figure 5.4 shows the LC/MS/MS 

chromatograms and the corresponding SIM mass fragmentation of celecoxib and its and 

metabolites following incubation with camel liver tissue in vitro.  

The results show that hydroxy celecoxib and carboxy celecoxib could be detected in 

incubation medium and the parent celecoxib is converted into its metabolites within 60 

minutes of incubation with NADPH. It is particularly note worthy that both hydroxy 

celecoxib and carboxy celecoxib are the two metabolites produced in vivo after celecoxib 
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administration to horses. Table 5.1 show the comparison of metabolites formed from the 

two COX-2 inhibitors in vivo and in vitro. It has been noted that 6‟-hydroxymethyl 

etoricoxib was obtained during all the treated conditions. 

Carboxy celecoxib was obtained from all conditions except when celecoxib was 

incubated with liver microsomes. In contrast, hydroxy celecoxib and glucuronide of 6‟-

hydroxymethyl etoricoxib were only produced in urine samples. In addition, 6‟-carboxy 

etoricoxib and 6‟-hydroxymethyl-1‟-N –oxide of etoricoxib were obtained only in urine 

and faeces and when incubated in camel liver tissues.  

Together, the present in vitro experiments employing camel liver tissue corroborate the 

results obtained from in vivo studies in horses (see table 5.1). 
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Figure 5.3: Original chart recordings of chromatograms and corresponding SIM fragment ions of (A) etoricoxib, (B) 6‟-hydroxymethyl etoricoxib, 

 (C) 6‟-carboxy etoricoxib and (D) 6‟-hydroxymethyl-etoricoxib-1‟-N-oxide identified from incubation of etoricoxib with camel liver tissues, n=3. 
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Figure 5.4: Original chart recordings of camel liver tissue in vitro metabolism of celecoxib showing (A) chromatographic peak for celecoxib,  

(B)  chromatographic peak for hydroxy celecoxib and (C) characteristic chromatographic peak for carboxy celecoxib, n=3. 
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       Table 5.1: Comparison of metabolites formed in vivo and in vitro 

 

 Metabolites  

 

In vivo 

 

In vitro 

Plasma Urine Faeces Using microsomes Using camel liver 

Celecoxib  

Hydroxy-celecoxib Tr √ N/A N/A √ 

Carboxy-celecoxib √ √ √ N/A √ 

      

Etoricoxib  

6‟-hydroxymethyl-etoricoxib √ √ √ √ √ 

6‟-carboxy-etoricoxib N/A √ √ N/A √ 

6‟-hydroxymethyl-etoricoxib-1‟-N-oxide N/A √ √ N/A √ 

Glucuronide of 6‟-hydroxymethyl-etoricoxib N/A √ N/A N/A N/A 

Tr- traces detected, N/A-not detected, √ - detected 
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5.4. Discussion 

The study of drug metabolism using in vitro methods has become widespread in the 

field of drug discovery and it  is also being used to a lesser extent in sport drug 

surveillance if live animals are not available for experiments involving the 

administration of the drug in vivo. Several previous studies have been published 

investigating the phase I metabolism of anabolic steroids such as turinabol, mesteralone 

and non-steroidal anti-inflammatory drugs including phenylbutazone etc.(Ho et al., 

2007; Leung et al., 2005). The metabolic profile of a drug obtained in vitro usually 

reflects the metabolic pattern in vivo and thus in drug discovery stages greater 

importance is given to predict the safety and efficacy of the drug (Wrighton et al., 

1993). More recently, two equine cytochrome P450 enzymes, namely CYP2D50 

andCYP2C92 have been sequenced (DiMaio Knych & Stanley, 2008). Though the 

equine and human isoforms share some substrate specificity, they nevertheless differ in 

their enzyme kinetics and the metabolites they  produce (Knych et al., 2010).  In a 

recent study, Peters et al., (2013) annotated and cloned the CYP2B6 enzyme in horses 

and they studied the phase I metabolism of ketamine, a drug regularly administered to 

calm down horses during long travel and they found that the enzyme produced 

norketamine and hydroxylated metabolites of norketamine. Again, DiMaio-Knych et 

al., (2011) studied the metabolism of dantrolene, a muscle relaxant to characterize the 

cytochrome P450 enzyme involved and reported that dantrolene was rapidly 

metabolized to 5-hydroxy dantrolene both in vivo and in vitro. They further reported 

that two enzymes were responsible for the metabolism of dantrolene, as evidenced by 

two distinct Km values.  
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The aim of the present in vitro study employing horse liver microsomes and fresh camel 

liver fragments was primarily to identify and to corroborate the metabolites formed in 

vitro compared to those formed in vivo in horses for the two COX-2 inhibitors, 

etoricoxib and celecoxib normally used in humans and in other animals to relieve pain 

and inflammation. It is the belief that an understanding of the metabolism and 

elimination time of the drugs and their metabolites would help in increasing the 

coverage of any miss-usage of these analgesics when they are prescribed to treat pain 

and inflammation in racing animals like horses. Thus, the molecular structure or the 

microsome stability parameters are not fully rationalized beyond the assignment of the 

molecular masses of the metabolites detected in a biological sample.  

Normally, a forensic dope testing laboratory can detect a substance mainly on it 

molecular mass and fragmentation pattern of the analyte employing a particular 

analytical equipment. A biological sample is declared positive on a comparison between 

the sample in question and the reference (drug/metabolite). In most instances, the 

purified standards for most metabolites are not commercially available for comparison. 

Hence, the metabolites formed by in vitro experiments using liver microsomes or fresh 

liver slices are allowed to be used as reference materials (Wong et al., 2011). Horses are 

not slaughtered in the UAE for human consumption and procurement of horse liver for 

in- vitro studies from the local abattoir is highly impossible, while camels are 

slaughtered and camel meat is a delicacy in Arabic cuisine. Hence camel liver tissues 

were used in this part of the study. Thus, the non availability of fresh horse liver tissues 

prompted this study to use fresh camel liver tissues instead, to study the metabolism of 

etoricoxib and celecoxib. 
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Organic solvents like methanol, acetonitrile or DMSO are often used in in-vitro 

experiments if the drug in study is poorly soluble in either water or buffers (Chauret et 

al., 1998). The two new COXIB drugs, etoricoxib and celecoxib have different 

solubility properties. Etoricoxib is easily soluble in water which was used to dissolve 

the drug in this in-vitro experiment. On the other hand celecoxib was not soluble in 

water and other organic solvents like methanol or ethanol. However, celecoxib was 

found to be readily soluble in either acetonitrile or DMSO.  

The present in-vitro experiments were performed with celecoxib dissolved in DMSO, 

which is less than 1% of DMSO used in the entire in-vitro incubation experiment. 

DMSO is a prescription medicine, mostly used as a topical application for pain and 

inflammation (Nikonova, V, 1998). Cytochrome P450 are the principal family of 

enzymes employed in drug metabolism and CYP3A4 is the major enzyme in the liver to 

metabolise drugs. The lipophilic nature of few new drug candidates often require 

organic solvents such as acetonitrile and dimethyl sulfoxide for their solubilization to 

perform in vitro incubation experiments. These organic solvents have been found to 

have either inhibitory or stimulatory effects on the enzymes involved in drug 

metabolism (Busby et al., 1999).  

Nishiya et al., (2010) studied the effect of DMSO in the metabolism of diazepam and 

concluded that DMSO competitively inhibits the formation of diazepam metabolites in 

vitro. The toxic effects of DMSO on gene expression in human and rat haepatocytes 

have demonstrated revealing that the organic solvent was non-cytotoxic  up to a 

concentration of 2% (v/v) (Sumida et al., 2011). Iwase et al., (2006) evaluated the effect 

of solvents like acetonitrile, methanol, ethanol and dimethyl sulfoxide on the inhibition 
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of testosterone and midazolam using pooled human liver microsomes. They concluded 

that all organic solvents above 1% had an inhibitory effect on a substrate concentration 

dependant or on a time-dependant manner except for methanol which had no inhibitory 

effect on in vitro metabolism studies. Another in vitro study of the effect of DMSO on 

dextromethorphan  and phenacetin using human liver microsomes suggests that DMSO 

should be used at less than 1% (w/v) concentration and a concentration of 5% strongly 

could affect the drug metabolism in vitro (Chauret et al., 1998).   

The present initial developmental studies showed that DMSO had no detectable effect 

on the metabolism of celecoxib in the presence of fresh camel liver tissues by the 

formation of characteristic metabolites of celecoxib as shown in figure 5.4. The control 

experiments in this study were performed either in the presence or in the absence of 

either horse liver microsomes or camel liver slices or NADPH. Thus, the control 

experiments did not form any of the corresponding metabolites.  

5.4.1. Metabolism Etoricoxib 

Incubation of etoricoxib in the presence of human liver microsomes has previously been 

reported to give one major metabolite, namely 6‟-hydroxymethyl etoricoxib and one 

minor metabolite, etoricoxib-1-N-oxide, both having a m/z 375Da and seen as two 

peaks when analyzed by HPLC/APCI-MS (Chauret et al., 2001). In addition to the two 

metabolites, a third metabolite of m/z 389 has been reported using human haepatocytes 

(Nicoll-Griffith et al., 1999). In the present study, the use of horse liver microsome 

yielded only one metabolite as seen as a single peak of m/z 375 throughout the entire 

LC/MS analysis. Oral administration of etoricoxib to horses has also shown previously 

to have a single peak for m/z 375 as mentioned in chapter 4 of this study. This m/z 375 

further forms a glucuronic acid metabolite in vivo. Therefore, the metabolite noticed in 
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 in vitro could be possible the 6‟-hydroxy methyl etoricoxib. The absence of etoricoxib-

1-N-oxide in in vitro microsomal incubation and in vivo experiments suggest that horses 

primarily metabolize etoricoxib to 6‟-hydroxymethyl etoricoxib only and this metabolite 

is further broken down to other metabolites. Kassahun et al., (2001) reported that the 

disappearance rate of etoricoxib during the formation of 6‟-hydroxymethyl etoricoxib 

was 4.2 ± 2.7 hr (mean ± S.D; n=3) showing low intrinsic clearance in vitro. The 

present in vitro metabolic stability study of etoricoxib with horse liver microsome 

shows a high in vitro clearance rate. In a previous study, (Eddershaw & Dickins, 1999) 

employed a metabolic stability assay to compare in vitro experiments with in vivo 

studies to investigate drug metabolism and they  showed that the metabolism of the drug 

in vitro was a reasonable estimate compared to the in vivo half life of the drug. The 

results presented in this study show that the terminal half life for either coxib drug 

estimated in the microsomal study correlates closely to the in vivo data shown in table 

4.4 of this study (Chapter 4). 

 

5.4.2. Metabolism of Celecoxib 

Celecoxib has been reported to form hydroxy celecoxib
 
by human liver microsomes 

(Iyer et al., 2004). Similarly, Tang et al (2000) have reported that celecoxib forms only 

hydoxy celecoxib with no trace of carboxy celecoxib. However, in the present study 

with horse liver microsomes, the characteristic hydroxy celecoxib and carboxy 

celecoxib were not detected when screened by LC/MS/MS analysis. In contrast, when 

celecoxib was incubated with camel liver tissue it produced both hydroxy and carboxy 

metabolites of  celecoxib. 

A correlation between in vitro and in vivo data are often used in the pharmaceutical 

industry to reduce drug development time and optimise formulation (Scheubel 
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Emmanuel, 2010). This in vitro study employing both horse liver microsomes and fresh 

camel liver slices  has shed further light into the metabolism of these COX-2 inhibitors 

compared to the in vivo whole animal situations, employing horses. These in vitro 

experiments closely corroborate the findings obtained in the in vivo studies for both 

coxib drugs (see table 5.1 for comparison).  It is apparent that liver microsomes, the 

liver fragments and the whole animal can all metabolize the drug, at least etoricoxib, 

whereas, in the majority of cases the liver and the whole animal are required to 

metabolize both drugs fully. 

From the present study it is true to say that either celecoxib or etoricoxib can be 

administered to the six horses to alleviate pain. The animals can metabolise the drugs in 

vivo to produce a number of metabolites over time. Moreover, in vitro NADPH-

dependent metabolism of the two COX-2 inhibitors employing native horse liver 

microsomes can also help to identify and to determine the different metabolites 

produced by the parent drugs in their purest form rather than finding them in low 

abundance in such dirty matricies as urine, plasma or faeces which are normally 

contaminated with numerous biological substances.  

Kassahun et al.,(2001) studied the metabolic profile of etoricoxib and they found it to 

be  less complex and moreover, it involved the formation of P450-dependent 6‟-methyl 

hydroxylation and 1‟-Noxidation as the clearance pathway, the latter being the major 

metabolite in human liver microsomes. This metabolite is oxidized further to 6‟-carboxy 

etoricoxib in the presence of co-factor-fortified human liver cytosol. Unlike 

microsomes, 6‟-carboxy etoricoxib has been identified as the major metabolite 

following oral or intravenous administration in humans (Rodrigues et al., 2003). 
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Tang et al., (2000) report that methyl hydroxylation is a major pathway of celecoxib 

metabolism using human liver microsomes and the reaction is catalyzed mainly by 

CYP2C9 enzymes and CYP3A4 seems to plays a minor role in the metabolism of the 

parent drug. It has been reported that the action of CYP2C9 enzyme is greater than 

CYP3A4 in the whole liver comparedto liver microsomes (Tang et al., 2001). Thus, in 

the present study, the CYP2C9 enzyme present in camel liver slices could probably 

have metabolized celecoxib more effectively than horse liver microsomes.  

Similar to etoricoxib, the metabolism of celecoxib is also relatively simple. The parent 

celecoxib is metabolised to hydroxyl celecoxib which is oxidized further to the 

corresponding carboxylic acid metabolite via cytosolic alcohol dehydrogenase 

(Sandberg et al., 2002).  

 In conclusion, the results of this study have clearly shown that isolated liver tissues 

from both camel and horse can metabolize both celecoxib and etoricoxib almost similar 

to in vivo studies employing horses only. Both horses and camels are routinely used for 

racing at least in the UAE and any misuse of these drugs to relieve pain and 

inflammation in the animals prior to a race may also help to enhance their performance. 

In the racing fraternity, this can be interpreted as an illicit use of the drug. Thus, caution 

has to be taken into consideration when prescribing these coxib drugs to relieve pain on 

these racing animals prior to a race. 
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6.1. Introduction  

The horse has played an important role in the development of human civilization 

helping mainly in transportation and to win wars and moreover, winning money as in 

horse racing. The latter has now been described as a royal sport with huge prize money 

in the offering. A variety of sporting activities take place in United Arab Emirates 

(UAE) and the richest racing sport in the world, the Dubai World Cup is held in Dubai 

annually, with a purse of six million United States dollars. Racing is held throughout the 

world in countries like the United Kingdom, the United States of America, Australia, 

UAE and in many other countries. The huge prize money has led to many vice means of 

winning the race, which has led to strict regulations to be adopted by the racing 

fraternity in order to ensure that the sport is clean of illicit use of drugs when treating 

the horse for pain relief. This usually occurs before a race since it can enhance the 

performance of the horse in endurance racing. In the sporting fraternity, this illicit use 

of a drug to enhance the performance of the horse is referred as doping. 

Anabolic steroids and analgesics are widely used in the treatment of sickness and pain 

in veterinary animals and moreover, analgesics, like aspirin, have been used to reduce 

pain and inflammation (Kumar & Clark, 2009; Vane & Botting, 2003). During this 

process, they inhibit the COX-1 and COX-2 enzymes thereby leading to unwanted side 

effects like ulceration of the stomach lining and gastrointestinal bleeding (Vane & 

Botting, 1998a). Recently, a new generation of NSAIDs have been developed by the 

Pharmaceutical Companies and they are called COX-2 inhibitors (Marnett, 2009). 

These new analgesics have been found to be more effective in reducing pain compared 

to others, like aspirin, without inhibiting COX-1, thereby decreasing any harmful side 
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effects. Celecoxib and etoricoxib are two such new drugs which are used routinely in 

human  medicine for the treatment of osteoarthritis and rheumatoid arthritis as well as 

pain relief and inflammation (Paulson et al, 2000a; Rodrigues et al, 2003; Marnett, 

2009). Since these two coxibs are effective pain killers in humans, they could also be 

used to treat large veterinary animals, including camel and horses. Prior to the study, no 

such other investigation was done with these two coxibs in either horses or camels. 

As such, this project was specifically designed to investigate the therapeutic effects of 

celecoxib and etoricoxib in six retired race horses measuring a number of 

haematological and clinical biochemical parameters as well as determining the 

metabolism and elimination (pharmacokinetics) of each drug by the animals. In tackling 

the scientific problems, blood, urine and faeces were collected for analysis using well 

established biochemical and chemical techniques. In order to corroborate the 

metabolism of the two drugs in vivo, an in vitro study was also done employing 

commercial horse liver microsomes and fresh isolated camel liver to metabolize the 

drugs over time. The results are presented in chapters 3-5 of the thesis. An attempt will 

now be made to critically compare the present data with those previously reported in the 

literature, highlighting the clinical parameters, side effects, pharmacokinetics of the 

drugs and metabolism by microsomes and camel liver tissues. 

6.2. Measurements of haematological parameters 

The data presented in the present study have clearly demonstrated that oral 

administration of physiological doses of either celecoxib or etoricoxib to the six race 

horses had neither no adverse side effects to the animals nor any significant effect on 

blood clinical parameters compared to data obtained prior to the administration of each 
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 drug to the animals, except for a small transient elevation of creatinine with etoricoxib. 

In a previous study, Koene et al.(2010) investigated the haematological parameters like 

RBC, WBC, platelets, Hb, MCV.MCH, basophils, neutrophils, lymphocytes, 

monocytes, eosinophils, together with liver and kidney function enzymes in horses after 

oral administration of a therapeutic dose of firocoxib (a new COX-2 inhibitor developed 

specifically for veterinary animals).  

Like the present study, these authors found that all these clinical parameters were within 

the normal reference range and none were considered clinically significant. Firocoxib is 

part of the coxib family, but with a completely different chemical structure compared to 

either celecoxib or etoricoxib and with a molecular weight of 336.4 (see Figure 1.7 for 

comparison; Marnett, 2009). Similarly, Emery et al., (1999) reported that human 

patients receiving 200 mg of celecoxib twice daily for 24-weeks show no change in the 

liver-function enzyme levels. In contrast, Kockaya et al (2010) studied the effect of high 

pharmacological doses of celecoxib in rats employing concentrations of 10 mg/kg and 

50 mg/kg/day over 28 days. They showed that these large doses of celecoxib can 

significantly elevate plasma levels of AST and GGT, the two enzymes which are mainly 

found in the liver. An elevation of these two enzymes in the blood is an indication that 

they can alter the liver leading to either damage or obstruction (Kumar and Clark, 

2009).  

In the present study, it has been noticed that celecoxib administration at a concentration 

of 2 mg/kg b wt did not alter the levels of the liver enzymes, namely AST, ALT and 

GGT indicating that the horses can tolerate this therapeutic dose without causing any 

liver dysfunction. It would be interesting to increase the dose of the coxib gradually in 

order to determine the maximal dose which the animals can tolerate. In this respect, it  
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may take a longer time for the  animal to eliminate the drug compared to the five days 

obtained in this study. The rationale for the present study was to use a therapeutic dose 

rather than a pharmacological dose taking ethical issues and the welfare of the animals 

into consideration. Moreover, since this was a forensic study in part, it was relevant to 

employ low doses in order to determine the elimination time of both the parents drugs 

as well as the metabolites as some of these NSAIDs are routine used in the racing 

industry. 

It is also noteworthy that in addition to their analgesic effect and gastrointestinal 

friendliness, COX-2 inhibitors are seen to lower lipid levels in humans. In a study, 

Chow et al., (2005) treated breast cancer patients with celecoxib and they found that the 

drug was able to reduce their total cholesterol and lipids. The presented study did not 

measure either LDL, HDL or triglyceride levels. This may be an area for future 

investigation at least in the horse. 

Baracho et al (2009) have reported that chronic administration of etoricoxib at 30 

mg/kg/day to rats produced a significant increase in the levels of red blood cells, 

haematocrit and platelets compared to control untreated groups. Furthermore, they 

reported that etoricoxib administration did not produce significant alteration in other 

haematological parameters. Behal et al (2009) reported an overall decrease in total 

leucocyte, neutrophils, lymphocytes, monocytes and eosinophils when rats were treated 

with 0.64 mg/kg bwt and a significant increase in the leukocyte count when rats were 

administered ten times the earlier dose.  Histological sections of colon and kidney did 

not produce major histo-architectural changes with etoricoxib administration. 
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The present study investigated all haematological parameters after administration of 

celecoxib and etoricoxib and found no alteration in the blood- borne clinical parameters 

including the anions and cations, except for a slightly elevated level of creatinine in the 

horses at about 4 hours after oral administration of etoricoxib. This elevated level of 

creatinine is by far within the acceptable reference values in horses. The level was 

found to decline back to normal values within 24 hours. An elevated plasma creatinine 

level is an indication of kidney damage.  

6.3. Some adverse side effects of NSAIDS 

Traditional NSAIDs like aspirin and related drugs which can inhibit both COX-1 and 

COX-2 were developed mainly to treat humans, but they have also  been used to treat 

veterinary animals causing mucosal erosion and haemorrhage, especially in dogs and 

cats (Conlon, 1988). Similarly, phenylbutazone and flunixin have been shown to induce 

high incidence of gastric ulcer following long term usage in horses (Goodrich et al, 

2006). In another study, it was demonstrated that concurrent administration of a 

combination of drugs including celecoxib and aspirin which can inhibit both COX- 1 

and  COX-2 can produce stomach ulcers in rats, compared to no gastrointestinal tract 

(GIT) damage when celecoxib was administered separately (Rahme et al., 2002). 

Because of these adverse side effects, the drugs are now coated making then slightly 

safer. It was previously reported that an enteric coated aspirin had less irritation to the 

stomach of the dog (Kauffman, 1989). Clinical studies with COX-2 inhibitors have 

shown that unlike traditional NSAIDs, like aspirin, COX-2 inhibitors produce either 

none or reduced GIT complications (Laine et al., 2003; Scheiman et al.,2006; Laine et 

al.,2008)). The “VIGOR” study employed rofecoxib and it showed a 54% decrease in 
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GIT events when compared with naproxen, a traditional NSAID (Bombardier et al., 

2000).  Likewise, Lascelles et al. (2005) reported that deracoxib, a COX-2 inhibitor 

developed for treatment of pain in dogs, produced GIT perforations when used at high 

pharmacological doses compared to approved or recommended dosage. In contrast, 

Silverstein et al. (2000) reported a lower incidence of ulcer complications with 

celecoxib at a dose of 400 mg twice daily when compared with ibuprofren and 

diclofenac. In dogs, a super-therapeutic dose of celecoxib did not show any GIT toxicity 

(Maziasz et al., 1997). Similarly, Altinkaynak et al.(2003) reported that celecoxib did 

not induce damage to gastric mucosa of rats.  In human studies, endoscopic examination 

of the stomach following treatment with celecoxib at 400 mg/day for 12 weeks showed 

lower incidence of gastro-duodenal ulcers (Hawkey et al. 2004; Goldstein et al. 2001). 

Interestingly, in the “SUCCESS-I” study, it was reported that celecoxib at either 200 mg 

or 400 mg/day had lower incidence of ulcer complications in patients who were treated 

for osteoarthritis (Singh et al., 2006). 

The “EDGE” study compared etoricoxib with diclofenac sodium on gastrointestinal 

tolerability and effectiveness and the results show that etoricoxib at 90 mg/day to 

humans has significantly lower GI adverse events. In contrast, diclofenac sodium 

increased the levels of the two liver enzymes, ALT and AST, but not with etoricoxib 

(Kruger, 2008). A comparative study with traditional NSAIDs like diclofenac, 

ibuprofen and naproxen versus etoricoxib showed that etoricoxib was well tolerated at  

60 – 120 mg/day (Ramey et al., 2005).  A traditional NSAID study of 16 horses, 

comparing phenylbutazone, flunixin meglumine and ketoprofen shows that  

phenylbutazone had the greatest toxic potential in the form of renal necrosis compared 

to flunixin, while ketoprofen had the least or no side effect on the kidneys (MacAllister 

et al., 1993). In the present study, it was shown that either celecoxib or etoricoxib 



 

[174] 

 

administration daily at a dose of 2 mg/kg bwt for 15 days show no ulceration or 

bleeding upon endoscopic examination of the stomach. Moreover, all the animals 

behaved normal with no symptoms of dyspepsia or diarrhoea. Together, these results 

clearly show that the horses can tolerate both celecoxib and etoricoxib when they are 

administered orally to the animals over several days. 

6.4. Pharmacokinetics and Pharmacodynamics of some common NSAIDs in horses 

Pharmacokinetics is concerned with the study and characterization of drug – its 

absorption, distribution and excretion. Additionally, it gives information of its intensity 

and the duration of characteristic effects (Baggot, 1995). NSAIDs are the drug of choice 

to alleviate pain and many studies have been established for the pharmacokinetic 

profiles of NSAIDs in horses. The key characteristics for moderate to good 

pharmacokinetics are a good bioavailability, a high degree of protein binding and a 

good volume of distribution (Lees et al., 1988). 

Veterinary and human pharmacology differ principally in the different species in which 

drugs are administered and studied (Lees et al, 1988). It is often presumed that the dose-

effect relationship are same in animals as in humans but, differences in the biochemistry 

and physiology among species and the different drug classes bring about variations in 

pharmacokinetic and pharmacokinetic activity for the same drug. It has been found that 

the herbivore species of animals such as the horse and other ruminants metabolize lipid-

soluble drugs more rapidly than carnivorous animals. Moreover humans have been 

found to metabolize drugs slowly when compared to animals. These are reflected by the 

half-life values for certain drugs studied in humans as well as in animal species (Burns 

& Conney, 1964).  It has been reported that the drugs such as phenylbutazone, flunixin 
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and meclofenamate administered through oral route tend to be absorbed on to hay and 

thus delay absorption. This binding leads to two peaks of plasma concentration, one 

from the free drug that is absorbed and the second peak from the drug released from hay 

digestion (Maitho et al., 1986).  

Lees et al., (1985) studied the pharmacokinetics and bioavailability of phenylbutazone 

in mountain ponies. They reported that the drug clearance in young ones after 

intravenous administration was twice more rapid than older ponies. Moreover, after an 

oral administration the Cmax was greater in older ponies, which was due to slow plasma 

clearance and the 24 hour urinary excretion accounted for approximately 25% of the 

administered intravenous dose. 

Earler, Gerring et al., (1981) administered a single oral dose of phenylbutazone (1.1 to 

13.2 mg/kg) to a group of horses and report that a considerable individual variations 

exist in both timing and magnitude of the plasma drug response between horses. They 

report that phenylbutazone forms two principal metabolites, oxyphenbutazone and γ-

hydroxyphenylbutazone. Furthermore, the plasma concentration of oxyphenbutazone 

did not exceed 25% of the parent drug and γ-hydroxy metabolite concentration never 

exceeded 1µg/ml. 

The plasma disposition and tolerance of the non-steroidal anti-inflammatory drug 

carprofen was studied in three thoroughbred horses and found to have a Vd of 0.08 to 

0.32 L/kg and a plasma half-life of 14.5 to 31.4 hours with no accumulation of the drug 

in plasma after oral administration (Mckellar et al., 1991). Similarly, Jaussaud et 

al.,(1992) reported the pharmacokinetics of tolfenamic acid after an oral administration 

(30 mg/kg bwt) to horses to have a peak plasma concentration of 11.1 ± 0.69 µg/ml and 
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a t1/2 of 4.2 ± 0.48 hours. They further reported that tolfenamic acid could not be 

detected in equine plasma beyond 48 hours after drug administration.  

The pharmacokinetics and pharmacodynamics of flunixin and ketoprofen were studied 

by by Landoni and Lees (1995) to evaluate their anti-inflammatory properties and 

inhibition of bradykinin-induced swelling in horses. They reported that flunixin had an 

elimination half-life of 3.37 ± 1.09 hours, Vd of 0.317 ± 0.126 L/kg and a clearance of 

0.058 ± 0.004 L/kg/hour compared to the enantiomer ketoprofen. The R(-) and S(+) 

enantiomer of ketoprofen showed a t1/2 of 1.09 ± 0.19 hour and 1.51 ± 0.45 hours, 

respectively. Similarly clearance was more rapid with R(-) ketoprofen than S(+) 

ketoprofen. Furthermore,  the pharmacodynamics of flunixin and ketoprofen was 

studied by determining the inhibitory effects on serum thromboxane, PGE2 and 

leukotriene B4. They established that both the drugs inhibited serum TxB2 synthesis for 

up to 24 hours and flunixin was more potent in inhibiting PGE2 than ketoprofen and 

neither drug had any effect on leukotriene B4 and both the drugs inhibited bradykinin-

induced swelling.  

In 1994, Lees et al. evaluated the pharmacokinetics and pharmacodynamics of 

carprofen in 6 horses having nonimmune inflammation following intravenous 

administration of 0.7 mg/kg bwt of racemic mixture of carprofen. The pharmacokinetic 

parameters were 18.1 hours for t1/2, 0.25 L/kg for Vd and 58.9 ml/min for clearance. The 

pharmacodynamic effect showed reduction in swelling at the site of inflammation with 

moderate suppression of serum thromboxane B2 and prostaglandin E2 synthesis.  

Villa et al., (2007) investigated the COX-1/COX-2 selectivity of nimesulide based on 

pharmacokinetic and pharmacodynamic data. Their results suggest that a dose of 1.5 

mg/kg bwt at a dosing interval of 12-24 hours may produce adequate clinical effects. 
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However, they found that at this particular dose, the concentration in the animal 

exceeded the in vitro IC50, the COX-1/COX-2 selectivity is lost leading to side-effects 

due to COX-1 inhibition.  

Nine adult horses receiving a single i.v dose of 0.5, 1.5 and 3 mg/kg bwt tramadol 

showed peak plasma concentrations of 454 ± 101.6, 1086.7 ± 330.7 and 1697.9 ± 

406.1 ng/ml, respectively. The CL, Vd and  t1/2 also ranged from 24.6 to 25 ml/min/kg, 

2.66 to 3.33 L/kg and 2.17 to 3.05 hours respectively depending on the dose 

administered. Furthermore, horses were found to metabolize tramadol to O-

desmethyltramadol preferably than N-desmethyltramadol. O-desmethyltramadol was 

present at a concentration of 3.9 ± 1.9, 9.6 ± 4.8 and 12.9 ± 5.2 ng/ml, respectively for 

the different doses administered (Knych et al., 2012). 

6.5. Metabolism and pharmacokinetics of celecoxib and etoricoxib in vivo 

A HPLC-MS/MS-based technique is both rapid and easy  and it has been found to be a 

highly suitable chemical tool to analyse for metabolites in biological samples such as 

urine, faeces and plasma and moreover to study the pharmacokinetics of COX-2 

inhibitors (Lutz Bra¨utigam, 2001). Similar to steroids, non steroidal anti inflammatory 

drugs are most widely studied in horses because of their importance as therapeutic 

agents. In the equine, aspirin (acetyl salicylic acid) is rapidly hydrolyzed to salicylic 

acid and it is the predominant urinary metabolite (Beaumier et al., 1987). 

Phenylbutazone is the most common NSAID used in horses for musculoskeletal pain 

(Kallings et al., 1999b). Phenylbutazone is a COX-1 and COX-2 inhibitor and it  is 

metabolized via oxidation to form oxyphenylbutazone, though γ-hydroxy-

phenylbutazone, the metabolite reported in plasma within 1-10 hours after 

administration in  horses (Tobin et al., 1986). Flunixin is another traditional NSAID  
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used more frequently in horses for colic and soft tissue inflammation. This NSAID has 

been found to form a hydroxy metabolite which is also active and has an analgesic 

activity for about 12.8 hours (Houdeshell & Hennessey, 1977). Caffeine, the most 

commonly used stimulant in humans undergoes demethylation in horses to form the 

dimethylated xanthine namely, theophylline, together with traces of theobromine and 

paraxanthine (Clarke & Moss, 1976). The metabolic profile of naproxen has been 

studied extensively in horses which forms O-desmethyl naproxen and it is detected in 

both plasma and urine (Young & Yeow, 1983). 

The COX-2 inhibitors are relatively new group of anti-inflammatory agents which do 

not disturb the house keeping function of the COX-1 enzymes, thus, they are found to 

be tolerated well by gastrointestinal system. The pharmacokinetics of celecoxib and 

etoricoxib have been extensively studied previously (Yuan & Hunt, 2007). Celecoxib 

exhibits analgesic, antipyretic and anti-inflammatory properties by inhibiting 

prostaglandin synthesis and its analgesic effect is mainly due to it peripheral action  at 

the site of pain and it is most effective when the pain is related to inflammation 

(Antoniou et al., 2007).   Due to its poor solubility, the oral bioavailability of celecoxib 

has been found to be low (Babu et al., 2002a).  

Paulson et al. (2001) have shown that celecoxib reached a maximum concentration 

within 1 hour after oral administration in dogs with a reported tmax of 2.5 hours. In 

fasted humans, a higher tmax of 3.5 hours was reported for celecoxib after a high fat 

meal. Following a 200 mg oral dose of celecoxib to human subjects, a tmax of ~2.9 

hours, Cmaxof ~ 806 ± 411 ng/ml, terminal half-life (t1/2) of 7.6 – 15.2 hours  were 

reported (Werner et al., 2002; Abdel-Hamid et al., 2001; Itthipanichpong et al., 2005; 
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Davies et al., 2000;). Similarly, Cmax of 0.67 ± 0.17 hours and a t1/2 of 3.7 – 14 hours 

were reported for dogs and cats (Paulson et al., 2000; Paulson et al., 2001).  Kvaternick 

et al. (2007) studied the pharmacokinetics of firocoxib following daily oral 

administration in horses and they have reported a Cmax of 75 ng/ml, tmax of 3.9 hours and 

a terminal half-life of 30 hours. Steady state plasma concentration are attained within 5 

days after starting therapy and the metabolites found in the  circulation have no COX-2 

activity (Pfizer Ltd, 2012). Celecoxib is bound to plasma albumin (≈ 97%) and 

distributed in the tissues extensively (Kucab et al., 2005).  

Human study has predicted that celecoxib metabolism is primarily mediated via 

cytochrome P4502C9 and three metabolites namely hydroxycelecoxib, 

carboxycelecoxib and its corresponding glucuronide have been identified in plasma 

(Gong et al., 2012). Zhang et al. (2000) in their study of the metabolism of celecoxib, 

reported that the drug is extensively metabolized with less than 2% of the administered 

dose is eliminated unchanged in urine and faeces of rabbits. Furthermore, they have 

characterized three phase I and four phase II metabolites using LC/MS/MS in 

conjunction with radio labelled profiling. Paulson et al., (2001) have reported that 

celecoxib is predominantly eliminated as metabolites in urine and faeces, with 57% of 

the dose excreted in faeces and 27% excreted in the urine in humans. Moreover, they 

showed that carboxycelecoxib was the main metabolite in both urine and faeces.  

Etoricoxib produces dose-dependent inhibition of COX-2 without inhibition of COX-1 

across the therapeutic dose range (Dallob et al., 2003). Agrawal et al., (2003a) reported 

that the peak plasma concentration of etoricoxib reached within 1 hour of oral 

administration. Etoricoxib has been found to be bound to plasma protein (≈ 92%) and 

after a 120 mg daily dose, the area under the plasma time curve (AUC) was 37.8µg/ml 
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(Agrawal et al., 2004). The drug has been found to be extensively metabolized by CYP 

3A4 and to a lesser extent by CYP2D6 (Kassahun et al., 2001). Five metabolites, 

namely 6‟-hydroxymethyl etoricoxib, 6‟-carboxy etoricoxib, etoricoxib-1-N-oxide, 6‟-

hydroxymethyl-etoricoxib-1‟-N-oxide and 6‟-hydroxymethyl etoricoxib glucuronide 

have been identified in urine and none of the metabolites have significant 

pharmacological activity (Chauret et al., 2001).  

A radiolabelled etoricoxib administration study by Rodrigues et al., (2003) showed that 

an amount of 70% of the dose is excreted in urine and 20% in faeces as metabolites, and 

less than 2% excreted as unchanged drug. They also reported that 6‟-carboxy etoricoxib 

was the major metabolite excreted in urine and faeces and 6‟-hydroxymethyl etoricoxib, 

etoricoxib-1‟-N-oxide, the 1‟-N-oxide of 6‟-hydroxymethyl etoricoxib and the 

glucuronide conjugate of  the 6‟-hydroxymethyl etoricoxib comprised ≤7% when the 

drug was administered as a radioactive compound in 0 – 24 hours urine.  

Likewise, Agrawal et al. (2001) reported that the plasma clearance of etoricoxib and it 

metabolites was ≈ 50 ml/min and a plasma half -life of about 22 hours, suggesting a 

once a daily dose. Furthermore, they concluded that less than 1% of the administered 

drug was recovered intact in urine, indicating that renal excretion has a minimal role in 

the excretion of etoricoxib. However, the metabolites of etoricoxib are mostly excreted 

in urine.  

The pharmacokinetics of etoricoxib does not have a significant effect on the age and 

gender of the subjects employed in the study. In contrast, the pharmacokinetics of the 

etoricoxib is contradicted in patients with renal creatinine clearance <30 ml/min (Merck 

Sharp & Dohme Limited, 2012).  A three-part study of either intravenous, oral 

administration or a multiple oral dose of etoricoxib has showed  pharmacokinetics  and  
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absorption characteristics which were linear over the dose and route studied (Agrawal et 

al., 2003b).  

6.5. Metabolism of celecoxib and etoricoxib in vitro 

Human liver-derived in vitro systems for prediction of drug clearance and metabolism 

was described ~ 40 year ago (Rane et al., 1977). The synthesis of drug metabolites have 

become a tedious and cumbersome process and thus the use of in vitro technology has 

made it possible to produce metabolites with high degree of purity within a few hours. 

In vivo experiments also require ethical clearance for the use of animals for research 

work and they are often lengthy involving administration protocols and timescales. On 

the other hand in vitro experiments do not require live animals and the final extracts are 

cleaner and can be fit into tailor made time scales (Scarth et al., 2010b). Thus, various 

in vitro systems such as liver microsomes, haepatocytes and precision cut liver slices 

are available to study drug  clearance and metabolism (Obach et al., 1997).  

The in vitro drug metabolic study is wide spread in drug development industry and has 

not been fully utilized in sport drug testing laboratories (Yuan et al., 2002). Very few 

publications are available about the use of horse liver and liver fractions in metabolism 

studies and they have been mostly on the study of the phase I metabolism of anabolic-

androgenic steroids. Leung et al., (2005) studied the in vitro biotransformation of 

clostebol acetate with horse liver microsomes and reported the formation of six 

metabolites while they found only three metabolites in urine. The in vitro assay 

produced cleaner byproducts of clostebol which helped in detection of minor 

metabolites compared to dirty urine matrix which hindered the detection of less 

concentration of minor metabolites. Clostebol acetate is used to enhance the 
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performance in race horses. Similarly Ho et al., (2005) studied the metabolism of 

methenolone using horse liver microsomes and detected seven metabolites for this 

steroid. Again, Ho et al., (2007) studied the metabolism of turinabol an oral anabolic 

steroid using horse liver microsomes. The metabolites were detected by GC-MS after 

trimethylsilylation. They reported that turinabol undergoes hydroxylation at sites C6, 

C16 and C20 of the molecule to form five metabolites. The structures of all the 

metabolites were tentatively identified by mass spectral interpretation.  

Finally, Scarth et al., (2010) studied the metabolism of stanazolol by LC-MS using 

equine liver/lung microsomes and S9 fractions and found a number of phase I 

metabolites previously unreported in the equine. The preparation of horse liver 

microsomes from fresh horse liver involved time consuming steps, which led Wong et 

al., (2011) to use fresh horse liver slices to study the metabolism of five anabolic 

steroids – turinabol, metholone acetate, androst-4-ene-3,4,17-trione, testosterone and 

epitestosterone. They report that the assay was time saving as well as the whole liver 

tissue produced more number of metabolites than using liver microsomes reported by 

other others. Thus the in vitro studies are used in equine drug testing laboratories to 

compliment the in vivo studies (Ho et al., 2007b). 

A NADPH fortified human liver microsome  incubation study previously reported the 

formation of one major metabolite of celecoxib which was identified as hydroxy 

celecoxib with no carboxy celecoxib formation (Tang et al., 2000). Similarly Sandberg 

et al., (2002) studied the metabolism of celecoxib using human liver microsomes in the 

presence of NADPH and report that celecoxib produced one metabolite namely OH-

celecoxib and the formation of this metabolite was inhibited if the concentration of 

acetonitrile used to dissolve celecoxib was more than 10%. Carboxycelecoxib was not  
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present in the incubation assay. They further report that carboxy celecoxib was not 

formed with OH-celecoxib incubated as a substrate even at high concentrations, 

whereas, addition of liver cytosol to the incubation medium enhanced the oxidation on 

of OH-celecoxib to form COOH-celecoxib. Thus their experiments concluded that 

COOH-celecoxib formation was clearly dependent on the presence of cytosol in the 

microsomal assay. 

Chauret et al., (2001) studied the in vitro metabolism of etoricoxib in human liver 

microsomes and they demonstrated the formation of two oxidative metabolites, namely 

6‟-hydroxymethyl etoricoxib as the major metabolite and etoricoxib-1‟-N-oxide as 

minor metabolite and further, when incubated with suspended haepatocytes, etoricoxib 

formed the third metabolite namely 6‟-carboxy etoricoxib. The same group of workers 

further studied the metabolism of etoricoxib and identified a fourth metabolite in canine 

haepatocytes having a mass of 192 daltons, higher than that of the parent etoricoxib and 

this metabolite was confirmed to be 6‟-hydroxymethyl glucuronated metabolite. The 

incubation of the synthetic 6‟-hydoxymethyl analogue with dog haepatocytes formed 

6‟-hydroxymethyl glucuronated metabolite, which allowed its characterization. 

Kassahun et al., (2001) found that CYP3A4 plays a major role, approximately 40 to 

90% of the total 6‟-methyl hydroxylase activity in the metabolism of etoricoxib; 

however, other CYPs like the CYP2D6, CYP2C9 also have a role to play as well. 

Moreover ketoconazole, sulfaphenazole, quinidine and troleandomycin, selective 

inhibitors of CYP3A were shown to decrease the rate of metabolite production with 

human liver microsome incubation. They further report that etoricoxib with NADPH-

fortified human liver microsomes formed one major peak which was identified by 

LC/MS  as 6‟-methyl hydroxyl metabolite, traces of etoricoxib-1-N-oxide as minor 
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metabolite and the complete absence of 6‟-carboxy metabolite which could be detected 

in human urine and faeces.  

6.7. Concluding remarks 

The results presented in this study have clearly established that celecoxib and etoricoxib 

are safe drugs on the gastrointestinal system of the horse with virtually no adverse side 

effects on the clinical biochemical and haematological parameters following oral 

administration at physiological dose. Both drugs are predominantly metabolized in the 

liver. Celecoxib has been found to be not fully absorbed by the gastrointestinal tract, 

thus it was eliminated as a major component in the faeces of the horses. In contrast, 

etoricoxib undergoes extensive metabolism and only low levels of etoricoxib are 

excreted in urine and faeces. Celecoxib or its metabolites could be detected for up to 96 

hours and etoricoxib or its metabolites were detected for a maximum of 120 hours 

following oral administration. In vitro studies employing either horse haepatocytes or 

camel liver slices have also demonstrated that both coxibs can be metabolized 

producing almost similar metabolites as seen in  vivo studies. Thus, this study draws a 

safety line for the Veterinary Practitioners, trainers, owners and the horse racing 

industry of the safe usage of the drug as a genuine therapeutic medication for the 

treatment of pain and the withdrawal time period for a drug free sport. 
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7.1 Conclusions 

Non-steroidal anti-inflammatory drugs or NSAIDs play a major role in reducing pain 

and inflammation both in humans and animals. There are different types of NSAIDs, 

some of which induce several side effects including bleeding and ulceration. In the 

pharmaceutical industry research is still going on in producing safer NSAIDs. Two 

recently developed NSAIDs are celecoxib and etoricoxib and they have been shown to 

exert safe analgesic effects in humans. However, no such work was done in large 

animals such as horse which usually experience joint and muscle pain, especially during 

racing.  

This study investigated their side effects, metabolism and elimination of these two coxib 

analgesics in six retired race horses. The results show that oral administration of both 

COX-2 inhibitors at physiological doses (2 mg/kg bwt for celecoxib or 0.5 mg/kg, 1 

mg/kg and 2 mg/kg bwt of etoricoxib had no adverse side effects on either the stomach 

mucosa or on blood borne parameters including RBC, WBC and platelet counts as well 

as on liver and kidney function enzymes and plasma anions and cations, except for a 

small transient increase in creatinine with etoricoxib. Following oral administration, 

either drug is metabolized in the animals in a time dependent manner producing several 

metabolites as well as the parent drug in urine, faeces and plasma. The liver seems to be 

the main route in metabolizing each drug. Both the parent drug and metabolites are 

completely eliminated from the animals within five days following oral administration.  

In vitro studies involving commercially purchased horse liver microsomes and fresh 

camel liver fragments from the local abattoir were also used to investigate the  

metabolism of either celecoxib or etoricoxib. The results show that horse liver 

microsomes or camel liver fragments can metabolize each drug over a period of 30 to 
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180 minutes following incubation to form either none or one or two metabolites, 

compared to the whole animal. 

In conclusion, the results have indicated that the horse can safely tolerate both coxibs, to 

treat pain and without any major side effects. Moreover, the pharmacokinetic data 

suggest that the animal can harbor both the parent drugs and metabolites for up to 5 

days following oral administration. This latter finding is of paramount importance for 

the horse racing fraternity and the industry especially if animals are routinely given 

coxib analgesic prior to a race. 

7.2. Scope for future studies 

1. It is possible to investigate higher pharmacological doses of each drug in the 

animals and to repeat the same experiments as described in the study, similar to 

those used in rats and dogs. These high doses can be administered orally to the 

animals over time. Samples of blood, urine and faeces will be collected for 

analysis of certain blood borne biochemical parameters, the parent drug and 

other metabolites using conventional techniques employed in this study. In 

addition, it is possible to undertake endoscopic studies to see if the high dose of 

each drug can induce ulcer of the stomach. 

  

2. It is also proposed to investigate other related coxibs both at therapeutic and 

pharmacological doses in horses and camels, two large animals which are 

normally used in racing. There are other related coxibs which have not yet been 

investigated in large animals such as horses and to determine the analgesic 

effects. Similar to this study, it is possible to employ one or possibly two 

different coxibs for comparison. Animals will be given each drug orally 
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employing different concentrations. Samples of blood, urine and faeces will be 

collected for analysis using similar methods employed in this study and measure 

similar blood borne parameters, the parent drug and their metabolites.  

 

3. In the present study, each drug was eliminated in faeces without being 

metabolized suggesting that they are not properly absorbed by the gut. It may be 

possible to do uptake experiments using intestinal vesicles. The study can 

employ small animals such as rats, mice and rabbit and such large animals as the 

camel, sheep as well as horse whenever the tissues are available. This will 

involve the use of radioactive coxibs. Typically, each radioactive coxib can be 

incubated with brush border vesicle of the small and large intestine of rats, mice 

or a guinea pig over time. The uptake of each drug can be determined using 

scintillation analysis and plotted as time dependant curves. In addition, it may be 

possible to measure both the parent drug and metabolites during these 

experiments. These results may provide important information on the role of 

brush border vesicles in both absorption and metabolism of each coxibs. 

 

4. Ideally, it is important to measure the effect and metabolism of the two coxibs 

after a race. Blood is first collect before the race. The animals are given the drug 

prior to the race and blood, faecal and urine samples collected at different time 

intervals after the race. These experiments may indicate whether vigorous 

exercise can help to metabolize and eliminate the drug faster compared to non 

exercised animals. In these proposed series of experiments, the urine, faeces and  
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blood samples will be analyzed for blood borne biochemical parameters, the 

parent drug as well its metabolites using conventional and chemical techniques 

employed in this study. 

 

5. There is some evidence that the two coxibs can reduce blood triglycerides and 

cholesterol, at least in humans. It may be possible to repeat some of the 

experiments but concentrate more on the lipids. Lipids including HDL,LDL, 

CRP, cholesterol and total triglycerides may indicate signs of fatigue, distress 

and if possible cardiac events. These different lipids can be measured in blood 

using conventional biochemical analyses employing the auto-analyser. Again, 

different doses of coxib may induce different effect on each lipid. It may be 

possible to use low as well as high dose of each coxib during these proposed 

studies. 
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Appendix 

Appendix Table 1: Table showing typical mean (± SEM) values of biochemical 

markers and ions in blood of the six horses 

Parameters     SI     

                       units      

Reference 

values 

Pre administration 

Data are mean ± 

SEM 

Post administration 

Data are mean ± 

SEM 

RBC 10
12

/L 8.0-12.4 9.19 ±0.42 9.53 ± 0.57 

Hb g/dL 11-16 12.84 ± 0.93 13.14 ± 0.88 

PCV L/L 0.30-0.45 0.40 ± 0.02 0.41 ± 0.01 

MCV fL 34-58 43.46 ± 1.88 46.47 ± 1.81 

MCH pg 13.0-19.0 15.58 ± 0.66 16.33 ± 0.80 

MCHC g/dL 31-37 34.95 ± 1.09 35.31 ± 0.74 

PLT 10
9
/L 150-350 244.42 ± 14.18 244.85 ± 13.01 

 

WBC 10
9
/L 5-14 8.0 ± 0.23 7.81 ± 0.22 

NEU % 40-60 50.88 ± 1.35 49.60 ± 1.32 

LYM % 36-48 41.84 ± 2.28 40.02 ± 1.78 

MONO % 3-6 5.02 0.15 4.81 ± 0.11 

EOS % 1-2 1.42 ± 0.19 1.61 ± 0.09 

BASO % 0-1 0.6 ± 0.06 0.67 ± 0.05 

 

IRON µmol/L 14-25 24.17 ± 1.42 24.08 ± 1.05 

CK U/L 120-300 197.67 ± 4.87 196.21 ± 5.0 

LDH U/L 250-500 247.18 ± 9.36 245.6 ± 10.68 

AST U/L 150-300 234.01 ± 10.15 231 ± 11.08 

ALT U/L 1-10 5.57 ± 0.36 6.42 ± 0.48 

GGT U/L 10-40 17 ± 1.13 18.42 ± 1.30 

CREA µmol/L 88-177 121 ± 10.17 122.57 ± 10.67 

BUN mmol/L 1.5-9.0 4.35 ± 0.39 4.61 ± 0.48 

TP g/L 55-85 69.71 ± 3.06 72 ± 2.83 

ALB g/L 30-70 32.28 ± 1.56 32.57 ± 0.94 

MG mmol/L 0.7-0.9 0.75 ± 0.04 0.75 ± 0.02 

CA mmol/L 2.5-3.5 3.05 ± 0.11 2.99 ± 0.10 

PHOS mmol/L 0.8-1.5 0.90 ± 0.02 0.99 ± 0.01 

Na mmol/L 126-158 140.71 ± 2.72 139 ± 2.42 

K mmol/L 2.6-6.2 4.58 ± 0.31 4.79 ± 0.15 

Cl mmol/L 95-119 101 ± 2.26 102.45 ± 1.68 

Cu µmol/L 9.0-14.0 15.24 ± 0.55 15.90 ± 0.62 

Zn µmol/L 6.0-10.0 12.85 ± 2.20 10.92 ± 1.83 

SAA mg/L 0-20 2.35 ± 0.32 2.24 ± 0.09 
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Appendix 

Appendix  Table 2:  An example of values obtained for ETORICOXIB 

QUANTITATION - STANDARD CURVE 
  

      

      CALIBRANTS ZALEPLON ETORICOXIB ETORICOXIB/ZALEPLON AVERAGE 
 0 NG ETOR, 200 NG ZAL 1290391 2087 0.001617339 

0.008554812 
 0 NG ETOR, 200 NG ZAL 280204 4341 0.015492284 
 5 NG ETOR, 200 NG ZAL 579312 939528 1.621799652 

1.522809001 
 5 NG ETOR, 200 NG ZAL 776309 1105323 1.423818351 
 100 NG ETOR, 200 NG ZAL 1173948 2797686 2.383143035 

2.939268209 
 10 NG ETOR, 200 NG ZAL 501127 1751636 3.495393383 
 20 NG ETOR, 200 NG ZAL 438459 4089163 9.326215222 

8.13320285 
 20 NG ETOR, 200 NG ZAL 871383 6047564 6.940190479 
 

50 NG ETOR, 200 NG ZAL 758684 17895758 23.5878943 26.12795548 

 50 NG ETOR, 200 NG ZAL 658774 18885744 28.66801665 
 100 NG ETOR, 200 NG ZAL 376319 17044479 45.29263471 

51.42342457 
 100 NG ETOR, 200 NG ZAL 815401 46929764 57.55421443 
 200 NG ETOR, 200 NG ZAL 618765 52295054 84.51521014 

106.2584986 
 200 NG ETOR, 200 NG ZAL 330136 42257998 128.0017871 
 

      

     0 0.00085548 
    5 1.522809 
    10 2.93926821 
    20 8.13320285 
    50 26.1279555 
    100 51.423424 
    200 106.258499 
    

      Y INTERCEPT= -1.464 
    SLOPE 0.536 
    CORR COEFF 0.999 
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Appendix – (Table - 3) Consolidated results for CELECOXIB administration to six horses at 2 mg/kg bwt. 

Sample Sample WING BEAT JOULA DUTCH GOLD POMPEI AZIMUTH SHANIKO 

   

No 

Time (hrs) 
                   Wt >> 

423 423 456 456 509 509 487 487 485 485 442 442 
Time (hrs) 
                << Wt Average SEM 

1 0.00001 0 0 -10.524 -12.192 -14 -14 -7.5499 -14 0 0 -7.5 -6.4 0.00001 -7.18 1.703144 

2 0.25 12.97 14.852 40.277 40.172 46.611 29.937 80.562 48.58 16.85479 2.018488 8.55348 5.913763 0.25 28.94 6.679112 

3 0.5 19.827 43.793 501.81 509.34 400.82 466 486.09 503.73 265.1437 481.4303 97.1648 118.7666 0.5 324.49 57.9621 

4 1 52.307 35.492 673.94 653.73 560.26 464.61 654.46 627.72 393.8124 396.5148 282.8444 299.5764 1 424.60 64.91445 

5 2 149.78 178.68 883.84 847.96 1011.3 736.88 996.38 1011 805.1106 784.4536 522.9252 509.5475 2 703.15 86.98334 

6 3 252.05 397.01 870.26 896.74 670.57 903.46 744.8 894.54 784.4536 694.3158 734.4885 584.1708 3 702.24 59.28721 

7 4 205.49 219.77 815.66 756.01 870.9 703.69 804.77 601.4 755.9014 755.9014 885.9835 912.5046 4 690.67 68.89556 

8 5 821.56 830.32 855 929.15 1761.2 1611.4 820.45 804.33 814.5736 803.5968 1042.678 1272.411 5 1030.56 97.24718 

9 6 747.71 759.72 838.85 1028.7 1629 1621.6 635.58 729.33 430.9372 368.3718 1149.458 1327.513 6 938.90 121.3542 

10 7 714.48 716.13 759.42 958.39 1379 1020.7 683.28 455.85 366.8217 457.2374 1094.391 1130.325 7 811.34 89.4634 

11 8 754.3 724.43 750.34 727.74 1349.9 1209.6 899.35 566.43 119.9961 111.2574 567.8043 430.167 8 684.28 107.1964 

12 24 206.01 242.18 687.2 589.75 832.05 758.86 606.78 570.16 271.8787 87.16986 189.4904 150.5762 24 432.67 76.68223 

13 48 197.26 197.06 150.09 133.5 259.26 180.85 164.05 282.36 60.6667 99.88622 29.66495 38.51457 48 149.43 23.47225 

14 72 26.433 16.967 27.397 14.961 65.556 43.44 65.7 52.735 -8.563749 3.164667 3.717035 -0.4575 72 25.92 7.425292 

  96 2.5219 11.16 11.167 5.5749 12.175 8.8574 16.932 20.256 -22.37652 -23.03283 -5.906706 -4.36791 96 2.75 4.087119 

  120 -1.4807 -4.0329 -5.3907 -8.9109 -8.8708 -8.3716 -2.384 -3.2586 -29.66314 -30.41502 -6.939791 -6.55222 120 -9.69 2.835781 

  144     -11.761 -12.395 -10.938 -7.0221     -29.57899       144   2.532248 

                   P.kinetic WING BEAT JOULA DUTCH GOLD POMPEI AZIMUTH SHANIKO 

   No  parameters                 

    
Average Std Dev Std Err 

1 C(0)                     221.53 235.45 704.89 755.22 874.76 782.83 702.42 618.64 362.79 334.57 464.75 391.62 537.46 228.13 19.01 

2 k                     0.05 -0.02 0.02 0.02 0.03 0.03 0.02 0.01 0.03 0.02 0.04 0.03 0.02 0.02 0.00 

3 c max ug/ml 821.56 830.32 883.84 1028.65 1761.24 1621.64 996.38 1011.02 814.57 803.60 1149.46 1327.51 1157.87 323.58 26.96 
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4 t max  hrs                5.00 5.00 2.00 6.00 5.00 6.00 2.00 2.00 3.00 4.00 5.00 4.00 4.09 1.51 0.13 

5 t1/2 hrs 13.33 -41.89 39.38 32.75 26.61 22.96 36.66 103.47 23.98 33.03 17.91 19.84 15.52 31.99 2.67 

6 
AUC (total) 
ug/ml/hr 18884.09 19505.70 30310.34 27717.64 43998.49 38081.00 31049.46 29873.74 29873.74 29873.74 29873.74 29873.74 29927.56 6751.04 562.59 

7 
AUC(0-
24)ug/ml/hr ###### ###### ###### ###### ###### ###### ###### ###### 17348.32 5330.53 1884.63 

    

                 

                 AUC 0.00001 0 0 0 0 0 0 0 0 0 0 0 0 

   
TRAPE 0.25 1.62 1.86 3.72 3.50 4.08 1.99 9.13 4.32 2.11 0.25 0.13 0.12 

   

 
0.5 4.10 7.33 67.76 68.69 55.93 61.99 70.83 69.04 35.25 60.43 13.21 15.59 

   

 
1 18.03 19.82 293.94 290.77 240.27 232.65 285.14 282.86 164.74 219.49 95.00 104.59 

   

 
2 101.04 107.09 778.89 750.85 785.77 600.75 825.42 819.37 599.46 590.48 402.88 404.56 

   

 
3 200.92 287.85 877.05 872.35 840.92 820.17 870.59 952.78 794.78 739.38 628.71 546.86 

   

 
4 228.77 308.39 842.96 826.38 770.73 803.57 774.78 747.97 770.18 725.11 810.24 748.34 

   

 
5 513.52 525.04 835.33 842.58 1316.07 1157.57 812.61 702.87 785.24 779.75 964.33 1092.46 

   

 
6 784.63 795.02 846.93 978.90 1695.13 1616.55 728.02 766.83 622.76 585.98 1096.07 1299.96 

   

 
7 731.09 737.93 799.14 993.52 1504.01 1321.19 659.43 592.59 398.88 412.80 1121.92 1228.92 

   

 
8 734.39 720.28 754.88 843.07 1364.43 1115.19 791.32 511.14 243.41 284.25 831.10 780.25 

   

 
24 7682.43 7732.87 ###### ###### ###### ###### ###### 9092.72 3135.00 1587.42 6058.36 4645.95 

   

 
48 4839.23 5270.84 ###### 8679.08 ###### ###### 9249.97 ###### 3990.54 2244.67 2629.86 2269.09 

   

 
72 2684.36 2568.34 2129.87 1781.57 3897.80 2691.47 2756.99 4021.17 625.24 1236.61 400.58 456.68 

   

 
96 347.46 337.53 462.76 246.43 932.76 627.57 991.59 875.89 -371.28 -238.42 -26.28 -57.90 

   

 
120 12.49 85.52 69.31 -40.03 39.65 5.83 174.58 203.96 -624.48 -641.37 -154.16 -131.04 

   

 
144 -17.77 -48.40 -205.82 -255.67 -237.70 -184.72 -28.61 -39.10 -710.91 -364.98 -83.28 -78.63 
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Mean Std Dev Std Err 

 

AUC (Total) 
TRAPEZ 18884.09 19505.70 30310.34 27717.64 43998.49 38081.00 31049.46 29873.74 12167.58 9466.63 15052.40 13593.24 24141.69 10961.78 3305.10 

 

AUC (0-
24)TRAPE 11000.55 11243.47 17600.92 17010.56 26032.60 23479.61 17876.34 14542.48 7551.80 5985.35 12021.95 10867.40 14601.09 6058.77 1826.79 
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Appendix – (Table - 4) Consolidated results for ETORICOXIB administration to six horses at 0.5 mg/kg bwt. 

Sample Sample WINGBEAT JOULU DUTCH GOLD POMPEI AZIMUTH  SHANIKO 

    

No 

Time (hrs) 
                   Wt >> 

448 456 448 487 485 442 
Time (hrs) 
                << Wt 

Average sd 
sem 

1 0.00001 2.6 0 0 0 0 0 0 0 5.6 0 0 0.00001 0.75 3.417 0.986 

2 0.25 32.419 26.763 130.828 3.460 4.673 29.431 44.371 50.792 37.384 124.483 122.7677 0.25 55.22 47.245 13.638 

3 0.5 103.871 184.631 272.927 156.584 155.425 142.558 187.989 138.023 98.789 275.521 277.74582 0.5 181.28 80.151 23.138 

4 0.75 345.507 460.678 403.782 375.780 332.829 337.551 401.831 283.951 224.375 514.248 537.639067 0.75 383.47 140.176 40.465 

5 1 156.878 280.136 306.998 245.689 284.947 242.214 216.008 318.115 156.410 416.512 475.816316 1 281.79 121.917 35.194 

6 2 150.565 154.432 302.799 219.845 264.220 217.119 251.331 325.151 396.696 482.170 458.133036 2 292.95 135.167 39.019 

7 3 113.814 114.762 141.297 112.763 156.986 130.022 164.370 281.671 349.092 359.278 367.654395 3 208.34 117.192 33.831 

8 4 110.909 105.179 179.678 59.995 43.491 83.056 111.911 263.986 321.882 285.984 264.578152 4 166.42 105.799 30.542 

12 8 77.329 73.053 125.312 24.009 11.921 74.912 79.912 231.498 80.807 128.192 122.215662 8 93.56 61.190 17.664 

13 24 21.053 13.180 21.593 18.887 13.191 20.420 20.420 203.186 58.673 50.355 49.6624688 24 44.60 53.368 15.406 

14 48 4.415 6.080 11.301 10.197 9.042 0.294 0.294 17.505 18.519 20.203 20.6541623 48 10.77 7.246 2.092 

  72 3.115 3.630 -4.409 0.013 -0.445 -3.530 -2.866 -10.914 6.386 -3.600 -3.5511932 72 -1.47 5.779 1.668 

  96 2.982 2.132 -4.821 -0.395 -0.512 -5.105 -3.983 -15.666 5.907 -4.288 -4.2878885 96 -2.55 6.694 1.932 

  120 1.100 0.780 -5.378 -0.567 -0.395 -3.750 -3.750 -14.643 5.829 -4.783 -4.7539044 120 -2.76 6.347 1.832 

 

 

                  P.kinetic WING BEAT  JOULU DUTCH GOLD POMPEI AZIMUTH SHANIKO 

    No  parameters               

    
Average Std Dev Std Err 

 1 C(0)                     132.91 150.35 243.02 90.01 89.29 177.60 215.79 241.41 179.18 327.57 328.54 197.79 82.95 7.54 

 2 k                     0.07 0.07 0.10 0.05 0.06 0.08 0.09 -0.01 0.04 0.08 0.08 0.07 0.03 0.00 

 3 c max ug/ml 345.51 460.68 403.78 375.78 332.83 337.55 401.83 325.15 396.70 514.25 537.64 383.72 72.93 6.63 

 4 t max  hrs                0.75 0.75 0.75 0.75 0.75 0.75 0.75 2.00 2.00 0.75 0.75 1.00 0.51 0.05 

 5 t1/2 hrs 9.75 9.75 6.93 14.07 12.53 8.71 7.88 -99.13 17.59 8.84 8.64 10.61 33.19 3.02 
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6 AUC (total) ug/ml/hr 704.10 816.33 1161.13 732.26 1427.31 1970.88 2219.23 2219.23 2219.23 2219.23 2219.23 1290.18 666.21 60.56 

 7 AUC(0-24)ug/ml/hr 698.47 811.60 1173.53 733.21 1425.97 1955.76 2169.20 1281.11 596.73 225.54 

     

                 

                 AUC 0.00001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
    TRAPE 0.25 4.38 3.35 16.35 0.43 0.58 3.68 5.55 6.35 5.37 15.56 15.35 

    

 
0.5 17.04 26.42 50.47 20.01 20.01 21.50 29.05 23.60 17.02 50.00 50.06 

    

 
1 56.17 80.66 84.59 66.55 61.03 60.01 73.73 52.75 40.40 98.72 101.92 

    

 
2 62.80 92.60 88.85 77.68 77.22 72.47 77.23 75.26 47.60 116.35 126.68 

    

 
3 153.72 217.28 304.90 232.77 274.58 229.67 233.67 321.63 276.55 449.34 466.97 

    

 
4 132.19 134.60 222.05 166.30 210.60 173.57 207.85 303.41 372.89 420.72 412.89 

    

 
5 112.36 109.97 160.49 86.38 100.24 106.54 138.14 272.83 335.49 322.63 316.12 

    

 
6 94.12 89.12 152.49 42.00 110.82 315.94 383.65 990.97 805.38 828.35 773.59 

    

 
7 49.19 43.12 73.45 21.45 200.90 762.65 802.65 3477.47 1115.84 1428.37 1375.03 

    

 
8 12.73 9.63 16.45 14.54 266.80 248.57 248.57 2648.29 926.30 846.69 843.80 

    

 
24 3.76 4.85 3.45 5.10 103.17 -38.83 -30.87 79.10 298.85 199.24 205.24 

    

 
48 3.05 2.88 -4.62 -0.19 -11.48 -103.62 -82.19 -318.96 147.51 -94.65 -94.07 

    

 
72 2.04 1.46 -5.10 -0.48 -10.88 -106.26 -92.79 -363.71 140.83 -108.86 -108.50 

    

 
96 0.55 0.39 -2.69 -0.28 23.70 225.01 225.01 878.59 -349.72 287.00 285.23 

    

 

120 #VALUE! 0.00 0.00 ###### ###### ###### ####### #VALUE! #VALUE! #VALUE! #VALUE! 

    

 
144 #VALUE! 0.00 0.00 ###### ###### ###### ####### #VALUE! #VALUE! #VALUE! #VALUE! 

    

                 
                 
                 

             
Mean Std Dev Std Err 

 

 
AUC (Total) TRAPEZ 704.10 816.33 1161.13 732.26 1427.31 1970.88 2219.23 8447.58 4180.32 4859.47 4770.31 2844.45 2451.54 775.24 

 

 
AUC (0-24)TRAPE 698.47 811.60 1173.53 733.21 1425.97 1955.76 2169.20 8251.66 4241.70 4775.97 4687.65 2811.34 2398.98 758.62 
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Appendix – (Table - 5) Consolidated results for etoricoxib administration to six horses at 1mg/kg bwt. 

Sampl
e Sample 

WINGBEAT JOULA DUTCH GOLD POMPEI AZIMUTH SHANIKO 

    

No 

Time (hrs) 
                   
Wt >> 

448 456 448 487 485 442 
Time (hrs) 
                << 
Wt 

Averag

e 
SD SEM 

1 0.00001 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 37.92 10.95 

2 0.25 124.48 122.77 127.51 130.83 179.72 140.46 93.54 92.79 122.99 105.49 124.48 122.77 0.25 123.98 110.95 32.03 

3 0.5 275.52 277.75 267.10 272.93 473.78 433.37 216.46 244.51 194.36 206.56 275.52 277.75 0.50 284.63 145.78 42.08 

4 0.75 514.25 537.64 397.83 403.78 585.39 556.60 497.13 501.90 489.26 442.12 514.25 537.64 0.75 498.15 164.07 47.36 

5 1 416.51 475.82 283.13 307.00 610.62 610.62 502.97 436.32 262.99 258.40 416.51 475.82 1.00 421.39 167.97 48.49 

6 2 482.17 458.13 253.99 302.80 580.62 548.56 423.11 240.92 197.27 201.62 482.17 458.13 2.00 385.79 133.24 38.46 

7 3 359.28 367.65 169.21 141.30 475.36 407.24 264.67 216.80 165.23 170.14 359.28 367.65 3.00 288.65 95.56 27.59 

8 4 285.98 264.58 182.85 179.68 364.93 327.46 234.21 184.77 129.87 127.69 285.98 264.58 4.00 236.05 90.36 26.08 

9 5 247.70 249.85 164.50 173.86 325.99 325.99 170.49 162.92 109.30 104.14 247.70 249.85 5.00 211.03 80.16 23.14 

10 6 210.20 203.26 142.98 156.34 269.88 269.88 150.59 147.05 59.48 52.26 210.20 203.26 6.00 172.95 73.20 21.13 

11 7 200.82 200.59 128.69 125.25 221.72 232.89 107.19 114.13 50.70 51.37 200.82 200.59 7.00 152.90 63.45 18.32 

12 8 119.19 122.22 117.43 125.31 226.73 225.32 94.65 88.78 38.90 38.51 128.19 122.22 8.00 120.62 18.70 5.40 

13 24 20.35 19.66 21.43 21.59 75.55 62.57 32.68 32.70 37.25 38.56 50.35 49.66 24.00 38.53 5.51 1.59 

14 48 9.20 9.65 11.37 11.30 10.57 28.17 14.29 15.50 12.09 11.88 20.20 20.65 48.00 14.57 4.39 1.27 

  72 -3.60 -3.55 -4.41 -4.41 -2.14 -1.39 -4.19 -3.48 -0.14 -0.14 -3.60 -3.55 72.00 -2.88 4.61 1.33 

  96 -4.29 -4.29 -4.82 -4.82 -3.92 -4.22 -4.92 -4.84 -5.07 -5.07 -4.29 -4.29 96.00 -4.57 4.74 1.37 

  120 -4.78 -4.75 -5.38 -5.38 -4.61 -4.92 -5.33 -5.26 -5.29 -5.29 -4.78 -4.75 120.00 -5.04 4.82 1.39 

  144 -5.27 -5.27 -5.38 -5.38 -5.18 -5.08 -5.49 -5.58 -5.60 -5.60 -5.27 -5.27 144.00 -5.36 4.81 1.39 

  168 -5.40 -5.40 -5.44 -3.82 -5.34 -5.43 -5.58 -5.58 -5.22 -5.22 -5.40 -5.40 168.00 -5.27 4.69 1.35 

  192 -5.23 -5.21 -3.31 -3.04 -5.48 -5.30 -5.12 -4.87 -3.66 -3.66 -5.23 -5.21 192.00 -4.61 

#DIV/0
! 

#DIV/0

! 

 

 
 

                  
15.35 15.94 16.35 22.46 17.56 11.69 11.60 15.37 13.19 15.56 15.35 
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  P.kinetic WING BEAT JOULA DUTCH GOLD, POMPEI AZIMUTH SHANIKO 

    
No  parameters 

  
  

  
  

  
  

  
  

    

Averag
e 

Std 
Dev 

Std 
Err 

 1 C(0)                     338.49 339.6 232.90 240.01 474.48 409.14 260.60 232.67 163.11 157.87 325.13 325.14 291.60 94.85 7.90 

 2 k                     0.11 0.08 0.10 0.10 0.08 0.06 0.09 0.09 0.09 0.08 0.08 0.08 0.09 0.01 0.00 

 
3 

c max 
ug/ml 514.25 

537.6

4 397.83 403.78 610.62 610.62 502.97 501.90 489.26 442.12 514.25 537.64 512.46 67.80 5.65 

 4 t max  hrs                5.00 5.00 2.00 6.00 5.00 6.00 2.00 2.00 3.00 4.00 5.00 6.00 4.09 1.60 0.13 

 5 t1/2 hrs 6.19 8.72 6.98 6.93 9.12 11.86 7.48 7.87 8.11 8.38 8.84 8.64 8.30 1.44 0.12 

 
6 

AUC (total) 
ug/ml/hr 3778.28 

3803.

10 2953.29 3188.31 6523.35 6535.03 3507.93 3188.14 3188.14 3188.14 3188.14 3188.14 4184.68 1276.10 106.34 

 
7 

AUC(0-
24)ug/ml/hr 2334.63 

2337.

11 1476.00 1535.64 3043.24 2888.93 1913.74 1593.47 2140.34 610.56 215.87 

     

                  AUC 0.00001                         

    TRAP

E 0.25 15.56 15.35 15.94 16.35 22.46 17.56 11.69 11.60 15.37 13.19 15.56 15.35 

      0.5 50.00 50.06 49.33 50.47 81.69 71.73 38.75 42.16 39.67 39.01 50.00 50.06 

    
  1 98.72 

101.9

2 83.12 84.59 132.40 123.75 89.20 93.30 85.45 81.09 98.72 101.92 

    
  2 116.35 

126.6

8 85.12 88.85 149.50 145.90 125.01 117.28 94.03 87.56 116.35 126.68 

    
  3 449.34 

466.9

7 268.56 304.90 595.62 579.59 463.04 338.62 230.13 230.01 449.34 466.97 

    
  4 420.72 

412.8

9 211.60 222.05 527.99 477.90 343.89 228.86 181.25 185.88 420.72 412.89 

    
  5 322.63 

316.1

2 176.03 160.49 420.15 367.35 249.44 200.79 147.55 148.91 322.63 316.12 

    
  6 266.84 

257.2

2 173.67 176.77 345.46 326.73 202.35 173.84 119.58 115.91 266.84 257.22 

    
  7 228.95 

226.5

6 153.74 165.10 297.94 297.94 160.54 154.98 84.39 78.20 228.95 226.56 

    
  8 205.51 

201.9

3 135.83 140.80 245.80 251.39 128.89 130.59 55.09 51.82 205.51 201.93 

    
  24 160.01 

161.4

1 123.06 125.28 224.23 229.10 100.92 101.45 44.80 44.94 164.51 161.41 

    
  48 1116.37 

1135.

03 1110.86 1175.24 2418.28 2303.10 1018.64 
971.78 609.21 616.57 

1428.37 1375.03 

    
  72 354.69 

351.8

0 393.62 394.73 1033.46 1088.94 563.65 578.41 592.08 605.24 846.69 843.80 
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  96 67.24 73.24 83.56 82.70 101.14 321.41 121.19 144.29 143.44 140.89 199.24 205.24 

    
  120 -94.65 

-

94.07 -110.76 -110.76 -72.78 -67.34 -109.29 -99.82 -62.46 -62.46 -94.65 -94.07 

    

  144 -108.86 

-

108.5

0 -122.38 -122.38 -102.44 -109.72 -122.93 -121.14 -124.36 -124.36 -108.86 -108.50 

    

                  

              
Mean 

Std 
Dev 

Std 
Err 

 

 

AUC (Total) 
TRAPEZ 3778.28 

3803
.10 

2953.2
9 

3188.3
1 

6523.3
5 

6535.0
3 

3507.9
3 

3188.1
4 

2298.6
1 

2298.3
2 

4614.1
9 

4540.5
8 3935.76 

1412.5
3 

425.8
9 

 

 

AUC (0-
24)TRAPE 2334.63 

2337
.11 

1476.0
0 

1535.6
4 

3043.2
4 

2888.9
3 

1913.7
4 

1593.4
7 

1097.3
1 

1076.5
1 

2339.1
3 

2337.1
1 1997.73 651.11 

196.3
2 

 
 

   
50.06 49.33 50.47 81.69 71.73 38.75 42.16 39.67 39.01 50.00 50.06 

   
   

101.92 83.12 84.59 132.40 123.75 89.20 93.30 85.45 81.09 98.72 101.92 

   
   

126.68 85.12 88.85 149.50 145.90 125.01 117.28 94.03 87.56 116.35 126.68 

   
   

466.97 268.56 304.90 595.62 579.59 463.04 338.62 230.13 230.01 449.34 466.97 

   
   

412.89 211.60 222.05 527.99 477.90 343.89 228.86 181.25 185.88 420.72 412.89 

   
   

316.12 176.03 160.49 420.15 367.35 249.44 200.79 147.55 148.91 322.63 316.12 

   
   

257.22 173.67 176.77 345.46 326.73 202.35 173.84 119.58 115.91 266.84 257.22 

   
   

226.56 153.74 165.10 297.94 297.94 160.54 154.98 84.39 78.20 228.95 226.56 

   
   

201.93 135.83 140.80 245.80 251.39 128.89 130.59 55.09 51.82 205.51 201.93 

   
   

161.41 123.06 125.28 224.23 229.10 100.92 101.45 44.80 44.94 164.51 161.41 

   

   

1135.0

3 

1110.8

6 

1175.2

4 

2418.2

8 

2303.1

0 

1018.6

4 971.78 609.21 616.57 

1428.3

7 

1375.0

3 

   

   

351.80 393.62 394.73 

1033.4

6 

1088.9

4 563.65 578.41 592.08 605.24 846.69 843.80 

   
   

73.24 83.56 82.70 101.14 321.41 121.19 144.29 143.44 140.89 199.24 205.24 

   

   
-94.07 

-

110.76 

-

110.76 -72.78 -67.34 

-

109.29 -99.82 -62.46 -62.46 -94.65 -94.07 

   

   

-
108.50 

-
122.38 

-
122.38 

-
102.44 

-
109.72 

-
122.93 

-
121.14 

-
124.36 

-
124.36 

-

108.86 

-

108.50 

   
                 
                 
                 



 

[238] 

 

              

Mean 

Std 

Dev 

Std 

Err 

   

3803.1

0 

2953.2

9 

3188.3

1 

6523.3

5 

6535.0

3 

3507.9

3 

3188.1

4 

2298.6

1 

2298.3

2 

4614.1

9 

4540.5

8 

3935.7

6 

1412.5

3 

425.8

9 

                 Appendix – (Table -  6) Consolidated results for etoricoxib administration to six horses at 2 mg/kg bwt. 

Sample Sample WINGBEAT JOULA, DUTCH GOLD POMPEI AZIMUTH SHANIKO 

     
    448 KGS 456 KGS 509.5 487 KGS 485 KGS 442 KGS 

     

No 

Time (hrs) 
                   Wt >> 

448 456 448 487 485 442 
Time (hrs) 
                << Wt Average SD SEM 

 

1 0.00001 0 0 0 0 0 0 0.00001 0.00 74.34705 30.35206 

 
2 0.25 191.212 200.798 139.202 87.217 186.257 204.331 0.25 168.17 239.4372 97.74982 

 
3 0.5 590.458 588.119 409.520 522.146 655.777 725.952 0.5 582.00 374.9312 153.065 

 
4 0.75 1040.899 1023.866 862.746 1105.219 832.887 905.688 0.75 961.88 346.5415 141.475 

 
5 1 928.347 946.185 819.397 1013.289 891.509 838.942 1 906.28 318.0959 129.8621 

 
6 2 706.791 641.762 689.997 1016.348 881.410 661.641 2 766.32 265.081 108.2189 

 
7 3 531.774 563.917 587.870 870.718 661.131 642.351 3 642.96 252.8309 103.2178 

 
8 4 393.422 353.517 500.698 857.789 488.193 511.558 4 517.53 158.2639 64.61096 

 
12 8 362.734 329.560 474.951 465.820 402.059 355.820 8 398.49 42.76019 17.45677 

 
13 24 136.527 108.097 76.808 125.188 93.940 92.535 24 105.52 13.39965 5.470385 

 
14 48 21.668 22.722 48.774 34.922 21.129 20.368 48 28.26 7.166311 2.925634 

 
  72 -2.774 -2.921 11.602 4.547 15.654 11.005 72 6.19 4.585939 1.872202 

 
  96 -3.811 -3.706 8.359 1.188 3.308 0.743 96 1.01 4.286662 1.750022 

 
  120 -4.505 -4.463 5.621 -1.216 -0.283 -0.946 120 -0.97 #DIV/0! #DIV/0! 

 

               P.kinetic WINGBEAT JOULA, DUTCH GOLD, POMPEI AZIMUTH SHANIKO 

     No  parameters             Average Std Dev Std Err 

  1 C(0)                     625.56 604.99 541.75 685.17 661.93 651.15 628.42 50.85 8.48 

  2 k                     0.06 0.07 0.05 0.06 0.07 0.08 0.06 0.01 0.00 
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3 c max ug/ml 1040.90 1023.87 862.75 1105.22 891.51 905.69 975.84 97.98 16.33 

  4 t max  hrs                5.00 2.00 5.00 2.00 3.00 5.00 3.67 1.51 0.25 

  5 t1/2 hrs 11.56 9.96 13.01 11.60 9.27 9.07 11.51 1.56 0.26 

  6 AUC (total) ug/ml/hr 3177.68 3053.05 3269.67 13289.55 10614.12 9791.31 5697.49 4566.78 761.13 

  7 AUC(0-24)ug/ml/hr 3187.39 3062.68 3249.89 13148.12 5662.02 #REF! 

     

             

             AUC 0.00001 0.00 0.00 0.00 0.00 0.00 0.00 

     TRAPE 0.25 23.90 25.10 17.40 10.90 23.28 25.54 

       0.5 97.71 98.61 68.59 76.17 105.25 116.29 
       1 203.92 201.50 159.03 203.42 186.08 203.96 

       2 246.16 246.26 210.27 264.81 215.55 218.08 
       3 817.57 793.97 754.70 1014.82 886.46 750.29 

       4 619.28 602.84 638.93 943.53 771.27 652.00 

       5 462.60 458.72 544.28 864.25 574.66 576.95 

       6 378.08 341.54 487.82 2647.22 1780.51 1734.76 

       7 249.63 218.83 275.88 4728.06 3967.99 3586.84 
       8 79.10 65.41 62.79 1921.31 1380.83 1354.84 

       24 9.45 9.90 30.19 473.62 441.40 376.47 
       48 -3.29 -3.31 9.98 68.82 227.55 140.98 

       72 -4.16 -4.08 6.99 -0.33 36.30 -2.43 

       96 -2.25 -2.23 2.81 72.95 16.98 56.75 
       120 0 0 0 0 0 0 

       144 0 0 0 0 0 0 

     

             
             

        
Mean Std Dev Std Err 

  

 

AUC (Total) TRAPEZ 3177.68 3053.05 3269.67 13289.55 10614.12 9791.31 7199.23 4566.78 2042.33 

  

 
AUC (0-24)TRAPE 3187.39 3062.68 3249.89 13148.12 10333.28 9596.01 7096.23 4465.33 1996.95 
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