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ABSTRACT 
 

Growing attention has been given to the potential of the respiratory tract for 

systemic delivery of macromolecules, particularly proteins and peptides. 

However, limitations such as short transit time and loss of activity of some 

proteins and peptides in the respiratory tract need to be overcome. 

Consequently, the utility of controlled drug delivery systems such as liposomes 

as protein carriers appear promising. Unfortunately, liposomes are unstable in 

aqueous dispersions. Additionally, conventional liposome preparation methods 

such as the thin film hydration are difficult to scale-up, and also demonstrate 

low entrapment efficiencies for hydrophilic materials.  

The aim of this work was to develop novel submicron mucoadhesive liposomes 

entrapping the protein immunoglobulin g (IgG) using the proliposome method. 

Additionally, this work explored the potential of the generated liposomes for 

respiratory tract delivery via medical nebulisers and nasal sprays with different 

operating principles. 

 Liposomes generated from the proliposome technology were multilamellar as 

cryo-TEM studies revealed. The generated liposomes were capable of 

entrapping considerable concentrations of salbutamol sulfate (59.1%), 

ovalbumin (43.3 %) and IgG (29.9 %). Also, the generated liposomes 

demonstrated superior entrapment efficiency of IgG to other liposome 

preparation methods (thin film and particulate-based proliposome technology). 

Reduction of liposome size to 400 nm and the incorporation of the 

mucoadhesive agent sodium alginate markedly enhanced the entrapment of 

IgG in liposomes (up to 50 %). The secondary structure and immunological 

reactivity of IgG were also maintained following its incorporation in liposomes as 

demonstrated by circular dichroism and microagglutination assay, respectively. 

Nebulisation was found to fragment liposomes as well as reduce the activity of 

the entrapped IgG. The degree of liposome fragmentation and loss of activity of 

IgG varied markedly among different medical nebulisers. Liposome size 

distribution and IgG immune reactivity studies elucidated that vibrating-mesh 

nebuliser was least disruptive to liposome structure and the immunoreactivity of 

the incorporated IgG was least affected following its use (retained activity of 

83% versus 24% and 39% for the ultrasonic and air-jet nebulisers, respectively). 

Contrary to medical nebulizers, this work illustrated that all studied nasal 

devices preserved both the integrity of liposomes and the incorporated IgG. 

In conclusion, the findings of this study demonstrate potential benefits in drug 

delivery employing both intranasal administration and proliposome technology 

offer with great promise in using proliposome formulations for intranasal protein 

delivery. 
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1.1 Drug delivery to the respiratory tract  
 

The respiratory tract has been used as a route of drug administration for many 

decades. In addition to being the standard route for local therapeutic delivery, 

especially for treating chronic obstructive pulmonary disease (COPD) and 

asthma (which affects more than 300 million people in the world), it has also 

been proven to have immense potential in systemic drug delivery (Kleinstreuer 

et al., 2008). Figure 1.1 illustrates the number of papers published since 1953 

incorporating the keywords “respiratory tract delivery” (using the Web of 

Science citation manager). Moreover, the number of papers published on nasal 

delivery and pulmonary delivery alone were found to follow the same increasing 

trend, thus reflecting the great interest and potential of the respiratory route. 

Furthermore, both pulmonary and nasal delivery are amongst the top four 

positions in the drug delivery market, together with oral controlled release and 

parenteral delivery (Koch, 2003). The potential growth of those sectors is also 

extensive, as both nasal and pulmonary deliveries are showing promise in the 

delivery of proteins and peptides.  

 

1.2 Pulmonary route  
 

1.2.1 Historical background 

 

The earliest recordings of inhalation therapy were in the Ebers papyrus from 

ancient Egypt, dating to 1554 BC (Smyth et al., 2011), and for a long time now 

the smoke generated from burning compounds has been inhaled for therapy 

and enjoyment. The modern era of aerosol therapy and the first use of the word 

“inhaler” began in 1778 with the Mudge inhaler, devised by Dr. John Mudge. 

Later in the 18th century the first pressurized inhaler was invented by the 

French physician Sales Giro in 1858. Many other inhalers were also introduced 

in the late 19th and early 20th centuries. 
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Figure 1.1: Papers published in the field of respiratory tract delivery since 1953. (informed via Web of Science citation manager)
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A huge advancement in aerosol technology was in the 1950s with the 

development of the pressurized metered dose inhalers Medihaler® by Charlie 

Thiel and colleagues, which with minor modifications continues to be the most 

popular form of aerosol delivery nowadays (Rubin, 2010; Smyth et al., 2011).  

Throughout the last century, the world has witnessed increased interest in the 

development and use of inhalation therapy for both local and systemic 

diseases. Figure 1.2 illustrates images of the Mudge inhaler, the Sales Giro 

pressurized inhaler and the Medihaler® advert sheet. 

 

 

Figure 1.2: Images of (a) the Mudge inhaler (b) the Sales Giro pressurized inhaler and (c) 
Medihaler® advert sheet. (Taken from Smyth et al., 2011) 

 

1.2.2 Anatomy and physiology of the respiratory system  

 

The respiratory system can be divided anatomically into the upper respiratory 

tract and the lower respiratory tract. The upper respiratory tract includes 

structures found in the head and neck and comprises the nose, pharynx and 

larynx. The lower respiratory tract comprises structures found in the thorax or 

chest regions, including the trachea, bronchi and lungs. The lungs comprise 

bronchioles, alveolar ducts and alveoli (Jindal et al., 2011). 
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Functionally, the respiratory system can be divided into two zones: the 

conducting zone and the respiratory zone. The conducting zone, whereby air is 

conducted in a continuous passageway to the respiratory zone, includes the 

nose, pharynx, larynx, trachea, bronchi and bronchioles. The respiratory zone 

(the gas exchange region) comprises structures found in the deep lung, and 

includes respiratory bronchioles, alveolar ducts and alveoli (Jindal et al., 2011). 

Figure 1.3 shows schematic representation of the respiratory system in 

humans.  

The function of the nose is to filter, warm and humidify the air entering the body. 

Following nasal or oral inhalation, the air and inhaled particles pass through the 

pharynx. The lowest region of the pharynx divides into the oesophagus and 

larynx through which air passes to the trachea. The trachea comprises what is 

recognised as generation 0 (G0) of the tracheobronchial tree (TBT), and every 

subsequent branching leads to a new generation. The trachea further divides 

into the left and right bronchi, comprising the (G1) of the TBT. Like the trachea, 

the bronchi are also supported by the C shaped cartilage rings, however further 

down the respiratory tract those cartilages become smaller and smooth muscles 

become more abundant. The right bronchus further branches into three lobar 

bronchi, whilst the left branches into two lobar bronchi. These lobar bronchi 

further branch into segmental bronchi. These lobar bronchi and segmental 

bronchi comprise (G2) and (G3), respectively. The segmental bronchi lead to 

bronchioles and ultimately to terminal bronchioles (G16), where the conducting 

region of the TBT ends and the respiratory region starts, comprising the 

respiratory bronchioles (G17) which lead to the alveolar sacs (G23), see Figure 

1.3 c (Bisgaard et al., 2001; Abdelrahim, 2009). 

 

1.2.3 Advantages and limitations of pulmonary delivery 

 

The lung is the most relevant site for treating respiratory tract disorders and the 

delivery of mucolytic and antiasthma drugs. Pulmonary delivery of drugs for 

local disorders provides many advantages over other routes of delivery, such as 

improved bioavailability of drugs, reduction of drug dose, lower enzymatic drug 
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degradation in the lung, avoidance of first pass hepatic effect and enhanced 

patient compliance (because pulmonary delivery is a needle-free). Moreover, 

the high vascularity of the lungs and its large surface area permit rapid drug 

absorption into the systemic circulation when systemic therapeutic effect is 

needed, as in case of the delivery of proteins, vaccines and anticancer drugs 

(Farr et al., 1987; Adjei and Gupta, 1994; Torchilin, 2006). 

Despite the many advantages of pulmonary delivery, the complicated 

morphology of the lung makes the delivery of the whole dose into the deep lung 

a difficult task. Furthermore, the mucociliary clearance in the mucosal surfaces 

of the respiratory tract and the presence of some enzymatic activity causes 

significant reduction in the lower airway deposition (Adjei and Gupta, 1994). 

 

1.2.4 Devices for pulmonary delivery 

 

A variety of devices can be used for the generation of aerosols for medical 

inhalation, namely pressurized metered dose inhalers, dry powder inhalers, 

nebulisers and soft mist inhalers.  

   

1.2.4.1 Pressurized metered dose inhalers (pMDIs) 

 

Since the 1950s, pMDIs have been recognised as the most popular delivery 

devices for treatment of lung diseases (Rathbone et al., 2003; Smyth et al., 

2011). A pMDI consists of a pressurized canister containing the therapeutic 

material, a propellant and other excipients such as preservatives, surfactants 

and dispersing agents (Hess et al., 2012) (Figure 1.4).  
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Figure 1.3: Schematic representations of the human respiratory tract. (Adapted from Kleinstreuer et al., 2008)
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Figure 1.4: Schematic representation of a pMDI device. (Adapted from Pritchard, 2005) 

 

Typically, 200 high pressure actuations (e.g. >10 atm) can be generated and 

inhaled via pMDIs, and by each puff a drug dose of 0.02-5 mg in metered 

volumes of 25–100 μL can be delivered (Kleinstreuer et al., 2008).  

Propellants in pMDIs are liquefied compressed gases that are nontoxic, non-

flammable, stable and compatible with the drug, having a boiling point between 

-15 to -30oC. The first propellant systems introduced were chlorofluorocarbons 

(CFCs) (Noakes, 2002). Recently, however, because of the damaging effect 

CFCs have on the ozone layer, their use has been banned (Molina and 

Rowland, 1974), and the greenhouse gases tetrafluoroethane (HFA-134a) and 

heptafluoropropane (HFA-227) were found to be suitable replacements, and are 

now used in the market (Newman, 2005). 

pMDIs have the advantage of protecting their contents from bacteria and 

atmospheric conditions, being highly portable and relatively cheap compared to 

other inhalation devices (Abdelrahim, 2009). However, a major limitation of a 

pMDI is the patient’s inability to use it correctly. In a study by Saunders (1965), 
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25 out of 46 patients were found to use the pMDI incorrectly. This was also 

found by Shim and Williams (1980), who reported that only 14 patients from a 

total of 30 used their pMDIs correctly.  

Another problem with the use of pMDIs is the difficulty of determining the 

remaining dose inside a pMDI. In a study by Rubin and Durotoye (2004), 74% 

of the 50 patients questioned did not know how many actuations remained in 

their pMDI device, hence the method of using the device adopted by all patients 

was to use it until they no longer heard the actuation of the medication.  

 

1.2.4.2 Dry powder inhalers (DPIs) 

 

DPIs first appeared in the market in the late 1960s with the introduction of the 

Spinhaler® by Fisons. GlaxoSmithKline (GSK) also introduced the Rotahaler® 

and the Diskhaler® in the late 1970s and early 1980s. In 1988 Astra Zeneca 

developed the first multidose gravity feed DPI, the Turbuhaler® (Crompton, 

2004). 

DPIs consist of the powder container, the metering system, the disintegration 

aid and the mouthpiece (Abdelrahim, 2009). The powders for inhalation in DPIs 

are usually micronized drug particles loaded onto inert carrier particles to 

enhance the flow properties of the powders (Maggi et al., 1999).  

DPI devices are either single-dose or multi-dose inhalers. The multi-dose 

inhalers can be further divided into multi-unit dose inhalers, in which several 

single dose units are available as individual capsules or multi-strip packages; 

and multi-dose reservoir inhalers, in which a bulk supply of dose is preloaded 

into the device (Chrystyn, 2007).  

Minimal coordination is necessary on the part of patients as DPI devices are 

intrinsically breath activated. Moreover, they are propellant-free, and may 

achieve higher pulmonary deposition than pMDIs (Crompton, 2004; Rubin, 

2010).  
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However, DPI devices have limitations, since moderate to high inspiratory flow 

by the patient is required to inhale the powder, thus it is unsuitable for young 

children and patients with compromised lung functions (Kleinstreuer et al., 

2008). Moreover, DPIs are sensitive to humidity, and the exhaled breath of 

patients might cause humidification of the powders in the inhaler, leading to 

reduced fractions of drug delivered upon inhalation (Maggi et al., 1999). 

 

1.2.4.3 Nebulisers 

 

Nebulisers are devices that transform solutions or suspensions into an aerosol 

that is suitable for inhalation. Unlike pMDIs and DPIs, they are capable of 

delivering relatively large volumes of propellant-free liquid formulations.  

Nebulisers can also be employed to deliver aerosols to patients who have 

difficulties in using DPIs and pMDIs, such as children and old people, where the 

aerosolised drug can be inhaled during normal tidal breathing using a facemask 

or mouthpiece (McCallion et al., 1996a). Based on the mechanism of 

atomisation, medical nebulisers can be divided into three types; air-jet, 

ultrasonic, and vibrating-mesh nebulisers. 

   

(1) Air-jet nebulisers 

 

Air-Jet nebulisers, also simply called jet nebulisers, have been used for many 

years to deliver aerosols to the respiratory tract. The use of jet nebulisers can 

be traced back to the early twentieth century. The 1930s witnessed the 

introduction of a compressor nebuliser in Germany (the Pneumostat), and the 

introduction of glass-bulb nebulisers such as the Parke-Davis Glaseptic, 

followed by the introduction of plastic-bulb nebulisers (i.e. AsthmaNefrin) in the 

1940s (Anderson, 2005; Smyth et al., 2011). These old-fashioned nebulisers 

generated aerosols of wide particle size distribution and much of their output 
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was non-respirable (Muers, 1997), necessitating the development of new 

generations of air-jet nebulisers. 

Jet nebulisers use compressed gas to generate aerosols (Mercer et al., 1968). 

A jet of high velocity gas is passed through a Venturi nozzle (with a diameter of 

about 0.3-0.7 mm), creating an area of negative pressure, resulting in pulling 

the liquid from the nebuliser reservoir via the “Bernoulli effect” (McCallion et al., 

1996a). The liquid is drawn into the airstream as fine ligaments, which then 

collapse into primary aerosol droplets under the effect of surface tension 

(O'Callaghan and Barry, 1997). These primary droplets usually have a very 

large size (15-500 µm) (Nerbrink et al., 1994). Due to the baffling system inside 

the nebuliser, only a proportion of the droplets leave the nebuliser and enter the 

airstream as secondary inhalable aerosols (Dennis et al., 1990), while the non-

respirable portion of the droplets (primary aerosol) are recycled into the 

reservoir for further atomisation (Figure 1.5) (O'Callaghan and Barry, 1997). 

This can lead to solvent evaporation, resulting in concentration of the solutes in 

the reservoir (Ferron et al., 1976), and a drop in the temperature of the 

nebuliser solution by 10-15oC (Clay et al., 1983; Cockcroft et al., 1989). 

 

Figure 1.5: The design of a conventional air-jet nebuliser and the movement of the 
droplets inside the nebuliser following inspiration and expiration. (Taken from 
O'Callaghan and Barry, 1997) 
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The design and operating parameters of jet-nebulisers are the main factors that 

affect the aerosol performance, including the output and droplet size (Loffert et 

al., 1994).   

One major limitation for the use of the conventional air-jet nebuliser is the very 

large amount of aerosols wasted during expiration (Figure 1.5). Several 

nebuliser designs have been introduced to resolve this problem (Hess, 2000), 

including the use of reservoir bags (e.g. Circulaire, Westmed, USA), open vent 

nebulisers (e.g. Sidestream, Medic-Aid, UK), breath-enhanced (e.g. Pari LC 

Plus, Pari GmbH, Germany) or breath-actuated nebulisers (e.g. AeroEclipse 

nebuliser, Monaghan Medical Corporation, USA) (Rau et al., 2004). 

   

(2) Ultrasonic nebulisers 

 

The development of ultrasonic nebulisers began in the late 1950s (Smyth et al., 

2011). These nebulisers utilise a high frequency vibrating piezoelectric crystal 

transducer (e.g. quartz), which produces high frequency sound waves (1-2.5 

MHz) to atomize the liquid into aerosols (Flament et al., 1999). 

Two theories have been proposed for aerosol generation in ultrasonic 

nebulisers. At low frequencies, cavitation is speculated to be the main 

mechanism leading to droplet formation. On the other hand, at high frequencies 

the formation of capillary waves is thought to occur (Figure 1.6) (Taylor and 

McCallion, 1997; Barreras et al., 2002). Moreover, it has also been suggested 

that both mechanisms contribute to droplet formation, whereby cavitation 

bubbles are postulated to initiate and drive capillary waves (Boguslaskii and 

Eknadiosyants, 1969; Taylor and McCallion, 1997).  
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Figure 1.6: Proposed mechanisms for aerosol generation in ultrasonic nebulisers: (A) 
droplet formation via cavitation theory; (B) droplet formation via capillary wave theory. 
(Taken from Taylor and McCallion, 2002) 

 

Like air-jet nebulisers, ultrasonic nebulisers include baffles in their design, 

therefore large droplets may be recycled to the reservoir whilst smaller droplets 

(secondary aerosols) are released for inhalation (Elhissi et al., 2011b). 

Moreover, contrary to air-jet nebulisers, ultrasonic nebulisers heat the medical 

fluid, hence increasing its temperature (Taylor and Hoare, 1993). This can be a 

major drawback when thermo-labile drugs or proteins are used.  

 

(2) Vibrating-mesh nebulisers  

 

Vibrating-mesh nebulisers, also called perforated membrane nebulisers, employ 

vibrating-mesh plates with multiple micro-sized apertures to generate the 

aerosol. Several manufacturers have developed different devices that utilise 

this technology. Based on the mechanism of operation, vibrating-mesh devices 

can be divided into passively and actively vibrating-mesh nebulisers (Newman 

and Gee-Turner, 2005; Elhissi et al., 2011b). 

 



CHAPTER 1: INTRODUCTION 
 

14 
 

Passively vibrating-mesh devices (e.g. Omron MicroAir NE-U22 nebuliser) 

employ a vibrating piezoelectric crystal (e.g. quartz) attached to a transducer 

horn. In front of this there is a perforated plate consisting of around 6000 

tapered holes, each of 3µm in diameter. When an electrical current is applied, 

the piezoelectric crystal vibrates at high frequency which is then transmitted to 

the transducer horn. The transmitted vibrations induce passive upward and 

downward vibrations in the perforated plate, which causes the extrusion of the 

fluid through the holes and generation of the aerosol (Figure 1.7) (Dhand, 

2003). 

 

 

Figure 1.7: Schematic representation of a passively vibrating-mesh nebuliser showing 
the generation of the aerosol from the mesh plate. (Adapted from Ghazanfari et al., 2007) 

 

Actively vibrating nebulisers (e.g. Aeroneb Pro nebuliser) consist of a vibrational 

element and around 1000 electroformed dome-shaped apertures. When an 

electrical current is supplied, the vibrational element expands and contracts, 

resulting in an upward and downward movement of the plate, causing a 

“micropump” effect that extrudes the fluid through the holes to generate slow 

moving aerosols (Figure 1.8) (Dhand, 2003).  
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Figure 1.8: Schematic representation of an actively vibrating-mesh nebuliser showing the 
generation of the aerosol from the mesh plate. (Adapted from Ghazanfari et al., 2007) 

 

1.3 Nasal delivery 
 

1.3.1 Historical background 

 

Since the past decade, the application of the nose as a route for drug delivery 

has been an area of great curiosity and the world market has noticed a boost in 

the number of drugs marketed as nasal formulations (Pires et al., 2009; Devillier 

et al., 2010; Wen, 2011). The nasal route became a popular route for the 

administration of tobacco from the 17th century in the form of snuff, and it 

remains a common route for the administration of drugs of abuse, notably 

cocaine (Davis, 1999a). 

With the advancement in drug delivery and discovery, nasal delivery is now 

recognised as a very promising route for the delivery of therapeutic compounds, 

for both systemic and local effects (Ugwoke et al., 2005). 
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1.3.2 Anatomy and physiology of the nose 

 

The nose is the primary entrance to the respiratory tract and also contains the 

region that is essential for the sense of smell (olfactory region). The nostrils are 

external openings of the nose and they open at the back into the nasopharynx 

and lead to the trachea and oesophagus (Washington et al., 2001). 

The nasal cavity is an irregularly-shaped chamber approximately 7.5 cm long 

and 5 cm high in the front of the head (Ghosh and Jasti, 2005). The nasal 

region in man has a length of 60 mm, a volume of 20 ml (Aulton, 2007) and a 

surface area of 180 cm2 (Ghosh and Jasti, 2005). The nose is subdivided into 

the right and left halves by a cartilaginous wall called the midline septum. Each 

half consists of three regions. Firstly, the vestibule, which comprises the 

outermost part of the nose and runs for about 15 mm from the nostril to the 

nasal valve, has an area of 0.6 cm2. Secondly, the olfactory region, which 

occupies 10% of the total nasal area, is situated in the roof of the nasal cavity. 

The third region of the nasal cavity is the respiratory region (Mygind and Dahl, 

1998). The respiratory region consists of three folds or indentations known as 

the inferior, the middle and the superior turbinates which divide the air spaces 

into thin slits and are the reason for the relatively large surface area of the nasal 

cavity (Figure 1.9) (Costantino et al., 2007).  

Although the nose is the organ of smell, only a small region is involved in this 

sense and the rest of the nasal cavity is involved in respiration (Aulton, 2007). 

Inside the nose, the inspired air of temperatures between −20 and +55 °C can 

be brought to within 10°C above or below the body temperature (Washington et 

al., 2001). 

 

1.3.3 Advantages of nasal drug delivery 

 

The abundantly supplied vascular nature of nasal mucosa and its high 

permeability owing to its thin porous epithelium makes the nasal route an 
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attractive option for macromolecular drug delivery (Ghosh and Jasti, 2005). In 

addition, the availability of large surface area for drug absorption helps in 

offering a rapid onset of therapeutic effect (Costantino et al., 2007).  

 

 

Figure 1.9: Cross-Section of nasal cavity. (Adapted from Costantino et al., 2007) 

 

Another advantage of the nasal route is that substances via this route are 

transported directly to the systemic circulation, avoiding the effect of hepatic first 

pass or gut wall metabolism (Chien et al., 1989). 

Moreover, the lower enzymatic activity in the nasal cavity and the fact that 

enzyme inhibitors are more effective in this region compared to the 

gastrointestinal tract could increase the bioavailability of therapeutic materials 

(Ugwoke et al., 2005). In addition, unlike the lung, which is a very difficult organ 

for medication to access, regardless whether one is using solution or a powder 

formulation, it is easy to deliver the whole dose to the nasal cavity (Davis, 

1999a). Another unique feature of nasal delivery is that drugs can be absorbed 

directly into the central nervous system (CNS) via its olfactory epithelium and/or 

the trigeminal nerves (Hussain, 1998; Mistry et al., 2009). In terms of self-

medication, nasal delivery has not only proven to be cost-effective but also 
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attractive in relation to its capability of enhancing patient compliance and 

reducing the risk of overdose (Quraishi et al., 1997; Ugwoke et al., 2005).  

1.3.4 Limitations of nasal delivery  

 

In spite of its advantages, there are some limitations associated with nasal 

delivery, such as possible local tissue irritation (Dondeti et al., 1996), rapid drug 

clearance (Soane et al., 1999; Illum, 2003), low permeability of larger 

macromolecules (McMartin et al., 1987), and possible degradation of proteins 

and peptides by the endopeptidases present in the nasal cavity (Morimoto et 

al., 1991; Arora et al., 2002).  

 

1.3.5 Applications of nasal delivery 

 

For many years, drugs have been administered intranasally for both local and 

systemic effects, and the world market has shown an increasing number of 

drugs being marketed as nasal formulations (Kublik and Vidgren, 1998).  

Its promising areas of application include: 

 Local delivery 

 Systemic delivery 

 Drug delivery to CNS 

 Vaccine delivery 

The intranasal route could be used for local delivery of drugs directly to the 

nose, thereby enabling the use of lower drug doses and minimizing systemic 

adverse effects (Schata et al., 1991; Salib and Howarth, 2003; Stanaland, 2004; 

Norris and Rowe-Jones, 2006; Wallace et al., 2008). Prominent examples of 

intranasal formulations for local delivery include nasal decongestants, 

antimicrobial drugs, antihistamines and corticosteroids.  

Due to the rapid onset of action offered by intranasal delivery, products used in 

emergency or those needed to produce immediate effects may be given 
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intranasally. For instance, in acute pain, panic attacks, sleep induction, erectile 

dysfunction, nausea, heart attacks and Parkinson’s disease, drugs would be 

highly advantageous if delivered via this route. In addition, the ease of 

application of nasal sprays makes long-term treatments relatively convenient 

(Gardner et al., 1993; Kaiser et al., 1995; Aulton, 2007; Costantino et al., 2007; 

Rozgony et al., 2010).   

Another application of great interest is CNS targeting via the nasal route. Drugs 

delivered intranasally might be transported along the olfactory epithelium and/or 

the trigeminal nerves to yield significant concentrations in the cerebrospinal fluid 

(CSF) (Misra et al., 2003). Born et al., (2002) found evidence of direct nose-to-

brain transport, and access to the CSF of three neuropeptides, bypassing the 

bloodstream, has been reported in human trials.  

 

1.3.6 Nasal delivery devices 

 

The selection of suitable delivery system depends upon the physicochemical 

properties of the drug used, the proposed indication, the basic compliance of 

the patients and marketing preferences (Kublik and Vidgren, 1998). 

Nasal formulations can be applied via a variety of dosage forms (e.g. solutions, 

emulsions, suspensions, powders and gels). Liquid preparations mainly water-

based formulations are the most widely used for intranasal delivery. One major 

advantage of aqueous-based formulations is the humidification effect they offer, 

enabling the drying of the mucous membrane that is associated with many 

allergic and chronic diseases to be ameliorated (Kublik and Vidgren, 1998). On 

the other hand, water-soluble formulations suffer from a major drawback, which 

is the microbiological instability and the resultant need for preservatives in their 

formulation. Many preservatives may induce a damaging effect to the 

mucociliary function (Joki et al., 1996) and their long-term use might lead to 

rhinitis medicamentosa (Graf et al., 1995).  

A variety of liquid formulations for intranasal delivery are available nowadays, 

including mechanical pump sprays, drops, propellant-driven metered dose 
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inhalers, squeeze bottles and compressed air nebulisers (Kublik and Vidgren, 

1998). Amongst those formulations, metered dose sprays and nasal drops are 

the most common. Most of the pharmaceutical nasal preparations on the market 

are delivered by metered dose pump sprays. Solutions, emulsions and 

suspensions can all be formulated into nasal sprays. Moreover, due to the 

availability of actuators and metered dose pumps, they can deliver a defined 

dose (25 μl and 200 μl) with high accuracy (Kushwaha et al., 2011). 

Nasal drops, as alternatives to nasal sprays, are simple and convenient, easy to 

manufacture and cost-effective. However, these systems lack dose precision 

(Kushwaha et al., 2011), and the bioavailability of drugs following delivery via 

nasal drop devices has been reported to be lower than that of drugs 

administered via nasal sprays (Harris et al., 1986; Daley-Yates and Baker, 

2001). Daley-Yates and Baker (2001) compared the systemic bioavailability of 

fluticasone propionate (FP) aqueous nasal spray and a new nasal drop 

formulation. Eight-time lower bioavailability of FP following nasal drops 

compared with the nasal spray system was reported. Similar findings were 

reported by Harris et al., (1986), who found a two- to three-fold increase in the 

bioavailability of desmopressin after administration via nasal sprays compared 

to nasal drops.  

Nasal powder dosage forms, which offers more stability to formulations and 

abnegates the need for preservatives, can be delivered via multi-dose inhalers 

or insufflators in nasal delivery systems. However, the general nasal irritation 

sometimes caused by powders comprises a drawback to the nasal 

administration of powdered formulations (Aurora, 2002). 

Amongst the other systems that gained attention lately with the recent 

development of precise dosing devices are nasal gels. Viscous thickened 

solutions or suspensions are administered as nasal gel systems, producing less 

post-administration nasal drip, less aroma impact and less irritability due to 

soothing excipients (Aurora, 2002). However, nasal gel systems tend to 

coagulate in specific areas, not spreading in the nasal cavity without special 

(e.g. clinical) application hence, occupying a narrow distribution area that 

impairs effective medication administration (Kublik and Vidgren, 1998).  
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Particles can be deposited into various regions of the respiratory tract by a 

variety of mechanisms. There are three main mechanisms by which significant 

particle deposition can occur within the respiratory tract: inertial impaction, 

sedimentation and brownian diffusion. Other less important mechanisms 

contributing to deposition within the respiratory tract also exist, including 

electrostatic precipitation and interception (Smola et al., 2008; Phalen and 

Phalen, 2011). A key factor affecting the deposition in the respiratory tract is the 

size of the inhaled particles (Heyder et al., 1975; 1982; 1986).  

 

1.4  Liposomes  
 

1.4.1 Historical background 

 

During the past few decades, colloidal carrier systems (e.g. liposomes) have 

gained considerable attention in drug delivery and targeting (Crommelin and 

Sindelar, 1997). Recent studies have shown that more than 95% of new 

therapeutic molecules have poor pharmacokinetics (Brayden, 2003). 

Appropriate formulation technologies are believed to solve this problem. Among 

these technologies, colloidal drug carriers (CDCs) have gained most attention, 

as they may modify the in vivo distribution of the associated materials and 

improve their therapeutic index by increasing their efficacy or reducing toxicity 

(Nastruzzi, 2005). Liposomes have attracted the most interest among CDCs 

(Crommelin and Sindelar, 1997). 

Liposomes were first described by A.D Bangham in 1961, who, in his 

investigation of the role of phospholipids on blood and blood clots, reported that 

phospholipids can form spherical vesicles in aqueous dispersions (Bangham et 

al., 1965). 

1.4.2 Molecular composition of liposomes 

 

Liposomes mainly are mainly consisted of phospholipids, which are amphipathic 

molecules consisting of hydrophilic headgroups attached to long non-polar 
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hydrophobic tails. The hydrophilic head typically consists of a phosphate group, 

whereas the hydrophobic tail is made of two long hydrocarbon chains (Marjan 

and Allen, 1996). Phospholipids with different hydrophilic headgroups can be 

functionalised for conjugation, whilst hydrophobic tail regions of different chain 

lengths and saturation can be used to modify the properties of liposomes 

(Edwards and Baeumner, 2006). The most common phospholipids are 

phosphatidylcholines (PCs), which are amphipathic molecules comprising a 

glycerol bridge that links a phosphocholine hydrophilic polar head group with a 

pair of hydrophobic acyl (hydrocarbon) chains (Figure 1.10) (New, 1990; 

Hernández and Scholz, 2008). 

 

Figure 1.10: The structure of a PC molecule. (Adapted from Chasin, 2010) 

 

PC molecules are insoluble in water; hence they align themselves closely in 

planar bilayer sheets in aqueous media to minimise the unfavourable 

interactions between the bulk aqueous phase and the long fatty acid chains. 

Those interactions are eliminated when the sheets fold themselves to form 

sealed vesicles (Figure 1.11) (New, 1990).   
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Figure 1.11: Schematic representation of the assembly of phospholipids in liposomes. 
(Adapted from Reusch, 1999) 

 

Sterols are also important components of most biological membranes, and their 

incorporation into liposome bilayers can bring about major changes in the 

properties of the membranes. Manipulating the fluidity and improving the 

stability of the membranes may reduce the permeability of water-soluble 

molecules across the membranes (Vemuri and Rhodes, 1995). Cholesterol 

(Figure 1.12) is the predominant sterol in mammals (Law, 2000). 

 

Figure 1.12: Chemical structure of cholesterol. (Adapted From Vemuri and Rhodes, 1995) 
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1.4.3 Classification of liposomes 

 

There are various classes of liposomes. Liposomes are classified either by the 

number of bilayers present, their size or the method of their preparation (Vemuri 

and Rhodes, 1995). 

When liposomes are described based on the number of bilayers, they are either 

unilamellar vesicles (ULVs), multilamellar vesicles (MLVs) or oligolamellar 

vesicles (OLVs). While MLVs have five to twenty lipid bilayers, OLVs have two 

to five bilayers. Another type of vesicles that could form is the multivesicular 

vesicles (MVVs). A MVV is made up of a large vesicle incorporating smaller 

vesicles (Figure 1.13) (Rongen et al., 1997; Segata et al., 2006). 

Based on their size, liposomes range from small unilamellar vesicles (SUV), 

with diameters generally below 100 nm, to OLVs, MLVs and large unilamellar 

vesicles (LUV), having sizes ranging from 100 nm to several micrometres 

(Rongen et al., 1997; Kirby and Gregoriadis, 1999). Figure 1.13 illustrates the 

types of vesicles according to their lamellarity. 

 

 

 

 

Figure 1.13: Schematic representations of types of liposomes. (Adapted from Rongen et 
al., 1997) 
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1.4.4 Advantages and drawbacks of liposomal delivery 

 

Extensive investigations on liposomal carriers have been observed recently and 

are found to be increasing by time due to promises of advances in that field. 

Figure 1.14 illustrates the number of papers published on liposomes since 1976 

incorporating the keywords “liposomal delivery systems” (using the Web of 

Science citation manager). 

Amongst all the delivery systems that have been devised to beneficially 

modulate the pharmacokinetics and/or tissue distribution of the drug, liposomes 

attracted the most interest (Storm and Crommelin, 1998). This is mainly due to 

their low toxicity, high biocompatibility and biodegradability and ability to entrap 

a wide variety of materials (Crommelin and Sindelar, 1997; Allen, 1998; Gomez-

Hens and Fernandez-Romero, 2006). 

Despite the extensive amount of work and significant improvements in 

manufacturing technologies over the past few decades, the commercial success 

of liposomes is limited, mainly due to stability issues, both physical (as 

manifested by drug leakage and vesicle aggregation or fusion) and chemical 

(due to hydrolysis of the ester bonds or oxidation of unsaturated acyl groups of 

the phospholipid molecules) (Gregoriadis, 1988; Storm and Crommelin, 1998; 

Felnerova et al., 2004; Sabin et al., 2006). Also, with liposomes, batch-to-batch 

variation and inconsistencies in producing large batches have been reported 

(Kirby and Gregoriadis, 1999; Gomez-Hens and Fernandez-Romero, 2006). 

Additionally, the rapid clearance of liposomes from the blood circulation after 

intravenous administration is a serious problem that should be considered in the 

formulation of liposomes that have potential suitability for commercial use (Allen 

and Chonn, 1987). A study by Allen and Everest (1983) has shown that about 

85% of large egg phosphatidylcholine liposomes were found in the spleen and 

liver 0.5 hours post-injection in rats. This is attributed to the clearance of 

liposomes by the reticuloendothelial system. 
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Figure 1.14: Papers published in the field of liposomal delivery systems since 1976. (Generated via Web of Science citation manager) 
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1.4.5 Preparation of liposomes 

 

Various methods have been proposed for the preparation of liposomes. 

However, the underlying principle of the formation of liposomes is the 

interactions between the lipid-lipid and lipid-water molecules. The input of 

energy (e.g. by shaking, sonication, homogenization etc.) results in the 

arrangement of the phospholipid molecules into bilayered vesicles in order to 

achieve thermodynamic stability in the aqueous environment (Lasic et al., 2001; 

Mozafari, 2005). 

 

1.4.5.1 Proliposomes  

 

Despite the fact that liposomes are promising, broadly applicable and highly 

researched novel delivery systems, they suffer from instability problems, such 

as sedimentation, aggregation, fusion and phospholipid hydrolysis and/or 

oxidation (Betageri and Yatvin, 2002; Yan-yu et al., 2006). 

In order to improve the stability of liposomes, Payne et al., (1986a; 1986b) 

introduced a novel method for the manufacture of liposomes using the concept 

of proliposomes, which are defined as dry, free flowing granules which, on 

addition of aqueous phase, form MLVs. 

These proliposomes can overcome the stability problems associated with 

liposomes (Ahn et al., 1995a; Yan-yu et al., 2006). In addition, due to their free 

flowing properties, proliposomes might be considered for the manufacture of 

various dosage forms including tablets and capsules (Song et al., 2002; Ning et 

al., 2005). Nowadays, proliposomes may be classified into two main types: 

particulate-based proliposomes and alcohol-based proliposomes (Elhissi et al., 

2006b). 

 



CHAPTER 1: INTRODUCTION 
 

28 
 

(1) Particulate-based proliposomes 

 

This type comprises a granular free flowing material of a lipid and drug coated 

onto soluble carrier particles by which, on hydration, liposomal suspensions are 

generated (Payne et al., 1986a; Payne et al., 1986b). Various carrier materials 

have been investigated for their suitability in the manufacture of proliposomes, 

such as lactose (Shah et al., 2006), sodium chloride (Payne et al., 1986b), 

mannitol (Yan-yu et al., 2006; Gupta et al., 2008), fructose and sorbitol (Payne 

et al., 1986a; Ahn et al., 1995a; Song et al., 2002; Ning et al., 2005). 

The particle size of the carrier may influence the size and polydispersity of the 

liposomes produced (New, 1990; Ahn et al., 1995a). Amongst the studied 

carrier materials, sorbitol appeared to offer the best compromise because of its 

acceptability for clinical use and due to its low osmotic activity when compared 

to the other lower molecular weight compounds (Payne et al., 1986b; New, 

1990; Song et al., 2002). 

The entrapment efficiency of hydrophobic materials is generally high in 

liposomes generated from particulate-based proliposomes. Payne et al., 

(1986a) reported an entrapment efficiency of 100% for Amphotericin B. In 

another study by Yan-yu et al., (2006), the entrapment efficiency of silymarin 

was reported to be more than 90%. Conversely, unlike hydrophobic drugs, 

hydrophilic drugs such as propranolol hydrochloride (PH) were reported to have 

low entrapment efficiency values, for instance 10%, as reported by Ahn et al., 

(1995a). 

Many studies have been performed on particulate-based proliposomes. 

including research on the intravenous administration of methotrexate (Park et 

al., 1994), cyclosporin A (Lee et al., 1999), doxorubicin (Lee et al., 1996) and 

amphotericin B (Payne et al., 1986a). In nasal delivery, proliposomes containing 

propranolol hydrochloride (Ahn et al., 1995a; b) and nicotine (Jung et al., 2000) 

have been investigated. Hwang et al., (1997) also explored the transdermal 

delivery of nicotine proliposomes. Furthermore, the topical delivery of 

proliposomes of aceclofenac was studied by Gupta et al., (2008) and 

entrapment efficiencies of more than 90% were reported for this drug. Also, the 
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production of effervescent particulate-based proliposomes was examined and 

described by Katare et al., (1990), who employed effervescent granules as 

carriers and used a fluidised bed method for the phospholipid coating on the 

carrier particles. High entrapment efficiency values (nearly 100%) were reported 

by this method for the non-steroidal anti-inflammatory drugs ibuprofen (Katare 

et al., 1990) and indometacin (Katare et al., 1995).  

 

(2) Solvent-based proliposomes 

 

Solvent-based proliposomes, also referred to as alcohol-based proliposomes or 

ethanol-based proliposomes (depending on the solvent used to dissolve the 

lipid) are formulation technologies first introduced by Perrett et al., (1991) to 

offer a relatively simple means of generating liposomes from alcoholic 

phospholipid solutions. Solvent-based proliposomes comprise concentrated 

alcoholic solutions of lipids which upon addition of aqueous phase and shaking 

generate liposomes (Perrett et al., 1991; Dufour et al., 1996). Ethanolic-based 

proliposomes were found to coexist in a stacked precipitated bilayers in the ratio 

of (5:4:10) lipid: ethanol: buffer w/w/w (Perrett et al., 1991). Hydration of 

alcohol-based proliposomes was found to generate a mixture of OLVs and 

MLVs (Gregoriadis, 1993; Elhissi et al., 2006a). 

High entrapment efficiencies were reported for hydrophilic drugs encapsulated 

in liposomes prepared via the alcohol-based proliposome method; depending 

on the lipid composition of the proliposomes, the entrapment efficiency can 

range between 65 and 80% (Perrett et al., 1991). Formulation parameters such 

as hydration rates and hydration temperatures were also found to significantly 

affect the properties of the liposomes and thus the entrapment efficiencies. 

Table 1.1 shows the entrapment efficiency values reported by Turanek et al., 

(1997) for drugs encapsulated in liposomes using the alcohol-based 

proliposome method. Moreover, entrapment efficiency values of (81%) for 

amphotericin b (Amb) and (61%) for salbutamol sulfate (SS) using the ethanol-

based proliposome method has been previously demonstrated (Albasarah et 

al., 2010; Elhissi et al., 2011a). 
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Table 1.1: Entrapment efficiency of different drugs in alcohol-based proliposomes. (Adapted from 
Turanek et al., 1997) 

Entrapped moiety Entrapment efficiency (%) 

Neomycin 65 

Gentamycin 69 

Carboxyfluorescein  81 

Adamantylamide dipeptide 87 

Muramyl dipeptide 62 

B-D-GlcNAc-norMurNAc-L-Abu-D-isoGln 85 

Mesotetra-(parasulfophenyl)-porphin 65 

 

1.5 Liposomes in respiratory tract delivery 
 

The delivery of drugs to the respiratory tract offers considerable advantages 

over other routes of administration both for local and systemic delivery of drugs.  

The rapid onset of action following respiratory tract delivery (owing to its 

relatively large surface area and high vascularity, the evasion of first pass 

metabolism and harsh gastrointestinal environment and its non-invasive nature) 

makes the respiratory tract a very interesting route for the administration of 

drugs, particularly macromolecules such as peptides and proteins. Despite the 

advantages the respiratory tract offers, the duration of activity following 

administration is short, and some metabolic activity still exists in the respiratory 

tract. Consequently, controlled drug delivery systems such as liposomes have 

been investigated and are postulated to overcome those limitations of 

respiratory tract delivery by offering sustained release and enhancing the local 

retention time of medicaments (Gregoriadis, 1993). In addition, liposomes 

contain lipids similar to those found in the pulmonary walls (Finley et al., 1968).  
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1.5.1 Liposomes in nasal delivery: 

 

The potential and usefulness of liposomes for intranasal delivery was previously 

explored. Alpar et al., (1992) studied the effect of equimolar 

distearoylphosphatidylcholine (DSPC) and cholesterol liposomes incorporating 

tetanus toxoid (TT) in guinea pigs. The results from their study indicated that 

liposomes formulations significantly improved the immune response when 

delivered via the nasal cavity compared to free antigen. This was also 

confirmed by Tafaghodi et al., (2006), who evaluated the efficacy of equimolar 

PC and cholesterol liposomes for entrapping TT after intranasal administration 

in rabbits. The results from their study demonstrated that intranasal 

administration of liposomes preserved the immunoreactivity of TT (100.5±1.3 % 

that of original TT) and induced no or little system IgG immune response and a 

high mucosal immune IgA response. Moreover, lack of toxicity or local irritation 

was observed after the intranasal delivery of liposomes.  

Law et al., (2001) investigated liposomes containing calcitonin after intranasal 

delivery in rabbits. The data from their study indicated that liposomes not only 

exhibited a higher bioavailability that calcitonin solution alone but also resulted 

in an increase in the residence time in the nasal cavity.  

Furthermore, Muramatsu et al., (1999) investigated the benefit of using 

cholesterol, soybean-derived sterol or soybean sterylglucoside (SG) modified 

dipalmitoylphosphatidylcholine (DPPC) liposomes for the intranasal delivery of 

insulin. The results from their study indicated that, contrary to the insulin 

solution alone, all DPPC modified liposomes resulted in a hypoglycaemic effect. 

SG modified DPPC liposomes, however, caused the highest hypoglycaemic 

effect, which was attributed to the higher fluidity in the liposomal membranes 

using SG-modified DPPC liposomes in comparison to cholesterol and SS 

modified DPPC liposomes.  

The usefulness of liposomes for the nasal delivery of nefidipine (Vyas et al., 

1995), levonorgestrel (Ding et al., 2007) and the synthetic peptide vaccine 366–

374 peptide (Ninomiya et al., 2002) have also been previously reported. 

Moreover, the DNA-hsp65 vaccine complexed with cationic liposomes was also 



CHAPTER 1: INTRODUCTION 
 

32 
 

found to illicit a cellular immune response comparable to that induced by four 

intramuscular doses of the naked DNA (Rosada et al., 2008). 

The potential of intranasal delivery of liposomes for brain delivery has also been 

previously examined. Arumugan et al., (2008) investigated the usefulness of 

soya lecithin and cholesterol (4:1) based liposomes for the delivery of 

rivastigmine to rat brains following intranasal delivery. The results from their 

study indicated a higher bioavailability of rivastigmine in the brain of the rats 

after intranasal administration of the rivastigmine liposomes in comparison to 

the intranasal drug alone and the oral rivastigmine solution. AUC values of 

rivastigmine were 6.58, 12.99 and 36 (mg/min/ml–1) for free drug oral, free drug 

intranasal and liposomes, respectively. Additionally, the rivastigmine were also 

found to have longer half-life in the brain after the delivery via liposomes 

intranasally in comparison to orally and intranasally administered free drug. 

The possibility of achieving sustained delivery of drugs via proliposomes 

formulations was also previously studied. Ahn et al., (1995b) investigated the 

bioavailability and plasma profiles of PH entrapped inside sorbitol particulate-

based proliposomes and loaded into sorbitols delivered intranasally into rats 

and compared to the oral and intravenous solution of PH. The results from the 

study demonstrated the high bioavailability of PH proliposomes compared to 

that of IV solutions (100%), PH loaded sorbitols (96.2%) and intranasal PH 

(103%), and much higher than that of the oral solution (14.2%). The plasma 

profile for the PH proliposomes, on the other hand, was significantly different 

from those of the solution formulation, and plasma concentrations were lowest 

at the initial phase and higher than the other formulations after 180 minutes, 

illustrating that proliposomes can be a good candidate for sustained delivery of 

drugs. 

Jung et al., (2000) investigated particulate-based proliposomes for nasal 

delivery of nicotine base (NB) and nicotine hydrogen tartarate salt (NS) in rats. 

The bioavailabilities of NB and NS proliposomes following intranasal delivery 

were comparable to those of the NB and NS intranasal saline solutions. The 

AUC values for the NB were 65.8±27.9 and 56.1±34.7 (μg/ml/min) for the 

solution and proliposomes, respectively, whilst for the NS the AUCs were 
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27.8±7.12 and 39.0±12.8 (μg/ml/min), respectively. The mean residence time 

and plasma half-life (T1/2) of NB and NS on the other hand were much longer 

than those using the saline solutions, thus giving an indication of the 

advantages provided when proliposomes are employed.  

The addition of mucoadhesive materials to liposomal formulations delivered via 

the intranasal route was also found to significantly enhance the bioavailability 

and sustained delivery of the drug. Shahiwala and Misra (2006) have 

investigated the effect of incorporating chitosan into liposome formulations 

containing leuprorelin acetate (LEU) for intranasal delivery. The data from their 

study indicated that nasal delivery of liposomes entrapping LEU resulted in a 

higher bioavailability (27.83%) than that of the drug alone (10.89%). 

Furthermore, the addition of chitosan to both the LEU alone and liposomal 

formulation lead to an increase in the bioavailability to 49.13% and 88.90%, 

respectively. The release of LEU was found to be delayed for the liposomal 

formulation in comparison to the free drug and even further delayed after the 

addition of chitosan to the formulation.  

The delivery of liposomes as mucoadhesive nasal gels using acyclovir as a 

model drug was studied by Alsarra et al., (2008), who found that the liposomal 

gel incorporating acyclovir not only prolonged the contact between the acyclovir 

and the absorptive sites in the nasal cavity, but also facilitated the direct 

absorption through the nasal mucosa. The bioavailability of acyclovir given 

intranasally was as low as 5.3% using the liposome-free gel and as high as 

60.72% using the liposomal gel formulation.  

 

1.5.2 Liposomes in pulmonary delivery  

 

The ability of liposomes to entrap drugs and deliver them in a sustained manner 

and the fact that they are nontoxic has drawn a lot of interest due to their 

potential use in pMDIs, DPIs and nebulisers.  
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The feasibility of using pressurized packs for the delivery of liposomes was first 

investigated by Farr et al., (1987). In their study, egg phosphatidylcholine was 

dissolved into a chlorofluorohydrocarbon blend, and the possibility of in situ 

formation of liposomes following deposition in the respiratory tract was 

demonstrated. This was further confirmed by Vyas and Sakthivel (1994). 

For the use in DPIs, liposomal formulations encapsulating the drugs are 

homogenized, dispersed into carriers and converted into DPI by freeze or spray 

drying. On inhalation, the liposome powders get hydrated by the deposition on 

the surface of the respiratory tract, forming the liposome vesicles (Chougule et 

al., 2007). The use of freeze drying for the generation of liposome powders for 

DPI was also investigated by Joshi and Misra (2001) and Huang et al., (2010). 

The results from their studies suggested the suitability of the liposomal 

formulation to be delivered into the deep lung.  

Alves and Santana (2004) and Chougule et al., (2008) also investigated the use 

of spray drying for the generation of the liposomal powders suitable for 

inhalation. The results from their investigation demonstrated the usefulness of 

spray drying as a technique to generate homogeneous lipid spherical particles 

suitable for pulmonary delivery. Furthermore, the feasibility of preparing 

isoniazid (INH) proliposome powders for inhalation has also been investigated 

(Rojanarat et al., 2011). Cell culture results from their study have demonstrated 

that the INH-proliposomes were nontoxic to respiratory-associated cells and 

offered a significantly higher efficacy than the free INH against alveolar 

macrophages infected.  

Unlike DPIs and pMDIs, nebulisers can deliver liposomes directly to the 

respiratory systems without need to form dried liposomal formulations or the 

incorporation of a propellant (Taylor et al., 1990a).  

The potential of jet nebulisation for delivery of liposomes have been intensively 

examined (Taylor et al., 1990a; Waldrep et al., 1994; Bridges and Taylor, 2000; 

Bridges and Taylor, 2001; Elhissi et al., 2011b). Various reports have 

demonstrated that jet nebulisation leads to the fragmentation of the liposomes 

after nebulisation (Taylor et al., 1990a; Saari et al., 1999; Elhissi et al., 2006a). 

In addition to the fragmentation of liposomes, air-jet nebulisation of liposomes 
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has been found to cause leakage of hydrophilic materials from the liposomal 

formulations (Niven and Schreier, 1990; Niven et al., 1991; Niven et al., 1992; 

Desai et al., 2002). Like jet nebulisation, nebulisation of liposomes via ultrasonic 

nebulisers has been previously reported to fragment the liposomes and cause 

leakage of the entrapped material (Leung et al., 1996; Finlay and Wong, 1998).  

Amongst the different kinds of nebulisers studied for liposome delivery, 

vibrating-mesh nebulisers seem to be the least disruptive to liposomes (Elhissi 

et al., 2007; Kleemann et al., 2007), and leakage of the entrapped materials 

following nebulisation was reported to be less using these devices compared to 

air-jet nebulizers (Elhissi et al., 2006a).  

Elhissi et al., (2006a) compared the entrapment efficiency of SS entrapped 

inside liposomes generated from ethanol-based proliposomes following 

nebulisation through an air-jet nebuliser (Pari plus) and three different vibrating-

mesh nebulisers (Omron NE U22), (Aeroneb Pro small mesh) and (Aeroneb Pro 

large mesh). The results from their study revealed that liposomes following 

nebulisation through the different vibrating-mesh nebulisers retained a higher 

amount of entrapped drug in comparison to the air-jet nebuliser, 0.239 mg SS 

after nebulisation through the Pari and 0.380,0.344 and 0.263 following 

nebulisation through the Omron NE U22, Aeroneb Pro small mesh and Aeroneb 

Pro large mesh, respectively. Kleemann et al., (2007) also reported a significant 

reduction in the leakage of materials following nebulisation through an Aeroneb 

vibrating-mesh nebuliser when compared to an Optineb ultrasonic nebuliser 

and a Pari LC air-jet nebuliser. 

Various methods have been proposed to enhance the stability of liposomes to 

nebulisation, including the incorporation of cholesterol into the liposomal 

formulation (Leung et al., 1996), and freeze drying of liposomes with the 

addition of a suitable cryoprotectant (Bridges and Taylor, 2001). Furthermore, 

size reduction of the liposomes has been previously reported as one of the 

methods to enhance delivery through nebulisers and reduce the leakage of the 

drugs from the liposomes following nebulisation (Finlay and Wong, 1998). Niven 

et al., (1991) prepared MLV liposomes entrapping carboxyfluorescein (CF) of 

sizes between 0.2 to 5 µm using extrusion via polycarbonate membrane filters. 
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Results from their study indicated that the leakage of CF from the vesicles was 

dependent on the liposome size and ranged from 7.9±0.4% for 0.2 µm vesicles 

to 76.8±5.9% for non-extruded liposomes. 

Growing attention has been given to the potential of a pulmonary route for 

systemic delivery of macromolecules, particularly peptides and proteins. Since 

most proteins are stored as an aqueous concentrate rather than in a bulk 

powder, the use of nebulisers is a logical first choice for pulmonary delivery of 

proteins (Niven et al., 1996). However, for the use of aerosols for inhalation, 

special precautions must be taken, especially when aerosolizing biologically 

active substances (i.e. proteins), since alteration in their biological activity might 

occur due to their aerosolisation (Fangmark and Carpin, 1996). Different reports 

exist demonstrating the loss of activity of proteins following aerosolisation 

(Niven and Brain, 1994; Niven et al., 1994; Ip et al., 1995; Niven et al., 1995; 

Fangmark and Carpin, 1996; 1998; Khatri et al., 2001). 

Liposomal carriers have been proposed for stabilising proteins to nebulisation 

(Kanaoka et al., 1999; Khatri et al., 2004; Anabousi et al., 2006; Huang and 

Wang, 2006). Furthermore, the incorporation of drugs in liposomes has also 

been found to reduce their toxicity. Gilbert et al., (1997) investigated the 

tolerance of human volunteers to an aerosol of dilauroylphosphatidylcholine 

(DLPC) liposome entrapping cyclosporine A (CsA). The results from their 

investigation demonstrated that whilst the delivery of cyclosporine alone leads 

to intermittent coughing and tracheal irritation, DLPC entrapping CsA has been 

found to be safe and induced no irritation or coughing to patients. Moreover, the 

biological activity and safety of an aerosol of Interleukin-2 liposomes were 

demonstrated following their delivery to dogs (Khanna et al., 1997) and 

humans, whilst eliminating the fever, malaise and local swelling side effects 

following the administration of the free drug (Ten et al., 2002).  
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1.5.3 Safety and fate of liposomes in the respiratory tact  

 

Amongst the main advantages of liposome delivery to the respiratory tract is 

their non-toxic nature. The fact that liposomes are made of lipids similar to 

those found in the pulmonary walls of mammals explain their safety in vivo and 

give an indication of their possible fate in the respiratory tract. Finley et al., 

(1968) performed a morphological and lipid analysis of the lining of the alveoli in 

dogs. They found that the major pulmonary surfactants present in the 

mammalian alveoli surface are PC (51.2%) and cholesterol (11.9%).  

Various reports have previously assessed the safety of liposomes in the 

respiratory tract (Thomas et al., 1991; Schreier et al., 1992; Schreier et al., 

1993). Thomas et al., (1991) investigated the effect of inhaled SPC on the 

pulmonary function and on oximetry in ten healthy human volunteers. Results 

from their investigation demonstrated that SPC liposomes caused no acute 

deleterious effects on oxygenation or spirometric values.  

Waldrep et al., (1994; 1997) also studied the effect of DLPC liposomes, and 

DLPC liposomes entrapping beclomethasone dipropionate (BDP) aerosols on 

the spirometry and clinical chemistry evaluations. That was accompanied by a 

complete blood count in 10 healthy volunteers. The results from their study 

demonstrated the safety of liposomal aerosols on the respiratory system and 

the absence of side effects upon their delivery.  

Lung surfactants such phosphatidylcholine (PC) and phosphatidylglycerol (PG) 

are synthesized by alveolar epithelial Type-II cells. An existing balance between 

release and clearance maintains a stable surfactant film in the lung. The main 

mechanism of clearance of those surfactants via the lung is following 

phagocytosis by alveolar macrophages (Kellaway and Farr, 1990). 

The mechanism of liposomal clearance in the respiratory tract depends mainly 

on the location in which it is deposited, and liposomes reaching the alveoli in 

the same way as other lung surfactants are cleared via microphages (Kellaway 

and Farr, 1990). Liposomal formulations can also take advantage of 

opsonisation by delivering the drug to sites inside the phagolysosomes, where 
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intracellular microorganisms such as Francisella tularensis, Mycobacterium 

avium-intracellulare, Mycobacterium tuberculosis and Pseudomonas 

pseudomallei are known to reside. Conley et al., (1997) investigated the 

potential of liposomes encapsulating ciprofloxacin versus the free ciprofloxacin 

drug for the treatment of mice infected with Francisella tularensis. Results from 

their study showed that whilst mice treated with ciprofloxacin alone suffered 

100% mortality, all mice treated with liposomes encapsulating ciprofloxacin 

were found to survive the infection. 

In addition to the deposition site of liposomes, other factors, including the 

constituents and dosage of the lipid in the liposomes and the charge of the 

vesicles, affect the clearance of the liposomes through the respiratory tract 

(Oguchi et al., 1985; Woolfrey et al., 1988; Kellaway and Farr, 1990).   

The area of liposomal formulations for respiratory tract delivery is still in its 

infancy, thus no FDA approved products incorporating liposomes for intranasal 

or pulmonary delivery have been marketed. 

 

1.6  Hypothesis and objectives 
 

Despite the advantages of drug delivery via the respiratory tract, the duration of 

activity following drug administration is short. Also, activity of some proteins and 

peptides might be compromised upon delivery to the respiratory tract. Liposome 

carriers are a promising approach for overcoming the limitations of drug delivery 

via the respiratory route. The use of liposomes is postulated to offer sustained 

release and enhance the local retention time of liposome-entrapped drugs. 

However, issues like liposome instability to nebulisation and scaling-up difficulty 

need more research. Also, debatable information regarding role of nebulisation 

in efficient delivery and stability of proteins requires further examination. 

Furthermore, as yet, no study has been conducted to examine the effect of 

nasal spray devices on the physical stability of liposomes and activity of 

proteins, and the validity of proliposome technology for the entrapment of 

immunoglobulins (Ig) has never been addressed.  



CHAPTER 1: INTRODUCTION 
 

39 
 

Working Hypothesis: Can proliposome technology be exploited successfully to 

deliver drugs via the respiratory tract. 

Main Aims: (1) To explore the validity of the ethanol-based proliposome 

technology for generating mucoadhesive liposome formulations entrapping IgG; 

and (2) to investigate the potential of IgG liposomes for respiratory tract delivery 

via medical nebulisers and nasal sprays of different operating principles. 

Specific objectives: 

- To establish optimal formulation parameters required to manufacture 

submicron mucoadhesive liposomes via the ethanol-based proliposome 

technology.  

- To compare conventional liposome preparation methods to the ethanol-

based proliposome approach for the entrapment of IgG. 

- To investigate the effect of IgG entrapment in liposomes on the 

immunoreactivity and secondary structure of the protein. 

- To examine the influence of mucoadhesive agents’ incorporation in 

liposomal structure on the characteristics of liposomes.  

- To study the relation between formulation (i.e. IgG solution or IgG 

liposomes) and device (whether a medical nebuliser or nasal spray), and its 

effect on the performance of the device and characteristics of generated 

cloud. 

- To determine the effect of nebulisation or spraying on physical stability of 

liposomes and integrity of IgG. 

- To examine the viability of size reduction of liposomes as a technique to 

enhance the stability of liposomes during nebulisation or spraying. 

- To analyse the data and write up the PhD thesis. 
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2.1 Materials  
 

Soya phosphatidylcholine (SPC; Lipoid S 100) was obtained from Lipoid 

(Steinhausen, Switzerland). Ammonium thiocyanate and ferric chloride of 

analytical grade were purchased from VWR, UK. Salbutamol sulfate (SS) 

(99%) was purchased from Alfa-Aesar, UK. Sucrose ≥99.5% GC, sodium 

alginate derived from brown algae (low viscosity), absolute ethanol, 

cholesterol 99%, albumin from chicken egg white (ovalbumin (OVA)) ≥98% 

and phosphate buffered saline tablets were purchased from Sigma Aldrich, 

UK. Protasan G213, an ultrapure chitosan glutamate salt, was obtained from 

Novamatrix, Belgium. High performance liquid chromatography (HPLC) grade 

water, methanol, bicinchoninic acid (BCA) protein assay kit, immunoglobulin 

G (IgG) easy-titre kit and chloroform were all supplied by Fisher Scientific Ltd., 

UK. The drug FlebogammaDif® 5% 50 mg/ml intravenous immunoglobulin 

(IVIG) was supplied by Instituto GRIFOLS (Barcelona, Spain).  

 

2.2 Methods 
 

2.2.1 Preparation of liposomes  

 

A variety of methods for preparing liposomes exist, as outlined earlier (Section 

1.4.5). In this study three methods for preparing liposomes were used:  

 Liposomes made by using thin film hydration method 

 Liposomes generated from ethanol-based proliposomes  

 Liposomes generated from particulate-based proliposomes 

 

a) Liposomes made by thin film hydration 

Lipid phase comprising SPC (40 mg) and cholesterol (10 mg) in a mole ratio 

of 2:1 were dissolved in 5 mls of chloroform within a 100 ml pear-shaped 

flask. The flask was then attached to a rotary evaporator (Rotavap, Büchi, 
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Switzerland) under negative pressure (<50mbar) using a vacuum pump (V-

700, Büchi, Switzerland). The temperature of the rotary evaporator’s water 

bath was adjusted to 30°C, and rotation speed was set at maximum (280 

rpm). After 1 hour the vacuum pump was turned off to release the negative 

pressure. The thin film formed on the inner walls of the flask was then 

hydrated, as outlined in Section 2.2.2, to generate liposomes. 

 

b) Particulate-based proliposomes 

 

In this study sucrose was used as carrier particles in the preparation of 

proliposomes. Sucrose was first ground using a pestle and mortar and sieved 

in order to collect particles having the size cut of 300–500 µm. Particulate-

based proliposomes (1:5 w/w SPC to sucrose ratio) were manufactured by 

placing sucrose (2.5 g) in a 100 ml pear-shaped flask. The flask was attached 

to a rotary evaporator (Rotavap, Büchi, Switzerland) under a negative 

pressure (<50mbar) using a vacuum pump (V-700, Büchi, Switzerland), the 

water bath was set at 30°C and the rotation speed was set at 280 rpm. This 

was followed by dissolving SPC (400 mg) and cholesterol (100 mg) in HPLC 

grade chloroform (15 ml). The chloroformic solution was sprayed in portions 

(0.5-1 ml each) via a feed-line tube attached within the rotary evaporator. 

After each injection, the chloroformic solution was allowed to evaporate before 

injecting the next portion. After injecting the chloroformic solution, the flask 

was left on the rotary evaporator for 1 hour to ensure complete solvent 

evaporation. The vacuum was then released and the sucrose-based 

proliposomes were collected and placed in a vial and stored in the freezer (-

18◦C). Proliposomes were hydrated and annealed according to the procedure 

performed for the thin film method (Section 2.2.2).  
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c) Ethanol-based proliposomes 

 

Liposomes were prepared using an ethanol-based proliposome approach by 

modifying the method originally introduced by Perrett et al., (1991). Lipid 

phase (50 mg) consisting of SPC and cholesterol (2:1) was dissolved in 60 

mg ethanol (76 μl) at 70oC (to aid the dissolution of cholesterol) for two 

minutes in an 8 ml glass vial to yield a clear lipid solution (i.e. the 

proliposomes). SS (1 mg/ml), OVA (1.7, 2.5, 3.2 or 4 mg/ml) or IVIG (0.5, 1, 

1.25, 2.5 or 5 mg/ml) in HPLC water were previously prepared and 0.5 ml was 

quickly added to the proliposomes and vortexed for two minutes using the 

WhirlMixerTM
 (Fisherbrand, Fisher, UK) to generate concentrated liposomal 

suspensions (primary hydration step). The suspensions were further diluted to 

5 ml with HPLC water and vortexed again for two minutes (secondary 

hydration step) to yield the final liposomal suspension. Liposomal 

suspensions were then left on the bench at room temperature for 1 hour to 

anneal. 

 

2.2.2 Hydration of phospholipid thin films or particulate-based 

proliposomes 

 

The desired amount of HPLC water was added at room temperature to the 

flask containing the phospholipid film or the particulate-based proliposomes. 

The resultant suspension was shaken for 10-15 minutes using a vortex 

WhirlMixerTM
 (Fisherbrand, Fisher, UK). The dispersion was then left for 1-2 

hours to anneal at room temperature prior to use or conducting further 

experiments.  

For the preparation of the IgG based liposomes, different concentrations of 

IgG in HPLC water (0.5, 1, 1.25, 2.5 or 5 mg/ml) were prepared and added to 

the phospholipid film or the particulate-based proliposomes to make a final 

volume of 5 ml.   
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2.2.3 Size reduction of liposomes 

 

Liposome dispersions were reduced in size via ultrasonic vibrations or 

extrusion. The principle of sonication involves the use of high frequency 

pulsed sound waves to fragment the liposomes into smaller vesicles 

(Uhumwangho and Okor, 2005).  

Two types of sonicators were used in this study: 

 

1) Bath sonicator: 

A volume of 30 mls of liposomal suspension were placed in a 100 ml beaker. 

The beaker was then covered with three layers of parafilm and placed in a 

bath sonicator (Fisherbrand FB11004, UK) at a temperature of 40°C. Samples 

of the liposomal suspension were then taken at one minute intervals to have 

its size measured (as described in Section 2.2.5). Sonication proceeded until 

the desired size was achieved. 

 

2) Probe sonicator:  

For size reduction via probe sonication, 30 ml liposomal suspension was 

placed in a 100 ml beaker and placed under a probe sonicator (Vibra cell 

sonicator, Sonics and Materials Inc., Newtown, USA). Samples were then 

taken from the beaker at one-minute intervals to have its size measured (as 

described in Section 2.2.5). Probe sonication proceeded until desired size 

was achieved. To avoid overheating of the phospholipids via the probe 

sonicator, intervals of one minute sonication were followed by intervals of two 

minutes immersion of the liposome flask in ice bath. 

As an alternative to sonication, extrusion was employed for size reduction 

using a Lipofast mini-extruder (Avestin, Canada). Liposomal dispersions were 

sequentially passed through a series of polycarbonate membrane filters 

having a pore size of 2, 1, 0.8 and 0.4 μm, to yield liposomes of the desired 

size.  
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2.2.4 Phospholipid assay 

 

The phospholipid assay was performed to investigate the efficiency of 

ultracentrifugation in pelleting the liposomes. These experiments were 

performed to investigate the efficiency of separating the liposomes from the 

continuous phase. Phospholipid assay was performed according to the 

protocol of Elhissi et al., (2006b). Samples (1 ml) of the liposomal dispersions 

were placed in glass vials, to each of which 1 ml absolute ethanol was added 

to disrupt the liposomes and convert the dispersion into a clear ethanolic 

solution. Vials were kept overnight in a 90°C oven to evaporate the solvent 

and leave the phospholipid as a film on the inner walls of the vial. Chloroform 

(2 ml) was added to the glass vial to dissolve the phospholipid, followed by 

addition of an equal volume of ammonium ferrothiocyanate solution (prepared 

by dissolving 6 g of ammonium thiocyanate (NH4SCN) and 5.4 g of ferric 

chloride (FeCl3 6H2O) in 200 ml of deionised water). The phospholipid film 

develops a colour when the phospholipid molecules react with ammonium 

ferrothiocyanate in chloroformic solution (Stewart, 1980). The samples were 

then vortexed for one minute using the WhirlMixerTM (Fisherbrand, Fisher, 

UK) and left to stand for two hours. The lower chloroformic layer was 

aspirated and the amount of phospholipid complexed with ammonium 

ferrothiocyanate was estimated at 488 nm using a BioChrom WPA Biowave II 

UV/Visible Spectrophotometer (Biochrom WPA Ltd., UK).  

For the preparation of the calibration curve, 100 mg of SPC was dissolved in 2 

ml chloroform in a 100 ml pear-shaped flask and a thin film was prepared and 

hydrated (as described in Sections 2.2.1 and 2.2.2, respectively). A series of 

dilutions were then performed on the lipid suspensions to generate 

concentrations between 0.2 mg/ml and 2 mg /ml. Stewart assay was then 

performed for the calibration curve samples, as described earlier in this 

section.  
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2.2.5 Size analysis of the liposomes  

 

Liposomes generated from proliposomes were diluted with water and their 

size and size distribution were measured using: (1) laser diffraction employing 

the Malvern Mastersizer 2000 instrument (Malvern Instruments Ltd., UK) or 

(2) dynamic light scattering (DLS) employing the Malvern Zetasizer 

Nanoseries (Malvern Instruments Ltd., UK). When using the Malvern’s laser 

diffraction instrument, volume median diameter (VMD) and SPAN were used 

to express the size and size distribution, respectively. The SPAN is a unit-less 

term introduced by Malvern Instruments Ltd. to express the width of the 

distribution based on the 10%, VMD (50%) and 90% quantile, and it is 

calculated as SPAN = (90% undersize − 10% undersize)/VMD. When DLS 

was employed the size and size distribution were expressed as Zaverage and 

polydispersity index (Pdi), respectively. 

Laser diffraction is amongst the most commonly used techniques for size 

measurements due to its convenience and rapid measurement. During laser 

diffraction measurements a laser beam was focused on particles which, 

depending on their size, scattered the laser beam. The intensity and angle of 

the scattered light was then measured by a series of photosensitive detectors. 

Those detectors were attached to a computer which then calculated the size 

and size distribution or span of particles (Figure 2.1). 

 Unlike the Mastersizer, which used the principle or laser diffraction to 

measure the size of particles, the Zetasizer Nanoseries measured the size of 

particles via the process of DLS. DLS measured the brownian motion of the 

particles, which was then related to its size. This was done by focusing a 

beam of laser at the particles and measuring the scattering intensity 

fluctuations caused by the motion of the particles. Figure 2.2 shows a 

schematic presentation of the process of DLS (Malvern-Instruments, 2004). 
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Figure 2.1: A schematic presentation of laser diffraction. (Adapted from Malvern-
Instruments, 2011) 

 

 

 

 

Figure 2.2: A schematic representation of DLS in the Zetasizer instrument. (Adapted 
from Malvern-Instruments, 2004) 
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2.2.6 Liposome morphology, Cryo Transmission Electronic Microscopy 

(Cryo-TEM)  

 

A volume of 10 microlitres of liposome suspension was blotted onto a glow 

discharged 300 mesh lacey carbon grid (Agar Scientific, UK) for three to six 

seconds and plunged into nitrogen chilled liquid ethane. Samples were then 

imaged on a Jeol 2010F (Jeol Ltd., Tokyo, Japan) using a Gatan Ultrascan 

4000 (Gatan Ltd., USA).  

2.2.7 Zeta potential analysis 

 

The zeta potential of liposomes was analysed using a Zetasizer Nanoseries 

(Malvern Instruments Ltd., UK). Liposomal suspension was shaken and 70 µl 

was transferred using a Gilson pipette into a polystyrene latex cell (Malvern 

Instruments Ltd., UK). The temperature was set at 25°C and an equilibration 

time of two minutes was allowed.  

The zeta potential is a term used to describe the potential difference between 

a conducting liquid and the surface of a solid particle immersed in the liquid 

(Maherani et al., 2012). It is calculated by determining the velocity of particles 

in an electric field, also known as the electrophoretic mobility of the particles 

(Equation 1):  

 

2 ( )

3
E

zf ka
U




         (1)  

where,  

UE: Electrophoretic mobility 

ℇ : Dielectric constant 

z : Zeta potential 

ɳ: Viscosity 

f(ka) : Henry’s function. 
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Laser Doppler Velocimetry (LDV) is the technique used to measure the 

electrophoretic mobility of particles in the Zetasizer instrument. LDV measures 

the light scattering fluctuation intensity of particles proportional to their speed 

in an electric field (Figure 2.3) (Malvern-Instruments, 2004). 

 

Figure 2.3: A schematic representation of the mechanism of action of LDV in the 
Zetasizer instrument. (Adapted from Malvern-Instruments, 2004) 

 

2.2.8 Drug entrapment studies 

 

The liposomal suspensions were centrifuged using a Beckman LM-80 

ultracentrifuge with a 70.1 Ti fixed angle rotor (Beckman Coulter Instruments, 

UK) at a speed of 55,000 rpm (277,000 x g) for 45 minutes at 6 oC. The 

supernatant was then collected and analysed for SS, OVA or IgG. 

The concentration of SS was assessed using UV spectrophotometry Biowave 

II UV/Visible Spectrophotometer (Biochrom WPA Ltd., UK) at 288 nm. A 

calibration curve of SS was constructed using SS drug concentrations 

between 1 to 100 μg/ml, and drug in the supernatant of the liposome samples 
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was quantified accordingly. The entrapment efficiency was calculated using 

Equation 2: 

total drug free drug

total drug

 W   - W 
Entrapment efficiency =

W 
   (2) 

where “W total drug” represents the total mass of the drug initially used and “W 

free drug” represents the mass of the free drug detected in the supernatant after 

centrifuging the liposomal dispersion. 

Bicinchoninic acid (BCA) colorimetric method was used for the analysis of 

OVA (Smith et al., 1985). This method based on the reduction of Cu+2 ions by 

the protein, reduced Cu+2 into Cu+1 employing OVA. This caused the reduced 

copper ions to chelate with 2 molecules of bicinchoninic acid, forming a water-

soluble, purple-coloured complex which could be detected at 595 nm. 

Samples (25 µl each) were pipetted into a 96-well Nunc-Immuno Maxisorp 

polystyrene plates (Fisher Scientific, UK), followed by the addition of 200 µl of 

the working reagent. The well plate was then placed on a plate shaker for 30 

seconds and incubated at 37°C for 30 min. The plate was then transferred to 

an Anthos HTll Absorbance Microplate Reader (Anthos, Krefeld, Germany) 

and their absorbance was measured at 595 nm. There was no specific end 

point when this method was used, since the colour continued to develop over 

time. Therefore, the plate was quickly transferred from the incubator and 

immediately assayed. The working reagent in this method was prepared by 

mixing 25 ml of working reagent A, containing sodium carbonate, sodium 

bicarbonate, bicinchoninic acid and sodium tartrate in 0.1 M sodium 

hydroxide; and 0.5 ml working reagent B, containing 4% cupric sulphate, as 

described in the BCA protein essay kit instruction manual (Pierce scientific, 

2011). A calibration curve of OVA was constructed using OVA protein at 

standard concentrations of 25-2000 µg/ml, and the protein in the samples was 

quantified accordingly.  

HPLC analysis was performed to determine the entrapment efficiency of IgG 

using an Agilent SEC5 5µM- 300A column. The detection wavelength was 

280 nm using an Agilent 1200 series HPLC system (Agilent Technologies, 



CHAPTER 2 

 
 

51 
 

Palo Alto, CA). The mobile phase used was PBS (pH 7.2) at a flow rate of 1 

ml/min. A calibration curve was constructed by measuring the peak area of 

protein standards with concentrations between 10-500 ng/ml using an 

injection volume of 20 µl.  

The peak areas of the samples were recorded and compared against the 

standard curve peak areas to determine the amount of protein present in the 

supernatant, thereby estimating the entrapment of efficiency of the protein in 

the liposomal dispersions. 

 

2.2.9 Determination of the secondary structure of IgG 

 

The secondary structure of IgG was determined in this study using the 

technology of Circular Dichroism (CD). CD measured the difference in 

absorbance between the left- and right-handed circularly polarised light by 

optically active substances as a function of wavelength (Fasman, 1996; 

Whitmore and Wallace, 2008). Based on the sensitivity of far-UV CD to the 

conformation of IgG, the % α-helix, β-sheet, β-turns and unordered contents 

of IgG molecules were determined (Kelly et al., 2005; Martin and Schilstra, 

2008).  

CD experiments were performed using a J-815 spectropolarimeter (Jasco, 

UK) coupled to a Peltier Jasco CFF-426S system for temperature control, as 

previously described by Greenfield (2006). Far-UV CD spectra were collated 

at 20°C for IgG in water (2.59 µM) and incorporated into the liposomal 

structure. Four scans per sample were performed over a wavelength range of 

260 to 180 nm, 0.5 nm intervals with a band width of 1 nm, a scan speed 

of100 nm/min and a path length of 1 mm. The overall secondary structure for 

each CD spectra was estimated using a secondary structure algorithm 

CDSSTR (protein ref. set 3 comprising 37 proteins) using DICHROWEB 

(Greenfield, 2006). Furthermore, using a thermostated optical cell, the 

measurements were performed at temperature intervals of 10°C within the 

http://en.wikipedia.org/wiki/Circular_dichroism
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range between 20 and 80°C, and the secondary structure was determined at 

each temperature. 

 

2.2.10 Immunoreactivity of IgG 

 

An IgG Easy titre kit was used to measure the immunoreactivity of the protein. 

Polystyrene beads coated with anti-IgG antibodies were used in this assay. 

Those beads absorb light at 405 and 340 nm and aggregate when mixed with 

samples containing IgG. As a result of aggregation a decrease in absorption 

of light occurs. 

For the assay of the active IgG present in the samples, the microsensitized 

IgG beads were first mixed vigorously to avoid sedimentation, and 20 µl were 

pipetted into a 96 well microtiter plates (Nunc-Immuno Maxisorp, Fisher UK). 

Samples were then diluted to 1:40,000 using the dilution buffer provided by 

the kit, and 20 µl of the diluted samples were then added into the wells 

containing the beads. The microplate was then mixed for 5 minutes in a plate 

shaker. 100 µl of the blocking buffer was then added to the wells and vigorous 

shaking for 10 minutes then took place. The absorbance of the microplate 

was then read at 405 and 340 nm using a Tecan Genios Pro™ microplate 

reader (Durham, NC, USA). A standard curve of IgG was constructed via 

dilution of IgG (concentration of 100 µg/mL) using the dilution buffer provided 

with the kit to obtain concentrations between 25-2000 ng/ml. The standard 

curve samples were run simultaneously to the IgG samples in each well of the 

plate. The standard curve data were then plotted on a semi-log scale and the 

IgG concentration in the samples was determined by interpolating between 

the points on the curve (Pierce scientific, 2010). 

 

 

 



CHAPTER 2 

 
 

53 
 

2.2.11 Determination of nebuliser performance 

 

As elucidated in Section 1.2.4.3, various kinds of nebulizers exist. In this 

study, three types of nebulizers were used:  

1) Pari Turbo boy air-jet/Pari Master compressor (Pari GmbH, 

Germany),  

2) Polygreen ultrasonic nebuliser (Clement Clarke International, 

UK),  

3) Omron Micro Air NE-U22 vibrating-mesh nebuliser (Omron 

Healthcare, UK Ltd., UK).  

For the determination of the nebulisation time several end points exist, and 

determination is dependent on whether the nebulisation time is determined 

until all the mist production is ceased, or until nebulisation becomes erratic 

(Kradjan and Lakshminarayan, 1985). In this study, the time required for 

aerosol generation to become erratic was determined as the “nebulisation 

time”. Further tapping of the nebuliser leads to continuation of the erratic 

aerosolisation that is referred to as “sputtering” and the duration of this 

behaviour until complete cessation of aerosol generation (“dryness”) was also 

determined in the study and referred to as the “sputtering duration”.  

IgG solution, non-sonicated liposomes or probe-sonicated liposomes (5 ml) 

were placed in the nebulizer; positioned against a vacuum line. The 

nebulisation time and sputtering duration of the different formulations in the 

different nebulisers was then determined. 

Furthermore, aerosol mass output (%) was determined gravimetrically by 

measuring the difference in the weight of the nebulizer before nebulization 

and after achieving “dryness” (Equation 3): 

weight of nebulised formulation
Mass output (%)

weight of formualtion present in the nebuliser prior to nebulisation
  (3)  
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Also, the aerosol output rate was determined for the different formulations 

using the different nebulisers (Equation 4):  

 

 weight of nebulised formulation
Aerosol output rate (mg/min)

 time required to reach dryness
     (4)  

 

2.2.12 Determination of aerosol size distribution 

 

The fluid (5 ml) was placed in the nebulizer, which was then clamped 2.5 cm 

away from the beam centre of the Malvern Spraytec laser diffraction 

instrument (Malvern Instruments Ltd., UK) or the Model 3321 Aerodynamic 

Particle Sizer® (APS) Spectrometer (TSI, UK).  

The Malvern Spraytec uses the technique of laser diffraction to measure the 

droplet size distribution (Figure 2.5). The aerosol clouds generated from the 

nebulisers were drawn through the laser beam of the Spraytec and the 

angular intensity of the scattered light was measured. These measured 

intensities are used to determine the VMD and size distribution (SPAN) of 

droplets. The lens systems used in the Malvern Spraytec are 300 and 750 

mm, covering a 0.1 – 2000 micron dynamic range (Malvern spraytec manual).  

On the other hand, the APS spectrometer uses the TOF technology to 

measure the mass median aerodynamic diameter (MMAD) of the aerosol 

particles. The APS accelerates the aerosol through an accelerating orifice into 

two partially overlapping laser beams in the detection area. As the particles 

cross these overlapping beams they get scattered and by means of an 

elliptical mirror the scattered light is collected and focused onto a 

photodetector. The use of two partially overlapping laser beams results in the 

generation of a single two-crested signal by each particle. The time difference 

between the two signal peaks are then used to determine the aerodynamic 

particle size of the aerosol (Mitchell et al., 2003).  
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2.2.14. Aerosol droplet size analysis using laser diffraction 

 

Using the Malvern 2600c laser diffraction size analyser (Malvern Instruments Ltd., 

UK) with a 63 mm lens, the aerosols generated from a nebuliser were directed 

perpendicularly through the laser beam and drawn across it with a vacuum pump and 

aerosols having a 2.5 cm distance from the lens (Fig.2.4). The VMD, Span, and 90% 

undersize  we re  recorded  at  time  in t ervals  du r ing   nebulisation  to   “dr yness”.   

 

Fig.2.4. A schematic diagram showing analysis of size distribution of the generated 

aerosol from a nebuliser.    

 

 

 

Laser diffraction is commonly employed in combination with inertial impaction 

techniques (e.g. two stage impinger) to measure the size of aerosol droplets 

generated from nebulisers. This is because the flow rates employed to collect the 

aerosols using the impingers may result in considerable solvent evaporation from the 

ejected  droplets  and  subsequently  an  overestimated  predicted  “fine  particle  dose”  

(Mitchell and Nagel, 2003). Laser diffraction has been shown to be reliable and 

robust for droplet size measurement as the measured VMD by laser diffraction may 

be equivalent to MMAD for non-volatile aerosols, and correlating well with in vivo 

deposition data (Clark, 1995).    

 

                                                                             

 

 

 

 

In addition to the average aerosol size and SPAN, the percentage of aerosol 

droplets below 5µm, also referred to as “fine particles fraction (FPF)” 

(O'Callaghan and Barry, 1997), was also examined in this study. Furthermore, 

the FPF output was also determined. The FPF output was determined in 

relation to (1) mass output or (2) active protein output (Figure 2.6).   

  

 

 

Figure 2.4: Schematic diagram illustrating analysis of aerosol droplets generated from a 
nebuliser via the laser diffraction principle. (Adapted from Elhissi, 2005) 
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FPF output = 

 

 

 

Figure 2.5: FPF output equations: (1) FPF output in relation to mass output; (2) FPF 
output in relation to active protein output 

 

2.2.13 Determination of the shot weight and dose accuracy of nasal devices 

 

In this study, three commercially available nasal devices were used: A 

mucosal atomisation device (MAD) (Wolfe Tory Medical, Inc., Salt Lake City, 

UT) and two different metered dose nasal pump sprays, which were referred 

to as device A (Model VP3/93, Valois) from a Beconase® aq. nasal spray, and 

device B (Model VP7/100, Valois) from a Nasacort® aq. nasal spray. The 

metered dose pump spray containers were emptied from the original 

formulations and washed thoroughly with water and water and ethanol mixture 

and left to dry overnight at 37 oC before conducting further experiments. 

Prior to the use of nasal sprays, a number of priming actuations are required 

to purge the air off the system and dip tube to achieve the full dose (Marx and 

Birkhoff, 2011). The number of actuations required to prime the nasal devices, 

and the number of full actuations delivered by the nasal devices were 

determined. Moreover, as the volume of formulation in the nasal device 

becomes low, degradation in the accuracy of the device can be noticed (i.e. 

non-uniform dose emitted). This observation, known as “tailing-off” (Schultz, 

1995), continued until complete cessation of spray generation. The number of 

actuations required in the tail-off phase was also determined in this study for 

the different nasal devices and formulations.  

FPF    x    Mass output 

FPF    x    Active protein output 

1 

2 
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In addition to the number of actuations required by each nasal device, the 

shot weight, which was a measure of the emitted dose from a single actuation 

through the nasal devices (Guo and Doub, 2006), was also determined. This 

was achieved by recording the weight of the nasal device before and after 

each actuation. The shot weight could be used to confirm the dose 

consistency of the nasal devices. Also, shot weight could give indication on 

the number of actuations required to prime the device, number of full 

actuations delivered and number of actuations in the tail-off phase. 

IgG solution, non-sonicated liposomes or probe-sonicated liposomes (5 ml) 

were placed in the nasal devices and the number of actuations required to 

prime the different devices were determined. Moreover, the number of full 

actuations delivered via the devices and the number of actuations in the tail-

off phases were determined. Furthermore, the shot weight was measured for 

the different formulations using the different nasal devices.  

 

2.2.14 Determination of nasal spray characteristics 

 

The characteristics of the spray cloud generated from the nasal devices could 

be assessed by a variety of means, including droplet size distribution (DSD), 

spray pattern and plume geometry.  

DSD studies were performed as outlined earlier in Section 2.2.12, using the 

principle of laser diffraction via the Spraytec instrument. Spray pattern and 

plume geometry provided information about the shape of the expanding cloud 

as it evolved upon actuation. Spray pattern involved measuring the cross 

sectional uniformity of the spray at specified distances away from the nozzle 

tip of the nasal spray devices. 

Two different measurement techniques were previously described in Centre 

for Drug Evaluation and Research (CDER) guidelines (2003) for the 

determination of spray patterns (Mestecky et al., 1997): These techniques 

were described as impaction and non-impaction techniques. In this study the 
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impaction technique was employed, which involved the upward firing of the 

spray into a thin layer chromatography (TLC) sheet (Figure 2.7). Spray pattern 

was measured at 5 cm from the nozzle tip to the TLC sheet. A phenol red dye 

was incorporated into the formulations to allow the splatter pattern to be 

visualized on the TLC plate, making the technique easier and more reliable.  

Spray pattern was characterised by the metrics Dmax, Dmin and ovality ratio, 

according to CDER guidelines (2002; 2003). Dmax was defined as the longest 

diameter measured on the resulting spray pattern image, whilst Dmin was the 

shortest diameter measured on the spray pattern image. The ovality ratio, on 

the other hand, was the ratio of Dmax to Dmin. The ovality provided a 

quantitative value for the overall shape of the spray (e.g. round or ellipsoid 

shape). 

Plume geometry data involved visualizing and measuring the shape of the 

emitted plume generated from the nasal devices from a sideward looking view 

(i.e. parallel to the plume axis). Regulatory guidelines of CDER (2002; 2003) 

have described two plume geometry visualization techniques: (1) high-speed 

photography; and (2) laser light sheet and high-speed digital camera.  

In this study the high-speed photography technique was employed, which 

involves the upward firing of the spray against a clear white background and 

placing a high-speed camera to record the process of nasal spray generation 

(Figure 2.8). 

The time history provided by the high-speed digital imaging for plume 

geometry analysis could also be used to determine the different phases of 

spray cloud development (Mestecky et al., 1997): These included (1) the 

formation phase, wherein the pressure and flow rate through the pump were 

both low; (2) a fully developed phase, which occured once the correct 

atomisation was reached; and (3) a dissipation phase, wherein the flow rate 

through the pump tailed off towards the end of the actuation cycle (Farina, 

2010). The CDER recommended image analysis to be carried out at a time 

delay corresponding to the fully developed phase of the plume, while the 

plume was still in contact with the nozzle tip (CDER, 2002; 2003). 



CHAPTER 2 

 
 

59 
 

Emitted plumes were captured as movie clips at a rate of 25 frames/second 

using a professional digital camera - LSH Canon 550 D 55 mm – 08 (Cannon 

Ltd., Tokyo). The clips were then transferred to an Aperture® 3.3.1 software 

(Apple Inc., US) on a MacBook Pro (OS x Version 10.7.4) for image 

processing. The frame containing the most fully developed plume was then 

printed and the resultant image was characterised using the following metrics: 

the plume angle (measured from the vertex of the spray cone that occurs at or 

near the nozzle tip), plume width (i.e. the width of the plume at a specified 

height from the nozzle tip) and plume height per CDER guidance (CDER, 

2002; 2003). Spray angles and plume width were determined using a 

protractor from photographic images printouts whilst the plume height was 

determined according to corresponding ruler marks displayed on the 

background. 

 

2.2.15 Statistical Analysis 

 

All experiments were performed in triplicates and values were expressed as 

mean ± standard deviations of the mean. Statistical significance was 

assessed using (ANOVA) and student's t-test, as appropriate. Values with P < 

0.05 indicate that the difference is statistically significant. 
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Figure 2.6: A schematic representation of: (A) the impaction technique used to determine the spray pattern of the nasal devices 
(B) spray pattern example, showing the maximum (Dmax) and minimum (Dmin) diameters. 
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Figure 2.7: A schematic representation of the high speed photography technique used to determine the spray pattern of the nasal 
devices. 
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3.1 Introduction 

 

Since their discovery, liposomes have become a very common topic in literature, 

and the field has progressed enormously. Their unique versatility with respect to 

size, composition and capacity for encapsulating materials has elicited great 

interest in their application in several areas, ranging from targeted drug and gene 

delivery to cosmetics (Jesorka and Orwar, 2008). The use of liposomes in drug 

delivery offers many advantages, mainly due to their being composed of naturally 

occurring lipids, which makes them biocompatible, biodegradable and non-

immunogenic. Moreover, their amphiliphilicty allows them to conjugate with both 

hydrophobic and hydrophilic therapeutic agents. Furthermore, particle size and 

surface properties of liposomes can easily be manipulated (Webster, 2010). 

Various methods of liposome preparation have been introduced, giving rise to 

vesicles of different lamellarities and sizes (Gregoriadis, 1993; Basu and Basu, 

2002; Weissig, 2010). 

Despite the many advantages liposomes offer, liposome stability is a major 

problem. Furthermore, other factors that limit the use of conventional liposomes 

are their low entrapment efficiencies, their large-scale manufacturing difficulties, 

and short circulation half-lives (Jesorka and Orwar, 2008). 

Various strategies have been employed to overcome these limitations; one 

strategy is by employing proliposome technologies. Proliposomes are stable 

phospholipid formulations which readily generate liposomes upon the addition of 

an aqueous phase, thereby overcoming the instability of liposomes (Payne et al., 

1986a; Payne et al., 1986b; Perrett et al., 1991).  

The physical and chemical characteristics of liposomes determine their in vitro and 

in vivo behaviour and various analytical techniques are now understood to 

establish these characteristics (Torchilin and Weissig, 2003). Amongst the most 

important parameters to consider when describing a liposome are their size and 

size distribution. Predictable and reproducible particle size distribution is 

necessary, since the size of liposomes gives an indication of their circulation time 

and biodistribution (Litzinger et al., 1994). Furthermore, the surface charge of 

liposomes can also help to predict their fate in vivo (Maherani et al., 2012). In 
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addition, entrapment efficiency is also a very important factor to be studied when 

characterising liposomes. 

Many approaches have been proposed to enhance the entrapment efficiencies of 

drugs in liposomes. Amongst those are the incorporation of cholesterol in the 

liposomal formulation, which enhances the rigidity of the liposomal membrane, 

thus possibly increasing the entrapment efficiency of drugs and reducing the 

leakage of the drug encapsulated (Düzgüneş, 2005). Moreover, the addition of 

mucoadhesive agents to liposomal formulations has also been proposed to 

enhance the bioavailability of entrapped drugs by prolonging their residence time 

on mucosal surfaces (Karn et al., 2011). Furthermore, many reports have 

demonstrated an enhancement in entrapment efficiencies following the addition of 

mucoadhesive agents to liposomal formulations (Phetdee et al., 2008; Albasarah 

et al., 2010). 

Studies in this chapter involved preparing liposomes using the ethanol-based 

proliposome method for the entrapment of the model hydrophilic drug SS and the 

model protein OVA. Parameters involved in the preparation of the liposomes were 

evaluated in these studies and optimum conditions were established. 

In addition, the effect of size reduction of liposomes and the incorporation of the 

mucoadhesive agent chitosan were evaluated. Liposomes prepared in this chapter 

were characterised in terms of particle size and size distribution, zeta potential and 

entrapment efficiency. 

 

3.2 Methodology 

 

3.2.1 Preparation of liposomes  

 

Liposomes were manufactured as previously described in Section 2.2.1 by 

adapting the ethanol-based proliposome method described by Perrett et al., 

(1991). Lipid phase (50 mg) comprising SPC or SPC:cholesterol was dissolved in 

76 µl ethanol to form to yield a clear lipid solution (i.e. the proliposomes). For the 

encapsulating of SS or OVA, SS (1 mg/ml) or OVA (1.7, 2.5, 3.2 or 4 mg/ml) 
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solutions in HPLC water were prepared and 0.5 ml was quickly added to the 

proliposomes and vortexed for two minutes to generate concentrated liposomal 

suspensions (primary hydration step). The suspensions were then further diluted 

to 5 ml with HPLC water and vortexed again for 2 minutes to yield the final 

liposomal suspension (secondary hydration step).   

 

3.2.2 Characterisation of liposomes 

 

Liposomes prepared in this study were characterised for (a) size distribution, (b) 

zeta potential and (c) entrapment efficiency of SS or OVA.   

 

(a) Size of liposomes 

 

The size distribution of generated liposomes was analysed as previously 

described in Section 2.2.5 using the technologies of: (1) laser diffraction employing 

the Malvern Mastersizer 2000 instrument (Malvern Instruments Ltd, UK) for 

measuring the size distribution of liposomes before size reduction; or (2) dynamic 

light scattering (DLS) employing the Malvern Zetasizer Nanoseries (Malvern 

Instruments Ltd, UK) for measuring the size of liposomes after size reduction.  

 

(b) Zeta potential 

 

The zeta potential of the generated liposomes was analysed via the (LDV) 

technique using the Zetasizer Nanoseries instrument (Malvern Instruments Ltd, 

UK), as elucidated in Section 2.2.7. 
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(c) Entrapment studies 

 

Entrapment studies were performed as previously described in Section 2.2.8. The 

liposomal suspensions were centrifuged using a Beckman LM-80 ultracentrifuge 

device with a 70.1 Ti fixed angle rotor (Beckman Coulter Instruments) at a speed 

of 55,000 rpm (277,000 x g) for 45 minutes. The supernatant was then collected 

and analysed for SS or OVA. The concentration of SS was assessed using UV 

spectrophotometry (Cary 3E UV-Visible spectrophotometer) at 288 nm. BCA 

colorimetric method was used for the analysis of OVA (Smith et al., 1985). 

 

3.2.3 Phospholipid assay 

 

The phospholipid assay was performed as outlined in Section 2.2.4 to investigate 

the efficiency of ultracentrifugation in pelleting the liposomes. The protocol of 

Elhissi et al., (2006b) was performed to form phospholipid films from liposome 

dispersions. These phospholipid films were then quantified colorimetrically using 

the Stewart assay (Stewart, 1980). 

 

3.2.4 Size reduction of ethanol based liposomes 

 

Three methods were employed for the size reduction of the generated liposomes, 

as previously outlined in Section 2.2.3. The first two techniques of size reduction 

used ultrasonic vibrations via either a bath sonicator (Fisherbrand FB11004, UK) 

or a probe sonicator (Vibra cell sonicator, Sonics and Materials Inc., Newtown, 

USA). The third method for size reduction was extrusion using a Liposofast-mini 

extruder (Avestin, Canada), whereby the liposomal dispersion was sequentially 

passed through a series of polycarbonate membrane filters having a pore size of 

2, 1, 0.8 and 0.4 μm, to yield liposomes of the desired size. 
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3.2.5 Formulation of mucoadhesive ethanol-based liposomes.  

 

Different concentrations (0.1, 0.2 and 0.3% w/v) of the mucoadhesive agent 

Protasan G213, an ultrapure chitosan glutamate salt (Novamatrix, Belgium) were 

dissolved in 4.5 ml HPLC water. The resultant solutions were then employed in the 

secondary hydration step of the ethanol-based liposomes to generate the 

mucoadhesive liposome dispersions. 

 

3.3 Results and discussion 
 

3.3.1 Formulation of empty ethanol-based proliposomes 

 

In this section, several factors and their effect on the characteristics of empty 

liposomal suspensions are explored. These factors were vortex mixing duration, 

dilution, storage stability and sample volume. 

 

(a) Vortex mixing duration 

 

As indicated in Section 3.2.1, the ratio of lipid to ethanol (50:60 w/v) was used in 

the preparation of liposomes, which was adapted from the method introduced by 

Elhissi et al., (2006a). However, unlike the aforementioned method, to optimize the 

shaking of the liposomal dispersions, vortex mixing was employed instead of 

manual shaking during both the primary and secondary hydration. The effect of 

vortexing duration on the size and SPAN of liposomes was investigated (Figure 

3.1). As illustrated in Figure 3.1a, when the vortexing duration was prolonged from 

30 seconds to 120 seconds, the size of the liposomes generated significantly 

decreased (p<0.05) from 4.73±0.51 µm to 3.68±0.32 µm. However, further 

increase in the vortexing duration to 180 seconds did not have any significant 

effect on the size of liposomes (p>0.05), as the liposome size was 3.57±0.29 µm. 

The same effect was also found for the SPAN (Figure 3.1b) so that when vortexing 
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duration was increased from 30 seconds to 120 seconds the SPAN value 

decreased (p<0.05) from 2.60±0.36 to 1.73±0.21, respectively. Further increase in 

vortexing time to 180 seconds did not cause any significant change (p>0.05) in the 

SPAN of liposomes (SPAN=1.55±0.17). The initial decrease in size and size 

distribution of liposomes might be attributed to the deaggregation of liposomes and 

possibly some size reduction of large vesicles. 

  

 

 

Figure 3.1: Relationship between (A) vortexing duration and liposome size and (B) size 
distribution of the generated liposomes during hydration steps. Data are mean ± SD, 
n=3; * p<0.05 for 120 seconds and 150 seconds compared to 30 seconds. 

 

Early experiments by Payne et al., (1986a) indicated that if liposomes were 

hydrated under extremely mild conditions in the absence of high shear forces (i.e. 

no shaking), a significant upward shift in the size of liposome could happen. When 

the duration of vortexing increased above 120 seconds no significant changes 

(p>0.05) in the SPAN and VMD of the generated liposomes were found, thus 

indicating that 120 seconds is the optimal vortexing duration in the study. The 

outcome of the vortexing time optimization was found to be analogous to that of 

the method followed by Dufour et al., (1996).   
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(b) Dilution of liposomes  

 

The effect of dilution on the size, size distribution and zeta potential of liposomes 

was also investigated (Table 3.1). As demonstrated in Table 3.1, dilution of the 

liposomal dispersions did not have any influence on the size, SPAN or zeta 

potential of the liposomes (p>0.05). 

 

Table 3.1: Size, SPAN and zeta potential of liposomes before and after dilution. Data are 
mean ± SD, n=3; p>0.05 for all measured parameters.  

 

 Size (µm) SPAN Zeta potential (mV) 

Original sample (10 mg/ml) 3.28±0.35 1.43±0.37 -4.67±0.62 

Diluted sample (5 mg/ml) 3.40±0.51 1.39±0.23 -4.31±0.54 

 

(c) Stability of liposomes  

 

The physical stability of liposomes upon storage in the fridge at (5±1 oC) for one 

week was investigated. Liposomes properties such as size, polydispersity and 

zeta potential have been previously used to monitor the stability of liposomes and 

can give an indication of the possible degradation, aggregation or fusion of 

liposomes (Du Plessis et al., 1996; Sabin et al., 2005; 2006). 

In a study conducted by Sabin et al., (2005), the stability of liposomes to the 

addition of Ca2+ and La3+ ions was monitored by means of measuring the size, 

polydispersity and surface charge. Results from their study have demonstrated 

that aggregation of liposomes was demonstrated by an increase in the size and 

polydispersity of the liposomes, whilst fusion of liposomes was demonstrated only 

by an increase in the liposome size not polydispersity. A decrease in the zeta 

potential values was also observed as a result of fusion or aggregation.  

In this study, liposomes were stored in the fridge (5±1 oC) for one week, and every 

day a sample of the liposome dispersion was taken and analysed for size, SPAN 

and zeta potential (Figure 3.2). Figure 3.2 illustrates that the size of liposomes did 
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not markedly change (p>0.05) upon storage over the duration of one week, with no 

apparent trend of particle size increase or decrease. 

 

Figure 3.2: Size of liposomes during one week storage at 5±1 
o
C. Data are mean ± SD, n=3; 

p>0.05 for all.  

The SPAN of liposomes was also measured for the same duration and no 

significant change (p>0.05) was observed. Moreover, no trend of increase or 

decrease in the SPAN values was apparent (Figure 3.3). Size and SPAN 

measurements therefore indicated that no fragmentation or aggregation occurred 

to the liposomes over the one week of storage at 5±1 oC. The zeta potential values 

were also not affected (p>0.05) by the storage for one week (Figure 3.4), giving 

further indication that liposomes generated from ethanol-based proliposomes does 

not aggregate or fuse when stored at 5±1 oC for a duration of at least one week. 

Early findings by Hernandez-Caselles et al., (1990) demonstrated that storage at  

4 oC may stabilise liposomes by reducing the rate of lecithins hydrolysis into 

lysolecithins. Furthermore, the slightly negative charge on the liposomal surfaces 

could also decrease the fusion and aggregation between liposomes, since 

repulsion between liposomes could decrease the rate of fusion and enhance the 

physical stability of liposomes (Riaz, 1995).  
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Figure 3.4: Zeta potential of liposomes during a week interval of storage at a temperature of 

5±1 oC. Data are mean ± SD, n=3; p>0.05 for all zeta potential meaurements.  
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 Figure 3.3: SPAN of liposomes during a week interval of storage at a temperature of 5±1 
o
C. 

Data are mean ± SD, n=3; p>0.05 for all.   
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(d) Sample volume  

 

Another study that was performed is investigating whether manufacturing large 

volumes of the liposomes would affect their properties. This study might indicate 

whether further work to explore the scaling-up potential of liposomes is worth 

consideration. The ratios of lipid, ethanol and aqueous phase were kept constant 

and the effect of preparing samples of final volumes of 5, 10, 20 and 30 ml was 

studied (Table 3.2).  

As can be seen in Table 3.2, the size, zeta potential and SPAN of the liposomes 

were not affected (p>0.05) by sample volume. This finding could thus be 

advantageous and give an indication of the possible scaling-up potential of 

liposomes prepared via the ethanol-based proliposome method. 

 

Table 3.2: Effect of sample volume on size, SPAN and zeta potential of the generated 

liposomes. Data are mean ± SD, n=3; p>0.05 for all.  

 

Formulation Size (µm) SPAN Zeta potential (mV) 

5 ml sample (10 mg/ml) 3.39±0.41 1.61±0.34 -4.53±0.28 

10 ml sample (10 mg/ml) 3.45±0.33 1.48±0.26 -4.31±0.46 

20 ml sample (10 mg/ml) 3.10±0.52 1.55±0.23 -4.43±0.39 

30 ml sample (10 mg/ml) 3.28±0.27 1.39±0.41 -4.70±0.23 

 

 

3.3.2 Preparation of SS liposomes 

 

A small hydrophilic bronchodilator molecule of pKa 9.2, SS (Figure 3.5), was 

considered for entrapment in liposomes. The effect of incorporation of SS in the 

liposomal formulation on the size, SPAN and zeta potential was investigated in this 

study (Table 3.3).  

 



CHAPTER 3 

73 
 

 

 

Figure 3.5: Chemical structure of salbutamol sulphate. 

 

As demonstrated in Table 3.3, when compared to drug-free vesicles, inclusion of 

SS in the liposome formulation caused no significant effects (p>0.05) on size, 

SPAN or zeta potential.  

 

Table 3.3: Comparison between liposomes with and without SS. Data are mean ± SD, n=3; 
p>0.05 for all.   
 

Formulation Size (µm) SPAN Zeta potential (mV) 

Empty liposomes 3.39±0.41 1.61±0.34 -4.53±0.28 

SS liposomes 3.25±0.32 1.53±0.26 -4.66±0.37 

 

The effect of cholesterol incorporation in SS-containing formulations on size, size 

distribution, zeta potential and entrapment efficiency of SS was also investigated 

(Table 3.4).  

 

Table 3.4: Size, zeta potential and SS entrapment efficiency using liposome formulations 
having different cholesterol concentrations. Data are mean ± SD, n=3; * p<0.05 for 
SPC:Cholesterol (1:1) or SPC:Cholesterol (2:1) compared to SPC (no cholesterol).   
 

Formulation Size (µm) SPAN Zeta potential 
(mV) 

Entrapment efficiency (%)  

SPC (no 
cholesterol) 

3.25±0.32 1.53±0.26 -4.66±0.37 46.31±3.97  

SPC: cholesterol 
(2:1) 

3.37±0.28 1.61±0.31 -4.44±0.45 59.12±5.18 *  

SPC: cholesterol 
(1:1) 

3.41±0.55 2.42±0.43 * -4.51±0.52 59.53±5.09 *  

 

Mwt: 576 Da 
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It was proposed by Presti et al., (1982) that cholesterol may associate itself with 

the phospholipid chains by forming hydrogen bonds between its β-OH groups and 

the carbonyl groups of the phospholipid molecules, resulting in changes in the 

properties of the liposomal membranes. As shown in Figure 3.6, cholesterol is 

incorporated into the phospholipid bilayers by orienting its hydroxyl group towards 

the aqueous phase and inserting its hydrophobic chain alongside the hydrocarbon 

chains of the phospholipid. This assembly of cholesterol in the lipid bilayer tends to 

reduce the motion of the alkyl chain of the lipid whilst giving more space to the 

terminal carbons to move (New, 1990).  

 

 

Figure 3.6: The assembly of cholesterol between phospholipid molecules. (Adapted from 
New, 1990). 

 

As demonstrated in Table 3.4, cholesterol concentration did not affect the size or 

zeta potential of liposomes (p>0.05). This finding was in agreement with that of 

Rengel et al., (2002), who reported that cholesterol inclusion does not affect the 

surface charge of liposomes. Also, using the ethanol-based proliposome method, 

Elhissi et al., (2006a) reported no change in the size of liposomes entrapping SS 

when different ratios of cholesterol were included. 

Whilst inclusion of cholesterol had no effects on the size and zeta potential of the 

liposomes, it was found to markedly increase the SPAN value (p<0.05) at high 
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cholesterol concentrations (SPC: cholesterol, 1:1) (Table 3.4). This increase in the 

SPAN could be an indication of liposome aggregation. Figure 3.7 compares the 

size distribution for both the 1:1 and 2:1 SPC: cholesterol liposomes. As 

demonstrated in Figure 3.7, the size distribution of liposomes having 1:1        

(SPC: cholesterol) is broader than that of liposomes having the ratio 2:1, indicating 

the presence of liposome aggregates upon inclusion of high cholesterol 

concentrations. This possibly indicates that cholesterol was not fully 

accommodated by the liposome bilayers, suggesting that using lower cholesterol 

concentrations (e.g. 2:1 phospholipid to cholesterol ratio) may be most appropriate 

when the ethanol-based proliposome method is employed. 

It has been demonstrated that when the proportion of cholesterol is higher than 

that of phospholipid, the lipid bilayers become too rigid and the fluidity of the 

membrane decreases, causing lower entrapment efficiency (Wang and Huang, 

2003), necessitating the optimisation of bilayer rigidity.  

Moreover, as shown in Table 3.4, the entrapment efficiency of SS was found to 

significantly increase (p<0.05) when cholesterol was included. However, no 

difference in drug entrapment efficiency was found upon using phospholipid to 

cholesterol ratios of 2:1 or 1:1. The entrapment efficiency values of the 

cholesterol-based liposomes (approximately 60%) were highly similar to those 

found by Elhissi et al., (2006a), that the entrapment of SS in liposomes generated 

from ethanol-based proliposomes was 62.2%.  

The enhanced entrapment as a result of inclusion of cholesterol might be 

attributed to the fact that the presence of cholesterol in liposomal preparations 

decreased the liposome membrane fluidity, which thus reduced the leakage of the 

encapsulated material, as also previously reported by other investigators 

(Betageri, 1993). Inclusion of cholesterol leads to a decrease in the rotational 

freedom of the hydrophobic phospholipid chains and may eliminate the phase 

transition of the phospholipid, leading to reduction of drug leakage (Sharma and 

Sharma, 1997; Zhang et al., 2009).  
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Figure 3.7: Relationship between cholesterol concentration in the lipid phase and particle 
size distribution of liposomes. Data are mean ± SD, n=3; Typical of 3 different experiments.   

 

3.3.3 Preparation of OVA liposomes 

 

OVA is a 45 kDa protein purified from chicken eggs and widely used in 

immunology (McCullough and Summerfield, 2009). Due to the high expense of 

vaccines, and the promise shown by OVA as a model protein in liposome 

characterisation, OVA has been used as an alternative to protein vaccines in 

characterisation studies (McCullough and Summerfield, 2009).  

The effect of incorporating different concentrations of OVA into the liposome 

formulations and the effect of that on size, SPAN, zeta potential and entrapment 

efficiency was investigated in this study.  

The inclusion of different concentrations of OVA has been found not to markedly 

affect (p>0.05) the size or SPAN of the generated liposomes (Table 3.5). The size 

and SPAN values of the liposomes remained unaffected even when OVA 

concentrations were as high as 4.0 mg/ml. These results agree with the findings of 

Dini et al., (1991), who also found no change in the size of liposomes as a result of 

using different concentrations of bovine serum albumin (BSA), which is of similar 

structure to OVA. 
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Table 3.5: Size, SPAN and zeta potential of liposomes having a range of OVA. Data are mean 
± SD, n=3; p>0.05 for size and SPAN; * p<0.05 for zeta potential.  

Concentration of 
OVA (mg/ml) 

Size (µm) SPAN Zeta potential (mV) 

0.0 3.39±0.41 1.61±0.34 -4.66±0.37 

1.7 3.46±0.38 1.56±0.29 -6.37±0.47* 

2.5 3.37±0.54 1.64±0.31 -6.71±0.39* 

3.2 3.29±0.46 1.51±0.37 -6.68±0.51* 

4.0 3.25±0.33 1.39±0.44 -6.80±0.45* 
 

 

Unlike size and size distribution, the zeta potential was markedly affected by OVA 

inclusion. The zeta potential has significantly increased (p<0.05) by becoming 

more negative as a result of inclusion of 1.7 mg/ml OVA. This could be attributed 

to the fact that OVA exhibits a negative charge in aqueous media (Brgles et al., 

2008). However, when the concentration of OVA was increased above 1.7 mg/ml 

there was no significant change (p>0.05) in the zeta potential of the liposomes, 

possibly indicating that higher OVA concentrations do not associate with the 

liposome bilayers and hence no further effect on the liposome surface charge was 

observed. 

The effect of increasing OVA concentration in the liposomal formulation on the 

entrapment efficiency of the protein was also investigated (Figure 3.8). Figure 3.8 

shows that the entrapment of OVA protein in liposomes was significantly 

dependent (p<0.05) on the protein concentration, with higher OVA concentrations 

resulting in lower entrapment efficiencies. The highest entrapment value was 

43.30±3.91% (OVA concentration = 1.7 mg/ml), whilst the lowest was 25.82±4.18 

(OVA concentration = 4 mg/ml). These results suggest that OVA is associated with 

the liposome bilayers, which may have certain capacity to accommodate the 

protein.  

Korsholm et al., (2007) reported similar findings, whereby the binding of OVA to 

liposomes decreased by more than 60% when the concentration of OVA increased 

from 1 mg/ml to 10 mg/ml. Similarly, Wang and Huang (2003) have demonstrated 

that for BSA liposome formulations, an increase in BSA content from 1 to 3 mg 

was associated with a drop in the entrapment efficiency by 30%. 
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Figure 3.8: The entrapment efficiency of OVA prepared in a range of concentrations. Data 
are mean ± SD, n=3; * p<0.05 for 3.2 and 4 mg compared to lower concentrations.   

 

Similar entrapment efficiency values of OVA were previously reported for albumin, 

38% using reverse phase evaporation method (Szoka et al., 1980) and 44.6% in 

liposomes generated using the ethanol injection method (Wang and Huang, 2003). 

Moreover, Ishikawa et al., (2004) reported an entrapment efficiency of 41.9% for 

BSA in liposomes generated from proliposomes.  

 

3.3.4 Size reduction of empty liposomes 

 

Size reduction of liposomes may offer a lot of benefits, such as better uptake by 

cells (Zou et al., 1995). However, liposome size is an important determinant of the 

entrapment efficiency of hydrophilic drugs inside the central aqueous core of the 

liposomes, since size reduction leads to decreased entrapped volume (Winslow, 

2006). Therefore, engineering of liposomes having the right size is necessary for 

achieving the best formulations. 
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In this study, the characteristics of liposomes were evaluated using three methods 

of size reduction: 

1- Bath sonication  

2- Probe sonication 

3- Extrusion  

Initially, empty liposomes incorporating cholesterol at a ratio of 2:1 SPC to 

cholesterol were successfully reduced in size to 100 nm vesicles using any of the 

three above methods of size reduction listed above. However, difficulties were 

encountered when trying to sediment the 100 nm vesicles by ultracentrifugation, in 

agreement with the findings of Tortorella et al., (1993) and Zhan (1999). The 

difficulty of sedimenting SUVs might be attributed to the low density of the 

liposomes. Figure 3.9 illustrates the effect of ultracentrifugation and probe 

sonication of the liposomal formulations on the amount of lipid present in the 

sample as determined by the Stewart essay. Lower amounts of the lipid in the 

supernatant indicate that the separation of liposomes from the supernatant is 

efficient. 

As demonstrated in Figure 3.9, liposomes that were not ultracentrifuged or 

sonicated (i.e. before size reduction and separation) exhibited a lipid concentration 

of 94.50±3.12%. However, when liposomes were probe-sonicated to have a size 

of approximately 100 nm, lipid content was found to be 81.14±4.58%. This marked 

decrease (p<0.05) in lipid content is due to losses of some lipids during the 

sonication procedure. Moreover, when liposomes were ultracentrifuged without 

sonication, a pellet of liposomes was formed at the bottom of the centrifuge tube 

and the amount of lipid in the supernatant was as low as 2.43±1.79%, indicating 

the high effectiveness of ultracentrifugation of liposomes. However, when 

liposomes were probe-sonicated prior to ultracentrifugation, the amount of lipid in 

the supernatant after pellet formation was as high as 22.61±5.23%, giving an 

indication that ultracentrifugation at a speed of 65,000 rpm for 4 hours did not 

sediment all of the liposomes, and a significant percentage of vesicles have 

remained dispersed in the supernatant.  

In comparison to the liposomes having a size approximately 100 nm, liposomes 

(400 nm) were easier to prepare and sediment. After probe sonication into 400 nm 



CHAPTER 3 

80 
 

vesicles and ultracentrifugation the amount of lipid found in the supernatant was 

considerably low, being 5.35%±1.84. Therefore, size reduction to obtain liposomes 

having a size of 400 nm was applied throughout the study. 

 

 

Figure 3.9: Phospholipid content in the supernatant for liposomes processed at various 
conditions: (I) liposomes without processing; (II) liposomes after probe sonication to 100 
nm vesicles; (III) liposomes after ultracentrifugation; (IV) liposomes after probe sonication 
to 100 nm vesicles followed by centrifugation; (V) liposomes after probe sonication into 400 
nm vesicles; (VI) liposomes after probe sonication into 400 nm vesicles followed by 
centrifugation. Data are mean ± SD, n=3; * p<0.05 for II, III, IV, VI compared to I; p>0.05 for V 
compared to I.    

 

All different methods of size reductions generated 400 nm liposomes. The 

properties of the generated liposomes after size reduction were investigated in this 

section in terms of size and polydispersity (Figure 3.10).The time required to 

reduce the size of liposomes to 400 nm was 22 minutes using bath sonication, and 

as short as 5 minutes using probe sonication. The Pdi was also significantly higher 

(p<0.05) for bath sonication when compared to probe sonication, being 

0.679±0.051 and 0.494±0.041, respectively. These findings demonstrate that 
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probe sonication not only saves time but also may offer a better control for the size 

distribution of liposomes, which is attributed to the direct contact between the 

probe and the liposomes, resulting in more efficient size reduction.  

On the other hand, when extrusion was employed to reduce the size of liposomes, 

the Pdi was significantly lower (i.e. 0.291±0.033) compared to the other methods 

of size reduction. Additionally, unlike probe sonication, extrusion through 

polycarbonate membrane filters does not contaminate the liposomes with any 

residues such as titanium, and hence no purification procedure is required.  

Thus, due to the narrower size distribution of the liposomes generated by 

extrusion and the absence of titanium residues, extrusion was chosen for size 

reduction of liposomes in this study. The advantages of extrusion over other 

methods of size reduction have been previously demonstrated with other liposome 

formulations (Lapinski et al., 2007).  

 

 

 

 

Figure 3.10: Size and polydispersity of liposomes reduced in size using bath sonication, 
probe sonication or extrusion. Data are mean ± SD, n=3; p>0.05 for size measurements;        
* P<0.05 for the Pdi of Bath sonication and Extrusion compared to Probe Sonication. 
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Figure 3.11: Relationship between number of extrusion cycles through the different 
membrane filters (5, 1, 0.8 and 0.4 µm pore size) on the (A) size of liposomes and (B,C,D) 
size distribution following 0, 3 and 5-7 extrusion cycles, respectively. (B-D) represents 
typical size distribution monographs generated by the Zetasizer Nanoseries analysis 
software. Data are mean ± SD, n=3; * p<0.05 for 3,5,7,9 extrusions compared to 0 
extrusions; p>0.05 for 5,7,9 extrusions; B,C and D are typical of 3 different experiments.   

(B) 

(C) 
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The number of extrusion cycles through the different polycarbonate membrane 

filters with pore sizes (5, 1, 0.8 and 0.4 µm), and their effect on the size 

distribution of liposomes were also investigated (Figure 3.11).  

As demonstrated in Figure 3.11, as the number of extrusion cycles increased 

from 1 to 5 cycles through each of the polycarbonate membrane filters, the 

measured size of liposomes decreased from 3.41±0.55 µm to 414.3±24.6 nm. 

However, further increases in the number of extrusion cycles (e.g. up to 9 

cycles) resulted in no significant change in the size of liposomes (p>0.05). 

Moreover, when the number of extrusion cycles increased from 1 to 7, the Pdi 

decreased from 0.970±0.042 to 0.296±0.026. Also, further increase in the 

number of extrusion cycles (e.g. up to 9 cycles) resulted in no significant 

change in the Pdi of the liposomes (p>0.05). In light of those findings, 7 

extrusion cycles through each of the polycarbonate membrane filters were 

performed in this study.  

 

3.3.5 Effect of extrusion on the properties of liposomes entrapping SS or OVA  

 

The effect of extrusion on size, size distribution and drug entrapment was 

studied using liposomes manufactured via the ethanol-based proliposome 

method. The model drugs used in this study were OVA and SS (Table 3.6). The 

number of extrusions required when either OVA or SS were included in the 

liposomes was 7 extrusion cycles through the 5, 1, 0.8 and 0.4 µm membrane 

filters to generate 400 nm vesicles. 

 As shown in Table 3.6, no significant differences between SS and OVA 

(p>0.05) were observed in terms of size and SPAN or Pdi of the generated 

liposomes. Overall, this indicates that the size of liposomes before or after 

extrusion is not dependent on the type of drug included, but is rather dependent 

on the manufacturing procedure, such as the number of extrusion cycles, as 

demonstrated earlier (Figure 3.11). In addition, Table 3.6 demonstrates that 

whilst extrusion had no effect on the zeta potential of SS and OVA liposomes, 

the zeta potential was markedly different between the SS and OVA liposomes, 

thus indicating that, contrary to the size and Pdi or SPAN, zeta potential is 

influenced by the type of drug included rather than manufacturing procedure. 
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Table 3.6: Size, SPAN and zeta potential of liposomes incorporating SS or OVA. Data are 
mean ± SD, n=3; P>0.05 for size and SPAN; *p<0.05 for Zeta potential. 

 Before extrusion  

 Size (µm)  SPAN Zeta potential (mV) 

OVA liposomes 3.46±0.38  1.56±0.29 -6.37±0.47 

SS liposomes  3.37±0.28  1.61±0.31 -4.44±0.45 * 

    

 After extrusion 

 Size (nm) Pdi Zeta potential (mV) 

OVA liposomes 412.3±36.7 0.275±0.051 -6.82±0.61 

SS liposomes  389.7±41.6  0.302±0.038  -4.16±0.52 * 

  

The entrapment efficiency values were also investigated following extrusion of 

the OVA and SS liposomes (Figure 3.12). As shown in Figure 3.12, a significant 

reduction (p<0.05) in the entrapment efficiency values were apparent following 

extrusion of OVA and SS containing liposomes (i.e. 13.21 and 17.85%, 

respectively). These findings are in agreement with those of Szoka et al., (1980) 

and Elhissi et al., (2007), who reported that extrusion significantly reduces the 

entrapment of materials in liposomes. The decrease in entrapment efficiency is 

attributed to the reduction of the mean diameter of the liposomes, hence the 

internal space available for encapsulation of hydrophilic drugs is reduced 

(Schneider et al., 1995; Winslow, 2006).  

Figure 3.12 demonstrates that the entrapment efficiency of OVA in liposomes 

was significantly lower (p<0.05) than that of SS. This might be due to the 

molecular size of the entrapped materials; where unlike the small hydrophilic 

SS, OVA is a large protein of 45 kDa.  
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Figure 3.12: Entrapment efficiency of OVA and SS before and after extrusion of 
liposomes. Data are mean ± SD, n=3; * p<0.05 for OVA compared to OVA extruded and 
SS compared to SS extruded, respectively. 

 

3.3.6 Inclusion of chitosan in liposome formulations  

 

Chitosan was included in the liposome formulations in order to increase the 

mucoadhesive properties of the liposomes. Chitosan used in this study was a 

water soluble glutamate salt having a molecular weight of less than 200 kDa. 

The low molecular weight of chitosan may facilitate formation of uniform 

polymer–liposome complexes (Werle and Takeuchi, 2009), thus it can enhance 

the mucoadhesive properties of liposomes. 

The concentrations of chitosan in the liposome formulations were 0.1, 0.2 or 

0.3% w/v. The effect of chitosan concentration on the size, SPAN and zeta 

potential of liposomes was investigated and the entrapment efficiency of OVA in 

liposomes was studied. These chitosan concentrations have been previously 

used for liposome coating (Zaru et al., 2009; Albasarah et al., 2010; Zhuang et 

al., 2010). Zaru et al., (2009) demonstrated that 0.1% w/v chitosan resulted in 
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the highest coating efficiency to liposomes. On the other hand, Zhaung et al., 

(2010) reported that 0.3% (w/v) was an optimal concentration for chitosan for 

the preparation of stable liposomes. Higher concentrations of chitosan have 

also been previously studied, however their use demonstrated low coating 

efficiencies (Galovic Rengel et al., 2002; Zaru et al., 2009).  

Table 3.7 elucidates the effect of chitosan concentration on size and SPAN of 

liposomes. As demonstrated in Table 3.7, chitosan concentration had no effect 

(p>0.05) on the size or SPAN of liposomes. A similar finding on the effect of 

chitosan addition on the size of liposomes was previously reported by Werle et 

al., (2009).  

 

Table 3.7: Size and size distribution of freshly prepared liposomes prepared with a range 
of chitosan concentrations. Data are mean ± SD, n=3; p>0.05 for size and SPAN 
measurements.   

 

Chitosan concentration % (w/v) Size (µm) SPAN 

0.0 3.46±0.38 1.56±0.29 

0.1 3.28±0.29 1.64±0.41 

0.2 3.19±0.36 1.58±0.28 

0.3 3.22±0.43 1.71±0.36 

 

The increase in zeta potential by addition of chitosan is attributed to the positive 

charge of the chitosan polymer (Davis, 1999b; Zaru et al., 2009; Behera et al., 

2011). The increase in the zeta potential of liposomes possibly means that 

chitosan has adsorbed onto the surface of liposomes, which might be in the 

form of electrostatic interactions between the positively charged chitosan and 

the negatively charged surface of liposomes (Zaru et al., 2009), or via hydrogen 

bonding between the polysaccharide molecules of the chitosan and the 

phospholipid head groups in the liposome bilayers (Perugini et al., 2000). 
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Figure 3.13: Zeta potential of liposomes upon inclusion of chitosan in a range of 
concentrations. Data are mean ± SD, n=3; * p<0.05 for 0.1, 0.2 and 0.3 % (w/w) chitosan 
compared to the absence of chitosan.    

 

Many research findings have demonstrated that chitosan may increase the 

entrapment efficiency of drugs in liposomes (Phetdee et al., 2008; Albasarah et 

al., 2010). However, this was not in agreement with our findings using the 

proliposome technology to manufacture liposomes, since chitosan 

concentration was found not to affect (p>0.05) the entrapment of OVA in 

liposomes in this study (Figure 3.14). The entrapment efficiency of OVA in 

liposomes was found to be 43.30±3.91% before inclusion of chitosan, and 

37.62±3.58, 40.15±4.65 and 43.50±5.13% after inclusion of 0.1, 0.2 and 0.3% 

(w/v) chitosan, respectively. The disagreement between these findings and the 

observations reported in the literature might be attributed to the use of different 

drugs or excipients within the liposomal formulations, or might be ascribed to 

the manufacturing procedure of liposomes using the proliposome technology.  
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Figure 3.14: Effect of chitosan concentration on the entrapment efficiency of OVA in 
liposomes. Data are mean ± SD, n=3; p>0.05 for all.   

 

3.4 Conclusions 

 

The results from this study give a rational basis for optimal parameters required 

for the preparation of liposomes via the ethanol-based proliposome method. 

Generated liposomes from the ethanol-based proliposome technology proved to 

be stable upon dilution and storage for duration of at least one week. Moreover, 

sample volume was found not to influence the characteristics of the generated 

liposomes, thus giving an indication of the potential scale-up of the proliposome 

technology, and warranting further studies using larger volumes of samples.  

The validity of liposomes prepared via the modified ethanol-based proliposome 

method for the entrapment of different drug molecules such as SS and OVA 

was also demonstrated in this study. Moreover, the effect of cholesterol 

inclusion into the liposomal structure was evaluated, and in light of findings a 

ratio of (1:1) SPC to cholesterol was chosen as optimal for liposome 

preparation.   

Size reduction of generated liposomes via the extrusion technique was also 

established to be the most suitable for the formulations studied, and 400 nm 
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vesicles entrapping SS and OVA were successfully prepared. The results from 

extrusion studies also demonstrated marked influences on the characteristics of 

generated liposomes, including a significant loss of the entrapped moieties 

following size reduction. 

The incorporation of the mucoadhesive agent chitosan into the liposome 

formulation was established. Chitosan’s incorporation was observed to 

significantly increase the positive charge of the liposomes, whilst having no 

marked influence on size of liposomes and entrapment efficiency values. 

Overall, the validity of the modified ethanol-based proliposomes method for the 

generation of mucoadhesive 400 nm vesicles able to entrap different moieties 

(i.e. small hydrophilic drug SS and a 45 kDa protein OVA) was established. 

Also, optimal parameters for liposome preparation were elucidated. 
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4.1 Introduction 

 

Numerous therapeutic proteins and peptides have emerged in the market over the 

last century, and antibody pharmaceuticals in particular are gaining tremendous 

momentum. This increase in the popularity in antibodies is due to their specific 

action, ability to conjugate with other therapeutic entities, and the fact that 

technology advancement has made complete human antibodies available (Wang 

et al., 2007). 

The field of therapeutic antibodies is continuously expanding, and 

immunoglobulins (Ig) are used today for prophylaxis or the therapy of infectious 

diseases (Weltzin and Monath, 1999; Breedveld, 2000; Dellamary et al., 2004; 

Maillet et al., 2008b). Antibodies are often administered by parenteral routes, but 

recently non-invasive mucosal routes have been explored and showed promise of 

enhancing the therapeutic effects and reducing the side effects of antibodies 

(Garcia-Santana et al., 2006). Despite the advantages antibodies possess, various 

hurdles are posed by their high molecular weight, including their limited ability to 

cross the cell membranes, short half-lives and instability (Pisal et al., 2010).  

Several strategies have been proposed to help circumvent the limitations and to 

improve the therapeutic effects of antibodies. Liposomal carriers in particular, due 

to being biocompatible, biodegradable, non-immunogenic and able to be 

conjugated with both hydrophobic and hydrophilic therapeutic agents, have 

attracted a lot of interest (Pisal et al., 2010; Webster, 2010). Liposomes have been 

applied to a wide variety of proteins and have been investigated for the 

administration of IgG (Wong et al., 1994; Dreffier et al., 2003; Garcia-Santana et 

al., 2006).  

However, until the present, the proliposome technology to overcome the stability 

and scaling-up limitation of conventional liposomes has never been investigated 

for the administration of IgG. 

The optimal parameters for formulating liposomes from ethanol-based 

proliposomes were established in Chapter 3, and the feasibility of entrapping a 

small hydrophilic drug SS, and the protein OVA was demonstrated. This chapter 
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evaluated the validity of liposomes generated via the ethanol-based proliposome 

method for the entrapment of immunoglobulin G (IgG), which is the main model 

protein in this thesis.  

To assess the efficacy of the ethanol-based proliposomes method for the 

entrapment of IgG, liposomes entrapping IgG were also prepared via conventional 

thin film hydration method and particulate-based proliposome method, and the 

properties of the generated liposomes were compared. Moreover, the effect of the 

incorporation of the mucoadhesive polymers chitosan and alginate into liposome 

formulations was evaluated and the effect of size reduction of the mucoadhesive 

liposomes was investigated. 

Liposomes prepared in this chapter were characterised in terms of particle size 

and size distribution, zeta potential and entrapment efficiency. The secondary 

structure and activity of IgG free in solution or incorporated into the liposomal 

formulation were determined in this study following size reduction and at different 

temperatures. 

 

4.2 Methodology 

 

4.2.1 Manufacture of IgG liposomes 

 

Liposomes in this study were prepared using: thin film hydration method, 

particulate-based proliposome method and ethanol-based proliposomes method, 

as discussed earlier in Section 2.2.1. Different concentrations of IgG were 

incorporated into the liposomal structure (0.5, 1, 1.25, 2.5 or 5 mg/ml) and the 

concentration resulting in maximum entrapment was used throughout the study.  
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4.2.2 Characterisation of liposomes 

 

IgG liposomes prepared in this study were characterised for (a) size distribution, 

(b) morphology, (c) zeta potential and (d) entrapment efficiency.   

 

(a) Size distribution of liposomes 

 

The size distribution of liposomes in this study was measured as previously 

discussed in Section 2.2.5 using the technologies of: (1) laser diffraction 

employing the Malvern Mastersizer 2000 instrument (Malvern Instruments Ltd, UK) 

or (2) dynamic light scattering (DLS) employing the Malvern Zetasizer Nanoseries 

(Malvern Instruments Ltd, UK). Laser diffraction was the technique employed for 

determining the size distribution of liposomes before size reduction, whilst DLS 

was the technique used for size reduced liposomes. 

 

(b) Morphology of liposomes: 

 

The morphology of the liposomes (before and after size reduction) was 

investigated using Cryo-TEM. Liposome samples were blotted on glow discharged 

carbon lacey carbon grid, plunged into nitrogen chilled liquid ethane and imaged 

on a JEOL 2010F TEM (200 kV FEG) with a 4K Gatan Ultrascan camera as 

described earlier in Section 2.2.6.  

 

(c) Zeta potential: 

 

The zeta potential of generated liposomes was analysed via the technology LDV 

using a Zetasizer Nanoseries (Malvern Instruments Ltd, UK), as elucidated in 

Section 2.2.7. 
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(d) Entrapment of IgG 

 

The liposomal suspensions were centrifuged using a Beckman LM-80 

ultracentrifuge device with a 70.1 Ti fixed angle rotor (Beckman Coulter 

Instruments) at a speed of 55,000 rpm (277,000 x g) for 45 minutes. The 

supernatant was then collected and analysed via HPLC to determine the 

entrapment efficiency of IgG according to the protocol previously discussed in 

Section 2.2.8 using an Agilent 1200 series HPLC system (Agilent Technologies, 

Palo Alto, CA) and an agilent SEC5 5µM- 300A column.  

 

4.2.3 Formulation of mucoadhesive ethanol-based liposomes.  

 

Different concentrations (0.1, 0.2 and 0.3% w/v) of the mucoadhesive agents 

protasan G213, an ultrapure chitosan glutamate salt, (Novamatrix, Belgium) and 

sodium alginate (Sigma Aldrich, UK) were dissolved in 4.5 ml HPLC water. The 

resultant solutions were then employed in the secondary hydration step of the 

ethanol-based liposomes to generate the mucoadhesive liposome dispersions. 

 

4.2.4 Size reduction of ethanol-based liposomes 

 

Generated liposome dispersions were reduced in size via ultrasonic vibrations 

using a probe sonicator (Vibra cell sonicator, Sonics and Materials Inc., Newtown, 

USA) according to the protocol previously discussed in Section 2.2.3. Probe 

sonication proceeded until desired size was achieved. The effect of sonication 

time on the size distribution and zeta potential of liposomes was determined using 

the Malvern Zetasizer Nanoseries (Malvern Instruments Ltd, UK) employing the 

techniques of DLS and LDV for the size distribution and zeta potential, 

respectively.  
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4.2.5 Secondary structure and activity of IgG 

 

The secondary structure of IgG was investigated using CD. CD experiments were 

performed as previously described in Section 2.2.9, using a J-815 

spectropolarimeter (Jasco, UK) coupled with a Peltier Jasco CFF-426S system for 

temperature control. Collated CD spectra of IgG both in solution or incorporated 

into liposomes were then estimated via the secondary structure algorithm 

CDSSTR using DICHROWEB (Greenfield, 2006). 

To determine the immunogenic reactivity of IgG (activity), an easy titre IgG kit was 

used according to the protocol previously described in Section 2.2.10. 

 

4.3 Results and discussion 

 

4.3.1 Entrapment of IgG   

 

As outlined earlier in Section 4.1, IgG was incorporated into liposomes using three 

different preparation methods: different concentrations of IgG were incorporated 

into the liposome formulations and the effect of IgG concentration on its 

entrapment efficiency in liposomes; and size, SPAN and zeta potential of 

generated liposomes was studied.  

As shown in Figure 4.1, when the concentration of IgG increased from 0.5 mg/ml 

to 5 mg/ml in liposomes prepared by the thin film method, the entrapment 

efficiency markedly decreased (p<0.05) from 17.13±2.97% to 2.91±1.40%. The 

same trend of decrease in entrapment was also found for liposomes prepared by 

both proliposomal methods (particulate-based and ethanol-based). For the 

particulate-based proliposomes method, a decrease in the entrapment efficiency 

from 23.13±3.11% to 7.1±1.65% occurred upon increasing the IgG concentration 

from 0.5 to 5 mg/ml. Similarly, the entrapment efficiency of liposomes prepared by 

the ethanol-based proliposome method decreased from 29.90±2.47% to 

5.83±1.64% as the concentration increased from 0.5 to 5 mg/ml.  
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These findings agreed with our previous finding for OVA (Section 3.3.3), where the 

entrapment efficiency decreased by increasing the concentration of the protein, 

and with the findings of Dreffier et al., (2003), which demonstrated a higher 

encapsulation when 1 mg/ml IVIG was used in comparison to a 10 mg/ml. This 

trend might be attributed to the limited drug incorporation in liposomes, thus higher 

concentrations will not lead to enhanced drug encapsulation (Rogers et al., 1990). 

In light of these findings, the 0.5 mg/ml of IgG was chosen to be the optimum 

concentration in the study, and the rest of the studies were performed using this 

concentration.  

As displayed in Figure 4.1, amongst the three liposomal preparation methods, the 

ethanol-based proliposome method was found to entrap the highest amount of IgG 

(up to 29.90±2.47%) followed by the particulate-based method (up to 

23.13±3.10%), while the thin film method was found to have the lowest entrapment 

efficiency for this protein (up to 17.13±2.97%). The low entrapment efficiency for 

hydrophilic drugs using the thin film method has been reported previously 

(Colletier et al., 2002; Elhissi et al., 2006a). Sharma and Sharma (1997) also 

reported the range of entrapment efficiency of hydrophilic drugs in thin film 

liposomes to be between 5 and 15%.  

The superiority of the proliposome methods over many other methods of liposome 

preparation in terms of drug entrapment has also been previously demonstrated 

by Galovic Rengel et al., (2002), who found that the entrapment of superoxide 

dismutase was 39-65% for liposomes generated by the ethanol-based 

proliposome method, 1-13% using the thin film method and 2-3% by using the 

dehydration rehydration method. Ishikawa et al., (2004) demonstrated that the 

ethanol-based proliposome method offers superior encapsulation of BSA 

compared to the dehydration rehydration method, so that the entrapment was 41% 

and 15%, respectively, when liposomes were made from SPC.  

Amongst the proliposome methods, the entrapment efficiency of hydrophilic drugs 

in ethanol-based proliposome method tends to be high. This might be attributed to 

the two-step hydration protocol, which optimizes encapsulation of the drug (Elhissi 

et al., 2006a). 
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The entrapment efficiencies of IgG obtained in this study for the proliposome 

preparation method is similar to that obtained earlier by Garcia-Santana et al., 

(2006), who found entrapment efficiency of IgG to be 30% in liposomes prepared 

by dehydration rehydration method. Furthermore, Shimizu et al., (1993) also 

reported the entrapment efficiency for IgY, a chicken egg yolk immunoglobulin G, 

in rehydration dehydration liposomes to be 30% when incubated at 60 oC, 

agreeing with our findings using the ethanol-based proliposome method. Szoka 

and Papahadjopolous (1978) also revealed similar entrapment efficiency for rabbit 

IgG in reverse phase evaporation technique liposomes (28-40%).  

 

4.3.2 Size distribution of IgG liposomes  

 

As described in Section 4.3.1, 0.5 mg/ml of IgG was chosen to be the optimum 

concentration in the study, and the rest of the studies were performed using this 

concentration. The effect of the liposome preparation method on the size, SPAN 

and zeta potential of the generated liposomes was also investigated (Figures 4.2- 

4.4).  

As displayed in Figure 4.2, the size of liposomes generated from ethanol-based 

proliposomes was markedly smaller than the size of liposomes manufactured by 

thin film or particulate-based proliposome methods (p<0.05), being 3.28±0.18 µm, 

6.49±0.21 µm and 5.64±0.26 µm, respectively. The smaller size of liposomes 

generated from ethanol-based proliposomes could be attributed to the presence of 

fewer bilayers compared to vesicles formed by thin film or particulate-based 

proliposome methods (Elhissi et al., 2006b).   
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Figure 4.1: Entrapment efficiency of IgG used at various concentrations in liposomes manufactured using the thin film hydration or proliposome 

methods. Data are mean ± SD, n=3; * P<0.05 for 1.25, 2.5 and 5 mg/ml compared to lower concentrations; Also 
+
 p<0.05 for Ethanol-based compared 

to Thin film and Practiculate-based. 
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Also, liposomes generated from particulate-based proliposomes were smaller 

than those made using the thin film method, probably due to the presence of 

sucrose, which could affect the packing of the liposomes (Elhissi et al., 2006b). 

 

 

 

Figure 4.2: Size of liposomes prepared using ethanol-based proliposomes, particulate-
based proliposomes or thin film hydration. Data are mean ± SD, n=3; * p<0.05 for 
Particulate-based compared to Thin film; ** p<0.001 for Ethanol-based compared to Thin 
film.   

 

The SPAN of liposomes (Figure 4.3) was found to be significantly different 

(p>0.05) when employing the proliposome technologies (particulate-based and 

ethanol-based) and the thin film hydration technique, with lower SPAN values 

for the proliposome-generated vesicles, being 1.73±0.12 and 1.80±0.19 for 

liposomes generated from particulate-based proliposomes and liposomes 

generated from ethanol-based proliposomes, respectively. By contrast, the 

SPAN value for liposomes generated by the thin film method was 2.49±0.24. 
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High SPAN measurements indicate high size distribution, demonstrating that 

the proliposome methods are advantageous in this regard. 

 

Figure 4.3: Size distribution of liposomes prepared using ethanol-based proliposomes, 
particulate-based proliposomes or thin film hydration. Data are mean ± SD, n=3; * p<0.05 
for Particulate-based and Ethanol-based proliposomes compared to Thin film   

 

Additionally, the effect of the preparation method on the zeta potential of 

liposomes was investigated. Figure 4.4 demonstrates that there was no 

significant difference (p>0.05) in the zeta potential between the three methods. 

The slightly negative charge of the liposomes can be attributed to the lipid 

structure, whereby the hydroxyl groups could have oriented themselves on the 

outside of the bilayer. Also, the zeta potential was found to be markedly lower 

than drug-free liposomes prepared in Section 3.3.1 (p<0.05). This less negative 

zeta potential value could be due to the positive charge of IgG in the aqueous 

media, where it was found to be 1.89±0.17 mV. This finding is in agreement 

with Dreffier et al., (2003), who previously reported that the inclusion of IVIG in 

liposomal formulations reduces the zeta potential of the negatively charged 

vesicles. The outcomes from this study may also indicate that IgG might be 
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located at the liposome surfaces or partition between the liposome bilayers and 

the aqueous environment of the preparation. Further studies are required to 

confirm this finding. 

 

Figure 4.4: Zeta potential of liposomes prepared using ethanol-based proliposomes, 
particulate-based proliposomes or thin film hydration. Data are mean ± SD, n=3; p>0.05 
for all.   

 

4.3.3 Addition of mucoadhesive agents to IgG liposomes generated from 

ethanol-based proliposomes 

 

Using ethanol-based proliposomes, the effects of including either chitosan or 

alginate as mucoadhesive agents on the size, SPAN and zeta potential of IgG 

liposomes were studied. Moreover, the entrapment efficiency of IgG in the 

liposomes was investigated.   

Chitosan is a well-known mucoadhesive agent which has been used in many 

studies to enhance the mucoadhesive properties of liposomes. Alginate is 

another well-known polysaccharide mucoadhesive which has been used to coat 
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liposomes in order to enhance their mucoadhesive properties (Wu et al., 2003). 

Figure 4.5 illustrates the effect of incorporating different concentrations of 

mucoadhesive agents on the size of liposomes.  

 

As displayed in Figure 4.5, Similar to the previous findings using OVA (Section 

3.3.6), chitosan concentration had no effect (p>0.05) on the size of liposomes 

entrapping IgG. Also, alginate concentration was found not to affect the size of 

the generated liposomes (p>0.05), and no significant difference between the 

two mucoadhesive agents on the size of the liposomes was demonstrated 

(p>0.05). These findings indicate that the size of liposomes is not dependent on 

the type or concentration of the mucoadhesive polymer included, but rather on 

the manufacturing procedure of the liposomes. In addition, the SPAN values 
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Figure 4.5: Effect of mucoadhesive agents’ (chitosan and alginate) concentration on 
size of generated liposomes. Data are mean ± SD, n=3; p>0.05 for all.   
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(Figure 4.6) were found not to be markedly different between the two 

mucoadhesive agents and for the range of concentrations investigated 

(p>0.05). However, there is a trend of lower SPAN using the alginate polymer 

compared to the chitosan mucoadhesive agent.  

 

 

Figure 4.6: Effect of Mucoadhesive agents’ (chitosan and alginate) concentration on 
SPAN of generated liposomes. Data are mean ± SD, n=3; p>0.05 for all.   

 

In contrast to the size and SPAN results, the zeta potential measurements 

(Figure 4.7) revealed a significant effect of the mucoadhesive concentration and 

type on the zeta potential of the IgG liposomes (p<0.05). Chitosan reversed the 

negative surface charge of liposomes to positive, whilst alginate intensified the 

negative charge of the vesicles, and the influence of both mucoadhesive 

polymers on the surface charge was dependent on polymer concentration. The 
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effect of both mucoadhesive polymers on the zeta potential of liposomes was 

statistically significant (p<0.05). 

 

Figure 4.7: Effect of mucoadhesive agents’ (chitosan and alginate) concentration on size 
of generated liposomes. Data are mean ± SD, n=3; * p<0.05 for either chitosan or alginate 
concentrations compared to their absence (i.e. 0% w/v).  

 

The zeta potential of the vesicles was -2.98±0.29 mV when no mucoadhesive 

was included. This slightly negative charge of the vesicles was reversed to 

positive 6.14±1.51 mV upon inclusion of as low as 0.1% (w/v) chitosan, which 

was further increased by addition of higher chitosan concentrations to become 

13.66±1.47 mV and 16.37±1.84 mV when chitosan concentrations were 0.2 and 

0.3% (w/v), respectively (Figure 4.7). The positive zeta potential of liposomes 

that contain chitosan is attributed to the positive charge of the chitosan 

molecules, and may strongly indicate that chitosan has successfully coated the 

liposome surfaces. Also elucidated, in Figure 4.7, the zeta potential of 

liposomes after inclusion of alginate in 0.1, 0.2 and 0.3% (w/v) concentrations 
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were -9.48±0.94, −14.63±1.63 and -19.80±1.87 mV, respectively. These data 

can be attributed to the negative charge of the alginate (Chen et al., 2009). This 

suggests that the alginate has coated the surfaces of liposomes.  

In Section 3.3.6, the incorporation of chitosan in the concentrations of 0.1, 0.2 

and 0.3% (w/v) in liposomal formulations did not significantly affect the 

entrapment efficiency of OVA (p>0.05). However, unlike OVA, IgG was not 

entrapped at all in liposomes when chitosan was included even at very low 

concentrations (e.g. 0.1% w/w) (Figure 4.8). The failure of liposomes to entrap 

IgG when chitosan was included suggests that the mucoadhesive might have 

prevented the protein from associating with the liposome bilayers. The similar 

surface charge of the IgG protein and the chitosan mucoadhesive may have 

resulted in displacement of the protein by the chitosan and prevention of its 

association with the bilayers of the liposomes. Further studies to check the 

interaction of chitosan with IgG are required in the future in order to understand 

the reason for this phenomenon. An alternative to chitosan was then required to 

proceed with the study; hence the alginate mucoadhesive was employed.  

It has been previously reported that inclusion of chitosan with liposomes 

containing the positively charged loperamide has markedly decreased the 

entrapment efficiency of the drug (Guo et al., 2003). According to Guo et al., 

(2003), the positive charge of chitosan had higher affinity with the phospholipid 

bilayers when compared to the drug, resulting in drug exclusion and marked 

decreases in its entrapment. The outcomes from this study strongly imply that 

IgG is likely to be adsorbed in the liposome surfaces or associate with the 

liposome bilayers rather than being encapsulated within the aqueous spaces of 

the vesicles.  

Contrary to chitosan, the inclusion of alginate in the liposomal formulations led 

to a significant increase in the entrapment efficiency of IgG (Figure 4.8). The 

entrapment efficiency of IgG in liposomes without any alginate included in its 

formula was 29.90±2.47%. When alginate was included in a concentration of 

0.1% (w/w) no significant change in the entrapment efficiency of IgG was 

observed (p>0.05). However, when the concentration of alginate was increased 

to 0.2 or 0.3% (w/w), the entrapment of the protein significantly increased 
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(p<0.05) to be 43.71±2.54% and 44.30±2.92%, respectively, with no significant 

differences between the two concentrations (p>0.05). It is suggested that the 

negative charge of alginate has enhanced the positively charged protein to 

interact and associate with the bilayers, resulting in enhanced protein 

entrapment. In light of those findings, alginate was incorporated into the IgG 

liposomes at a concentration of 0.2% (w/w) throughout the study.  

 

 

Figure 4.8: Mucoadhesive agents’ (chitosan and alginate) concentration and its effect on 
entrapment efficiency of IgG in the generated liposomes. Data are mean ± SD, n=3;           
* p<0.05 for alginate or chitosan compared to their absence (i.e. 0% w/v)    

 

4.3.4 Size reduction of IgG liposomes  

 

The effect of size reduction of liposomes generated by the ethanol-based 

proliposome method incorporating IgG on size distribution, morphology, zeta 

potential and entrapment efficiency of the generated liposomes was 

investigated. 
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As discussed previously in Section 3.3.4, extrusion is an effective technique for 

size reduction of liposomes entrapping OVA. Nevertheless, this was not the 

case when IgG was chosen for encapsulation in liposomes, since a significant 

amount of IgG was trapped by the polycarbonate membrane filters upon 

extrusion, thus compromising the properties of the liposomes in terms of yield of 

the active ingredient (i.e. IgG). In order to avoid this problem, probe sonication 

was used to reduce the size of liposomes. Previously, it has been reported that 

IgG concentration decreased after filtration through a polycarbonate membrane 

filter from 10.5 g/L to 10 g/L thus, indicating that IgG adsorbs slightly to 

polycarbonate membrane filters (Walsh et al., 1979). Yet, in this study, the 

adsorption was more pronounced, since extrusion was carried out through a 

series of different pore size polycarbonate membrane filters and for a set of 

seven extrusion cycles through each filter. In order to avoid this problem, probe 

sonication was used to reduce the size of liposomes.  

By contrast, as observed with findings using OVA (Section 3.3.5), Walsh and 

Cole (Walsh and Coles, 1980) reported that albumin was not adsorbed by 

polycarbonate membrane filters, confirming the suitability of using extrusion as 

a method for the size reduction of OVA-based liposomes (Section 3.3.5). 

Figure 4.9 demonstrates the effect of sonication time on the size and Pdi of the 

liposomes containing IgG and alginate. The size of liposomes significantly 

decreased from the original 3.63±0.44 µm to 946.9±46.3 nm after only 1 minute 

of probe sonication. Further increase in sonication time to 2 minutes decreased 

the size of liposomes to 550.0±34.1, until liposomes reached a measured size 

of 388.1±26.4 after a cumulative 4.5 minutes of probe sonication. In addition, 

there was no significant difference in the Pdi between liposomes sonicated for 1 

or 3.5 minutes, and the Pdi approached its maximum value (i.e. just below 1). 

After 4 minutes of probe sonication a significant drop in Pdi to 0.613±0.045 

occurred, followed by a further marked drop in Pdi after a cumulative sonication 

duration of 4.5 minutes (p<0.05), as the measured Pdi was 0.454±.039. 
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Figure 4.9: Probe sonication time and its effect on size and Pdi of the generated 

liposomes. Data are mean ± SD, n=3; * p<0.05 for size or Pdi following the different 

sonication times compared to initial size and Pdi (a). 

 

Cryo-TEM studies performed demonstrated that, liposomes generated from the 

ethanol-based proliposome technology were predominantly MLVs (Figure 

4.10a). Also displayed in (Figure 4.10b), sonication of the generated liposomes 

did not affect the multilamellar structure of liposomes. 
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Figure 4.10: Cryo-TEM images of liposomal multilamellar structure (A) before and (B) 

after sonication. Typical of 4-6 different experiments.   
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The zeta potential was also measured and found not to change significantly 

after probe sonication (p>0.05) (Figure 4.11), where liposomes before probe 

sonication had a zeta potential value of -14.63±1.63 mV and after 4.5 minutes 

of probe sonication had a value of -13.78±2.13 mV. This finding was analogous 

to what was previously reported in (Section 3.3.5) for SS and OVA liposomes, 

where the main factor to affect the zeta potential was concluded to be the 

formulation composition.  

 

 

 

Contrary to the findings with OVA and SS based liposomes (Section 3.3.5), size 

reduction of IgG liposomes to 400 nm via probe sonication significantly 

increased (p<0.05) the entrapment efficiency of IgG in the liposomes from 

43.71±2.54 to 50.18±2.87% (Figure 4.12). This finding disagrees with previous 

findings reporting the decrease in the entrapment efficiency following size 

reduction (Szoka et al., 1980; Elhissi et al., 2007). 
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Figure 4.11: Effect of probe sonication on the zeta potential of liposomes. Data are 

mean ± SD, n=3; p>0.05 for both formulations.  
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Figure 4.12: Effect of probe sonication on the entrapment efficiency of IgG in the 

generated liposomes. Data are mean ± SD, n=3; * p<0.05 for sonicated liposomes 

compared to non-sonicated liposomes.     

 

A possible explanation for the results in this study could be the possible location 

or partitioning of the IgG on the outer surface of the liposomes. Therefore, an 

increase in the surface area of the bilayers after size reduction would be 

expected to increase the contact between the lipid bilayers and IgG, and hence 

enhance its entrapment. This justification may also explain the reduction in zeta 

potential demonstrated earlier for the IgG protein (Section 4.3.2) and their 

displacement when chitosan was included in the formulation (Section 4.3.3). 

Other studies reported similar findings, whereby size reduction led to an 

increase in entrapment efficiency (Dufour et al., 1996; Phetdee et al., 2008). 

Dufour et al., (1996) previously reported an increase in the percentage of the 

enzyme immobilized on the surface of liposomes prepared by the ethanol-

based proliposome method after sonication. They ascribed the enhanced 

entrapment to the higher surface area of the vesicles as a result of size 

reduction via sonication. Phetdee et al., (2008) reported an increase in the 
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entrapment efficiency of tartaric acid from 51.1±3.5% to 68.3±3.0% after 

extrusion of liposomes. 

 

4.3.5 Structural determination and activity of IgG. 

 

As outlined in Section 4.2.5, CD was the method of choice in this study to 

determine the secondary structure of IgG. This was due to the fact that 

spectroscopic signals via CD are not affected by the presence of water, and CD 

can be used to determine the structure of IgG that is free in solution or 

incorporated into liposomes. Moreover, CD is suitable to study the IgG structure 

at different temperatures, thus enabling the detection of the structural changes 

induced by heat (Vermeer et al., 1998). Figure 4.13 illustrates the α-Helix, Beta 

sheets, Beta turns and random coil (unordered) portions of the IgG in solution 

and bound to liposomes, as determined via CD.  

As illustrated in Figure 4.13, the structure of IgG was significantly different 

(p<0.05) for both the IgG in solution and IgG incorporated into liposomes. Whilst 

the α-Helix content was absent in the IgG solution, 47.7±6.7% appeared after 

its incorporation in the liposomal structure. Also, a significant reduction (p<0.05) 

in the beta sheets content (i.e. from 52.0±2.0% to 25.7±1.2%), beta turns 

content (from 19.5±1.5% to 6.3±1.9%) and random coils content (from 

28.5±2.5% to 20.7±2.5%) was noticed when the IgG was incorporated into 

liposomes. The secondary structure of IgG in solution obtained from this study 

is consistent with literature reports, with the Beta sheet units being the 

predominant subunit and the presence of beta turns and random coils to a 

lesser extent (Amzel and Poljak, 1979; Vermeer et al., 1998; Vermeer and 

Norde, 2000). On the other hand, the structure of the IgG incorporated into the 

liposomes closely resembles the previously reported CD structure of adsorbed 

IgG, with diminished beta sheets and beta turns content and the formation of 

the α-Helix subunits (Vermeer et al., 1998). Sabin et al., (2009) investigated the 

interaction of human IgG with dimyristoylphosphatidylcholine (DMPC) 

liposomes. Their results indicated that IgG was indeed adsorbed onto the 



CHAPTER 4 

 
 

113 
 

hydrophobic region of the liposomal membrane, thus explaining the change in 

the structure of IgG following its incorporation into liposomes.   

 

 

Figure 4.13: Secondary structure of IgG, both free in solution or incorporated into 

liposomes, as determined via CD. Data are mean ± SD, n=3; * p<0.05 for non-sonicated 

IgG liposomes compared to IgG alone.   

 

In addition to determining the secondary structure of IgG, both free in solution 

and incorporated in liposomes, studies to determine the immunological activity 

of IgG were conducted (Figure 4.14). As demonstrated in Figure 4.14, IgG 

incorporated onto the liposomal membrane and IgG in solution were 100% 

active. The maintained activity of IgG following incorporation into liposome 

formulations can be attributed to the predicted end-on conformation of IgG onto 
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the liposome membrane, with the receptor binding portion (Fc) adsorbed onto 

the surface and the antigen binding sites facing the solution. Sabin et al., (2009) 

concurred with this assumption, demonstrating that the Fc portion of the IgG is 

indeed the one inserted into the hydrophobic region of the liposomal bilayer, 

thus leaving the antigen binding region available on the outside of the 

liposomes. Moreover, Malmsten (1995) observed a similar end-on conformation 

of IgG on silica surfaces. This orientation of IgG can be attributed to the 

relatively lower structural stability of the Fc region in comparison to the Fab 

region, hence making it more ready to be adsorbed onto surfaces (Buijs et al., 

1996).  

 

 

Figure 4.14: Activity of IgG free in solution or incorporated into liposomes, determined 

using the IgG easytitre kit. Data are mean ± SD, n=3; * p<0.05 for non-sonicated IgG 

liposomes compared to IgG alone. 
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4.3.6 Effect of temperature on the structure of IgG 

 

The effect of temperature on the structure of IgG in solution or liposome 

formulation was assessed at temperatures between 20-80°C, as previously 

described in Section 4.2.5.  

As demonstrated in Figure 4.15, the structure of IgG in solution was invariant up 

to a temperature of 60°C, with a CD that equals to zero mdeg at 206 nm and a 

minimum at 217 nm. However, at 70°C and 80°C, a significant (p<0.05) 

reduction in the intensity at 217 was observed. This reduction in CD of the IgG 

at temperatures of 70 and 80°C indicates the loss of ordered structure of the 

protein (i.e. a decrease in the beta sheets’ content and an increase in the 

unordered coils’ contents), thus indicating possible denaturation of IgG. These 

results were analogous to the previous reports of Vermeer et al., (1998) and 

Vermeer and Norde (2000), that temperatures above 65°C induce changes in 

the structure of IgG, with a notable decrease in the beta sheets and beta turns 

content and an increase in the random coils and alpha helix content. 

Contrary to IgG in solution, IgG in the liposomal formulation was found to 

maintian its structure throughout the temperature range (Figure 4.16), thus 

indicating the preservance of the struture of IgG when incorporated into 

liposomes. Similar findings with adsorbed IgG were previously reported 

(Vermeer et al., 1998). 

 

4.3.7 Effect of size reduction on the structure and activity of IgG 

 

As previously discussed in Section 4.3.4, probe sonication was the method of 

choice for size reduction of liposomes. Thus, the effect of probe sonication on 

the structure and activity of IgG in solution and liposomes was investigated 

(Figures 4.16 - 4.17).  
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Figure 4.15: CD spectra of IgG in solution at temperatures between 20
 o

C and 70 
o
C. A 3D 

representation of (A) all the spectra combined and (B) the individual spectra at each 

temperature. Data are mean ± SD, n=3; * p<0.05 for temperatures 70 
o
C and 80 

o
C 

compared to lower temperatures. A, B typical of 3 different experiments     
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Figure 4.16: CD spectra of IgG incorporated in liposomes at temperatures between 20 
o
C 

and 70 
o
C. A 3D representation of (A) all the spectra combined and (B) the individual 

spectra at each temperature. Data are mean ± SD, n=3; p>0.05 for all. A, B typical of 3 

different experiments.     
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Figure 4.17: Secondary structure of IgG free and incorporated into liposomes before and 

after sonication. Data are mean ± SD, n=3; * p<0.05 for IgG alone compared to sonicated 

IgG and Non-sonicated IgG liposomes compared to Sonicated IgG liposomes, 

respectively. 

 

As shown in Figure 4.17, sonication of IgG solution caused no marked 

differences (p>0.05) in the α-Helix and beta turns content. The beta sheets 

content, on the other hand, was found to significantly decrease (p<0.05) (i.e. 

from 52.0±2.0 to 43±4.0 %) whilst the unordered random coils content was 

found to significantly increase (p<0.05) (i.e. from 28.5±2.5 to 36±5.0 %). 

Moreover, unlike the IgG in solution, no significant differences (p>0.05) in the 

secondary structure of the IgG bound to the liposomes were observed following 
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their size reduction. 

 

 

Figure 4.18: Activity of IgG free and incorporated into liposomes before and after 

sonication. Data are mean ± SD, n=3; * p<0.05 for Sonicated IgG comared to IgG alone 

and Non-sonicated IgG liposomes compared to Sonicated IgG liposomes.     

 

When the activity of IgG was investigated (Figure 4.18), both IgG in solution and 

IgG incorporated in liposomes demonstrated a significant loss (p<0.05) in 

activity following sonication by 46.09 and 15.95%, respectively. The loss of 

activity of IgG following sonication can be attributed to the shear stress and 

heat generation during sonication which may disrupt the activity of proteins 

(Morlock et al., 1997; Zambaux et al., 1999). This loss in activity of IgG upon 

sonication differs from the findings of Wang et al., (2004), who reported that the 

integrity and immunoreactivity of IgG was not affected by sonication. This 

difference, however, may be attributed to the duration of sonication in their 

study, which was 30 seconds, compared to 4.5 minutes in our study.  

Interestingly, despite the decrease in activity of both IgG in solution and in 
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liposome formulation, the decrease in activity for the IgG in solution was 

accompanied by a change in the secondary structure of the protein, whilst no 

correlation was observed for the IgG incorporated in liposomes. Moreover, the 

structural change of IgG in solution following sonication was typical of the 

previously reported structural change induced by heat (Section 4.3.6), with a 

distinguishable decrease in the beta sheets’ content and an increase in the 

unordered content. These findings indicate that heat generation during 

sonication contributed to the loss of activity of IgG in solution. Furthermore, the 

previously reported structural stability to heat of liposome-IgG (Section 4.3.6) 

can therefore explain the higher maintained activity following sonication, since 

only shear force is expected to have caused this reduction in activity, whilst both 

heat and shear stress contribute to the reduction of the activity of the IgG in 

solution.  

 

4.4 Conclusions 

 

The results from this chapter confirmed the validity of liposomes prepared via 

the different methods for the entrapment of IgG, and demonstrated the 

superiority of liposomes prepared via the ethanol-based proliposome method 

for the entrapment of IgG over the other liposome preparation methods. 

Moreover, the findings in this chapter showed an inverse relationship between 

the IgG concentration incorporated into liposomes and the entrapment 

efficiency.  

This study also established that mucoadhesive agents such as chitosan and 

alginate can be efficiently incorporated into the liposome structure. The nature 

of the incorporated mucoadhesive agent and its concentration were found to 

play an important role in determining the characteristics of the generated 

liposomes. For instance, whilst incorporation of chitosan in the liposomal 

structure led to total evacuation of IgG from the liposomes, the incorporation of 

alginate was found to enhance the entrapment efficiency of IgG.  

Unlike findings in Chapter 3, the size reduction of liposomes entrapping IgG 

was demonstrated to lead to a marked increase in entrapment efficiency values 
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of IgG, indicating the possible allocation of the IgG on the liposomal surface. 

The performance of activity studies also confirmed these findings, since the 

activity of entrapped IgG was retained when incorporated into liposomes. This 

suggests that an end-on conformation of IgG on the liposomal surface occurred.  

This study also demonstrates the utility of CD spectroscopy as a viable 

technique to study the conformation IgG both free in solution or incorporated 

into liposomes. CD results in this study demonstrated significant differences 

between the structures of IgG free in solution and incorporated in liposomes. 

CD results also suggested that the IgG is adsorbed onto liposomal surfaces, 

analogous to results previously reported for IgG adsorbed to hydrophobic 

surfaces (Vermeer et al., 1998). 

In addition to preserving the activity of incorporated IgG, liposomes prepared 

from ethanol-based proliposomes were found to enhance the stability of IgG to 

heat and shear stress, as demonstrated via CD and activity studies, 

respectively. This suggests the promise ethanol-based proliposome technology 

in the area of protein delivery.  

Overall, novel mucoadhesive liposomal formulations generated from ethanol-

based proliposomes entrapping IgG were prepared and characterised in this 

study. These formulations were found to have relatively high entrapment 

efficiency values of IgG, both in their submicron and micron range, and they will 

be used for the rest of this study. 
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5.1 Introduction 

 

The investigation of non-invasive routes for the delivery of macromolecules has 

attracted tremendous biomedical and scientific interest in recent years. The 

pulmonary delivery of macromolecules as aerosols is one of the most interesting 

fields being studied (Edwards et al., 1998).  

Pulmonary delivery of molecules provides many advantages, such as improved 

bioavailability of drugs and enhanced patient compliance. Furthermore, the large 

surface area of the lung and its high vascularity permit rapid drug absorption into 

the systemic circulation (Farr et al., 1987; Adjei and Gupta, 1994; Torchilin, 2006). 

Despite the many advantages offered by pulmonary delivery, the systemic 

bioavailability yield of inhaled macromolecules is low, mainly due to their low 

permeability and enzymatic degradation (Jorgensen and Nielson, 2010). 

One proposed solution to overcome the limitations of pulmonary delivery is the 

encapsulation of macromolecules into liposomes, since liposomes can enhance 

the retention time of macromolecules in the pulmonary system and offer sustained 

release into the systemic circulation (Bi and Zhang, 2007). Furthermore, liposomes 

show high compatibility with pulmonary alveoli, since their phospholipids are 

natural components of the alveolar surfactants (Finley et al., 1968). 

Unfortunately, the number of clinically approved liposome formulations is limited 

because of the instability of liposome phospholipids in aqueous environment 

during storage. Various approaches have been employed to stabilize liposomes, 

such as the use of proliposomes, which are stable phospholipid formulations that 

generate liposomes upon addition of an aqueous phase (Payne et al., 1986a; 

Payne et al., 1986b; Perrett et al., 1991). 

A major challenge in aerosolizing liposome formulations is the liposome physical 

stability and the fragmentation of liposomes during nebulization (Taylor et al., 

1990a; Saari et al., 1999; Elhissi et al., 2006a). Various methods have been 

employed for improving the stability of liposomes during nebulization, including 

size reduction of liposomes prior to nebulization (Niven et al., 1991; Finlay and 

Wong, 1998).  
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Different types of nebulisers have been studied for liposome delivery, including air-

jet, ultrasonic and vibrating-mesh nebulisers. Various in vitro methods are well-

established for studying the performance of medical nebulisers and examining the 

properties of their aerosolised droplets (O'Callaghan and Barry, 1997; Bisgaard et 

al., 2001). Amongst the most important variables in defining the dose deposited 

are the aerosol particle size and respirable fraction, which is also known as the 

fine particle fraction (FPF) (Labiris and Dolovich, 2003).  

Different technologies can be used to investigate the aerosol median size, namely 

time-of-flight (TOF), which gives indication on the MMAD (Vecellio et al., 2001; 

Waldrep et al., 2007) and laser diffraction, which measures the VMD of the 

aerosols (Clark, 1995). 

This study investigated the feasibility of using different medical nebulisers for the 

delivery of liposomes generated from ethanol-based proliposomes entrapping IgG. 

The study further determined the effect of size reduction of liposomes (via 

sonication) on the performance of the nebulisers, characteristics of the generated 

aerosols and stability of the liposomes and their incorporated IgG.  

The performance of the nebulisers for the delivery of a conventional IgG solution, 

probe-sonicated liposomes and non-sonicated liposomes was studied in terms of 

nebulization time, sputtering time, mass output and output rate. The generated 

aerosols on the other hand were assayed for particle size, size distribution, FPF 

and FPF output using the TOF and laser diffraction technologies. In addition, the 

physical stability of the liposomes was investigated by measuring the size and size 

distribution of the liposomes (non-sonicated and sonicated) prior to and after 

nebulization. Furthermore, the effect of size reduction of liposomes and 

nebulisation on the integrity of IgG (both free in solution and incorporated into the 

liposomal structure) was investigated in this study by means of assaying the 

secondary structure and activity of the protein. 
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5.2 Methodology 
 

5.2.1 Preparation of IgG liposomes 

 

Liposomes were manufactured as described in Section 2.2.1 by modifying the 

ethanol-based proliposome previously described by Perrett and co-workers 

(1991). They comprised 10 mg/ml lipid (2:1 SPC to cholesterol), 0.5 mg/ml IgG 

and 0.2% w/v mucoadhesive agent (sodium alginate) to make up a final volume of 

5 ml using HPLC water. For the size reduction of liposomes, probe sonication for 

4.5 minutes was employed to produce 400 nm vesicles, as previously described in 

Section 4.3.4. Furthermore, the IgG solution comprised of 0.5 mg/ml IgG in 5 ml 

HPLC water. 

 

5.2.2 Determination of nebuliser performance 

 

As outlined earlier in Section 2.2.11, three different nebulisers were employed in 

this study: An air-jet Pari Turbo Boy nebuliser (Pari GmbH, Germany), an Omron 

Micro Air NE-U22 vibrating-mesh nebuliser (Omron Healthcare, UK Ltd., UK) and 

a Polygreen ultrasonic nebuliser (Clement Clarke International, UK). Formulation 

(i.e. IgG solution or liposomes, non-sonicated or sonicated) (5 ml) was placed in 

the nebulisers, and as described in (Section 2.2.11) the time required for aerosol 

generation to become erratic “nebulisation time” and the duration of this erratic 

generation behaviour to cease “sputtering duration” were determined. 

Furthermore, studies to determine the aerosol mass output were performed, as 

previously elucidated in Section 2.2.11. 

 

5.2.3 Determination of aerosol size distribution 

 

Studies to determine the aerosol droplet size distribution (DSD) and the fine 

particle fraction (FPF) were conducted as described in Section 2.2.12, using both 
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the Malvern Spraytec laser diffraction instrument (Malvern Instruments Ltd, UK) 

and the Model 3321 Aerodynamic Particle Sizer® (APS) Spectrometer (TSI, UK). 

FPF output was determined in relation to mass and active protein output (see 

Section 2.2.12). 

 

5.2.4 Characterisation of liposomes 

 

Size and size distribution of liposomes before nebulization, in the nebulizer 

container and collected in the flask following nebulization (i.e. delivered liposomes) 

were determined as described previously using laser diffraction via the Mastersizer 

2000 (Malvern Instruments Ltd, UK) or via dynamic light scattering (DLS) using the 

Malvern Zetasizer Nanoseries (Malvern Instruments Ltd, UK). The Mastersizer 

was employed for non-sonicated liposomes and the Zetasizer for probe-sonicated 

liposomes. Also, the morphology of the delivered liposomes (non-sonicated and 

sonicated) was investigated using cryo-TEM (see Section 2.2.6). 

 

5.2.5 Determination of structure and activity of IgG 

 

The secondary structure of IgG was determined as previously discussed in 

Section 2.2.9 via CD spectroscopy using a J-815 spectropolarimeter (Jasco, UK). 

CD spectra of IgG both in solution or incorporated into liposomes (non-sonicated 

and sonicated) were then estimated using DICHROWEB via the secondary 

structure algorithm CDSSTR (Greenfield, 2006). Moreover, the immunereactivity 

of the protein was determined using an easy titre IgG kit according to the protocol 

previously described in Section 2.2.10. 

 

 

 

http://en.wikipedia.org/wiki/Circular_dichroism
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5.3 Results and discussion 
 

5.3.1 Determination of nebuliser performance  

 

In this study the nebulisation time required for IgG solution, non-sonicated IgG 

liposomes and probe-sonicated IgG liposomes (400 nm) was investigated using 

three different nebulisers: 

1- An air-jet Pari Turbo Boy nebuliser 

2- A vibrating-mesh Omron MicroAir NE-U22 nebuliser 

3- An ultrasonic Polygreen nebuliser 

As previously outlined in Section 5.2.2, the time required for nebulisation to 

become erratic was investigated in this study and recorded as the “nebulisation 

time” (Figure 5.1). Also, the time required for the cessation of aerosol generation 

was determined and referred to as the “sputtering duration” (Figure 5.2).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Nebulisation time of IgG solution and IgG liposomes before and after probe-
sonication using Pari Turboboy (air-jet), Omron MicroAir (vibrating-mesh) and Polygreen 
(ultrasonic) nebulisers. Data are mean ± SD, n=3; * p<0.05 for Non-sonicated liposomes and 
Sonicated liposomes compared to IgG solution in the three nebulisers.   
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As demonstrated in Figures 5.1-5.2, the time required for nebulisation of the 

different formulations using the Pari, Omron and Polygreen nebulisers differed 

significantly (p<0.05), and where in the order of Omron> Pari> Polygreen. Also, 

unlike the Omron and the Polygreen nebulisers, the nebulisation time of the Pari 

device was similar for the different formulations (p>0.05). Figure 5.1 also 

elucidates that when the Omron nebuliser was employed, the nebulisation time 

required for the IgG solution was 28.05±1.74 minutes and that was prolonged to 

50.36±1.92 minutes and 55.74±1.73 minutes for sonicated and non-sonicated 

liposomes, respectively. The prolonged time of nebulisation could be attributed to 

the increase of fluid viscosity when liposome formulations were used, whereby the 

viscosity of the liposomal suspension is expected to be higher than IgG solution 

due to the presence of a considerable amount of lipid (10 mg/ml) and alginate (2 

mg/ml) in the liposome formulations. This effect of viscosity on the nebulisation 

time for the Omron can be attributed to the low energy of atomisation employed by 

the nebuliser (Ghazanfari et al., 2007). Furthermore, due to the larger size of the 

Figure 5.2: Sputtering duration of IgG solution and IgG liposomes before and after probe-
sonication using Pari (air-jet), Omron (vibrating-mesh) and the Polygreen (ultrasonic) 
nebulisers. Data are mean ± SD, n=3; * p<0.05 for Non-sonicated liposomes and Sonicated 
liposomes compared to IgG solution in the three nebulisers.   
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non-sonicated liposomes, the blockage of some of the mesh apertures is more 

likely to have occurred, resulting in prolonged nebulisation.  

Also displayed in Figure 5.1, the Polygreen nebuliser was found to exhibit the 

shortest nebulisation time compared to the Pari and Omron nebulisers. This 

finding is analogous to earlier studies (Mercer, 1981; Sterk et al., 1984; Mc Callion 

et al., 1996b). Similar to the Omron nebuliser, nebulisation using the Polygreen 

device was significantly different (p<0.05) amongst formulations, being 9.53±1.14, 

12.28±0.75 and 14.03±1.25 minutes for the IgG solution, probe-sonicated IgG 

liposomes and non-sonicated IgG liposomes, respectively. The expected 

difference in physicochemical properties between formulations could be the 

reason for the difference in nebulisation time.  

As discussed in Section 1.2.4.3, droplet formation in ultrasonic nebulisers results 

from the disintegration of capillary waves. Those capillary waves have an 

amplitude directly proportional to the liquid viscosity and hence suppression of the 

atomisation process is expected when the fluid viscosity is high (Boguslaskii and 

Eknadiosyants, 1969). 

Unlike the Omron and ultrasonic nebulisers, nebulisation using the Pari 

(Figure 5.1) was independent of formulation, since no significant differences 

(p>0.05) were found in the nebulisation time between formulations. This finding did 

not agree with previous reports, which demonstrated a prolongation of the time 

required for nebulisation in air-jet nebulisers when high viscosity solutions were 

used (McCallion et al., 1995). The disagreement with the findings of McCallion et 

al., (1995) might be attributed to the effectiveness of the Pari Turbo Boy 

compressor employed in our study and its suitability for the delivery of formulations 

with higher viscosity, or because of the possible lowering of surface tension when 

using liposomes (Elhissi et al., 2011b). 

Similar to nebulisation results, marked differences were found to exist in the 

sputtering duration for the different nebulisers (p<0.05), being in the order: 

Polygreen > Pari > Omron (Figure 5.2). Moreover, contrary to the Omron and Pari 

nebulisers, the formulation type affected the sputtering duration for the Polygreen 

device (p<0.05). Whilst sputtering duration was 2.04±0.34 minutes for the IgG 

solution, it was markedly prolonged to 2.91±0.42 and 3.00±0.61 minutes for the 
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non-sonicated and sonicated liposomes, respectively. These results therefore 

indicate that the viscosity parameter is mostly influential on ultrasonic nebulisers, 

which came in agreement with the findings of Steckel and Eskandar (2003). 

Despite the fact that nebulisation was carried out to dryness, nebulisation does not 

usually result in complete atomization of the preparations, hence, the mass output 

does not reach 100%, and some of the fluid remains as a dead residual volume 

within the nebuliser (Clay et al., 1983). In this study, the effect of nebuliser type 

and formulation on the mass output was also investigated (Figure 5.3). 

Figure 5.3 demonstrated that mass output was significantly different between the 

different nebulisers (p<0.05). Despite the long nebulisation time required by the 

Omron nebuliser, its mass output was very high, having an average value of 

96.4%. This high mass output of the Omron nebuliser has been demonstrated 

previously (Elhissi and Taylor, 2005; Elhissi et al., 2006a). Furthermore, Vecellio et 

al., (2006) and Dolovich and Dhand, (2011) reported that vibrating-mesh 

nebulisers have lower residual volumes than air-jet and ultrasonic nebulisers.  

The ultrasonic nebuliser by contrast generated the lowest mass output 

(approximately 65%). Furthermore, the mass output of the Pari nebuliser was 

found to lie in between the Polygreen and Omron outputs, and had an average 

value of 85.3%. 

Also elucidated in Figure 5.3, the nature of formulation did not significantly 

influence the mass output for the different nebulisers (p>0.05). Therefore, despite 

the effect formulations had on the nebulisation time of Omron and Polygreen 

nebulisers, the mass output was not compromised. The Results from this study 

thus indicate that the design and method of action of the nebuliser rather than the 

nature of the formulation is the main determinant of the mass output. 

 

 

http://www.sciencedirect.com/science/article/pii/S0378517307002013#ref_bib41
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Figure 5.3: Mass output for IgG solution and IgG liposomes before and after probe-
sonication using; (a) Pari (air-jet), (b) Omron (vibrating-mesh) and (c) the Polygreen 
(ultrasonic) nebulisers. Data are mean ± SD, n=3; p>0.05 for the three different formulations 
in all three nebulisers.  

 

In addition to nebulisation time, sputtering duration and mass output, the output 

rates using the different nebulisers were determined in this study for the three 

different formulations (Figure 5.4). As displayed in Figure 5.4, the three nebulisers 

differed significantly (p<0.05) in their output rate. The output rate values were in 

the order of: Polygreen > Pari > Omron. Also, contrary to the Omron and 

Polygreen, the output rate of the Pari nebuliser was independent on formulation 

(p>0.05).  
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The output rate of the protein solution using the Omron nebuliser was 173.84±1.32 

mg/min as demonstrated in Figure 5.4. This, however, was found to significantly 

decrease (p<0.05) to 86.69±0.68 mg/min and 95.35±0.96 for the non-sonicated 

and sonicated liposomes, respectively. The slower rate of nebulisation of 

liposomes using the Omron might be attributed to the expected higher viscosity of 

the liposome formulations. Also, possible blockage of some of the meshes by 

large liposome is thought to have occurred following nebulisation. This can also 

explain the slowest output rates demonstrated for non-sonicated liposomes.  

The Polygreen nebuliser on the other hand exhibited the highest output rate 

values amongst the devices investigated (Figure 5.4). Also, for the Polygreen 

nebuliser, the output rate of the IgG solution was significantly higher (p<0.05) than 

the two liposome preparations which demonstrated similar output rates (p>0.05). 

This therefore indicates that, like in the Omron nebuliser, the size of the liposomes 

in the Polygreen nebuliser affects the nebulisers performance. 

 

Figure 5.4: Output rate of IgG solution and IgG liposomes before or after sonication using; 
(a) Pari (air-jet), (b) Omron (vibrating-mesh) and (c) Polygreen (ultrasonic) nebulisers. Data 
are mean ± SD, n=3; * p<0.05 for IgG solution compared to Non-sonicated liposomes and 
Sonicated liposomes in the three nebulisers. 
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5.3.2 Aerosol droplet size and Respirable output  

 

In the present study, the effect of using the different nebulisers on the DSD of the 

generated aerosols from three different formulations, an IgG solution and IgG 

liposomes (non-sonicated and sonicated) was examined. Two different methods 

for the measurement of the droplet sizes were employed: 

 

1- Laser diffraction using the Spraytec instrument 

2- TOF using the APS instrument  

 

Figures 5.5-5.6 illustrate the size of droplets generated for the three formulations 

using the three nebulisers as measured via the APS and Spraytec. 

As shown in Figures 5.5, the size of the generated droplets was calculated 

differently by the two instruments (p<0.05). The size of the droplets were smaller 

using the APS for all nebulisers and formulations (p<0.05) (Figure 5.5). The 

instruments employed utilise different principles in calculating particle size, 

justifying the difference in the measured size of particles.   

These differences in the readings between the APS and Spraytec can be 

attributed to the distinct differences between the technologies employed for 

aerosol droplet size analysis in both instruments. Particle-counting methods such 

as that using TOF in a course of a single analysis consider only a few thousands 

particles. By contrast, millions of particles are considered in laser diffraction 

measurements, hence leading to considerable differences in the interpreted size 

distribution between the two size analysis mechanisms (Kippax, 2005). Moreover, 

TOF technology accelerates particles in an air stream before size measurement, 

resulting in possible solvent evaporation from the droplets and subsequent small 

size measurements. Additionally, the high shear caused by this mechanism might 

distort the droplets, making them appear to be smaller in aerodynamic size 

(Mitchell and Nagel, 2004; Kippax, 2005). 
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The SPAN values were found to be considerably lower (p<0.05) when using laser 

diffraction despite the larger size of the droplets (Figure 5.6). The high SPAN 

values recorded by the APS might be attributed to the high shear force applied 

and subsequent distortion of the droplet dimensions, thus giving higher 

polydispersity measurements.  

In spite of the differences between the two technologies employed, the nebulisers 

exhibited the same trend in the droplet size and SPAN measurements (Figures 

5.5-5.6), with the Omron generating significantly larger droplet size (p<0.05) than 

the Pari (air-jet) and the Polygreen (ultrasonic) nebulisers. The air-jet and 

ultrasonic nebulisers employed in this study have exhibited no significant 

differences (p>0.05) in terms of droplet sizes, regardless of formulation and size 

analysis technology. In addition, regardless of the aerosol size analysis 

mechanism, no marked differences (p>0.05) in the SPAN were observed between 

the three nebulisers. 

The large droplet size generated by the mesh nebuliser compared to ultrasonic 

and air-jet nebulisers has been previously reported (Elhissi, 2005). The large 

droplet size generated by the Omron mesh nebuliser can be attributed to the 

limited input of shearing energy when compared to the air-jet or the ultrasonic 

nebulisers.  

The similarity in droplet size for aerosols generated by the air-jet and ultrasonic 

devices in this study differs from the previous findings of previous researchers (Mc 

Callion et al., 1996a; Elhissi et al., 2011b), who reported that the size of droplets 

generated by the ultrasonic nebulisers were larger than those generated by jet 

nebulisers. This could be due to the use of different models of ultrasonic and air-jet 

devices in this study.   
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Figure 5.5: Droplet size measured using the TOF and laser diffraction Spraytec for (a) IgG solution, (b) non-sonicated liposomes and (c) sonicated 
liposomes. Data are mean ± SD, n=3; * p<0.05 for TOF compared to laser diffraction; p>0.05 for the different formulations in all three nebulisers.  
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Figure 5.6: SPAN of the droplets measured using the TOF and laser diffraction technology for (a) IgG solution, (b) non-sonicated liposomes and (c) 
sonicated liposomes. Data are mean ± SD, n=3; * p<0.05 for TOF compared to laser diffraction; p>0.05 for the different formulations in all three 
nebulisers. 
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Atomization theory suggests that as the viscosity increases the mean diameter of 

nebulised droplets may increase (Elhissi et al., 2011a). However, this was not the 

case in this study, since no significant differences (p>0.05) in the droplet sizes or 

SPAN values were demonstrated for the different formulations. This finding can be 

due to the relatively small differences in the viscosities of the different formulations 

investigated in this study.  

In addition to the mean droplet size, the FPF of the three formulations in the 

different nebulisers was determined via laser diffraction and TOF size analysis 

technologies (Figure 5.7). Aerosol particle size is an important factor affecting lung 

deposition. For particles to deposit in the bronchioles and alveolar region, they 

should have a particle size smaller than approximately 5 µm, and these particles 

will be described as “respirable” or as FPF (O'Callaghan and Barry, 1997).  

As displayed in Figure 5.7, the FPF percentage was significantly higher (p<0.05) 

when analysed by the APS than the Spraytec for all the different nebulisers and 

formulations. These higher FPF values in the TOF measurements can be 

attributed to the smaller droplet size measured by that technology.  

Furthermore, no significant differences (p>0.05) were found between the FPF of 

the Pari air-jet nebuliser and the Polygreen ultrasonic nebuliser. The Omron 

nebuliser on the other hand exhibited a significantly lower FPF (p<0.05) than the 

other nebulisers. This again can be attributed to the larger droplet median size 

values generated by the Omron mesh nebuliser. Also, due to the similar aerosol 

droplet sizes generated from the different formulations in the nebulisers, no 

differences in the FPF were observed (p>0.05).   

The FPF output relative to the total mass output was also determined in this study 

for the three different formulations in the different nebulisers. FPF output was 

calculated using the two size analysis mechanisms (Figure 5.8).   

Figure 5.8 also demonstrated that the FPF output results for the three nebulisers 

were significantly higher (p<0.05) when measured using the APS. This can be 

ascribed to the larger proportion of FPF measured using the TOF technology.  

Also, the three nebulisers differed significantly (p<0.05) in their FPF output when 

measured using the APS and the FPF output was in the range of Pari> Omron> 
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Polygreen. On the other hand, when the FPF output was determined using the 

Spraytec instrument, droplets generated by the Pari nebuliser exhibited a higher 

(p<0.05) FPF output than both the Omron and Polygreen. There were no 

significant differences between the ultrasonic and the Omron nebulisers using 

laser diffraction (p>0.05). This indicates that the interpretation of differences in size 

of nebulised droplets can be dependent on the size measurement mechanism. 

Additionally, Figure 5.8 demonstrated that there were no significant differences 

(p>0.05) in the FPF output between the different formulations in all nebulisers 

using TOF or laser diffraction size analysis technologies. The results determined 

were inherently dependent on the total output data (outlined previously in Section 

5.3.1) and the FPF results presented previously in this section. 

 

5.3.3 Influence of nebulisation on the size distribution and morphology of 

liposomes  

 

The effect of nebulisation on the size and SPAN or Pdi of liposomes was also 

investigated in the study. IgG liposomes and probe-sonicated IgG liposomes were 

nebulised using: 

1- Pari Turbo Boy (air-jet) 

2- Omron MicroAir NE-U22 (vibrating-mesh) 

3- Polygreen (ultrasonic) 

The size and SPAN or Pdi were determined before nebulisation. Size distribution 

analysis was also conducted after the completion of nebulisation for both delivered 

liposomes, and those remained within the nebuliser’s residual volume (Tables 5.1-

5.2). In addition to size distribution analysis of liposomes before and after 

nebulisation, morphology studies were conducted to study the influence of 

nebulisation on the morphology of liposomes (non-sonicated and sonicated) 

(Figures 5.9-5.10).  
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Figure 5.7: FPF from the different nebulisers using the TOF and laser diffraction technology for (a) IgG solution, (b) non-sonicated liposomes and 
(c) sonicated liposomes. Data are mean ± SD, n=3; * p<0.05 for TOF compared to laser diffraction; p>0.05 for the different formulations in all three 
nebulisers. 

0

10

20

30

40

50

60

70

80

90

100

Pari (air-jet) Omron
(vibrating-

mesh)

Polygreen
(ultrasonic)

Pari (air-jet) Omron
(vibrating-

mesh)

Polygreen
(ultrasonic)

Pari (air-jet) Omron
(vibrating-

mesh)

Polygreen
(ultrasonic)

F
P

F
 (

%
) 

TOF Laser diffraction

(a) (b) (c) 



CHAPTER 5 

140 
 

 

Figure 5.8: FPF output from the different nebulisers using the TOF and laser diffraction technology for (a) IgG solution, (b) non-sonicated 
liposomes and (c) sonicated liposomes. Data are mean ± SD, n=3; * p<0.05 for TOF compared to laser diffraction; p>0.05 for the different 
formulations in all three nebulisers. 
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As shown in Table 5.1 non-sonicated liposomes significantly decreased in size 

after nebulisation via the Omron nebuliser (p<0.05). However, there was no 

significant decrease in the size of probe-sonicated liposomes after nebulisation 

(p>0.05) (Table 5.2). Moreover, the SPAN and Pdi of the non-sonicated and 

probe-sonicated liposomes, respectively did not markedly change (p>0.05) 

following nebulisation through Omron. 

The decrease in size of the non-sonicated liposomes after nebulisation via the 

Omron nebuliser might be attributed to the extrusion effect of liposomes through 

the perforated plate of the nebuliser that consists of around 6000 tapered 

apertures (3µm in diameter) (Dhand, 2002; Dhand, 2003). However as the size of 

the liposomes was reduced to 400 nm, the vesicles were found to be more stable 

to nebulisation through Omron thus giving indication on the possible use of size 

reduction as a method to stabilise liposomes to nebulisation. 

Furthermore, whilst liposomes remaining in the Omron’s reservoir had the same 

size as the original non-sonicated liposomes before nebulisation, the SPAN of the 

liposomes remaining in the nebuliser’s reservoir was found to significantly increase 

(p<0.05) from 1.68±0.27 to 2.31±0.33, indicating the possible failure of large 

liposomes or liposomal aggregates to pass through the mesh pores. On the other 

hand, no significant differences in the size or size distribution of the probe-

sonicated liposomes remaining in the nebuliser compared to the probe-sonicated 

liposomes before nebulisation were observed (p>0.05). 

Nebulisation of non-sonicated liposomes via the air-jet nebuliser led to a significant 

decrease (p<0.05) in their size (i.e. from 3.36±0.28 to 2.10±0.25 µm). Moreover, 

unlike nebulisation of probe-sonicated liposomes via Omron, probe-sonicated 

liposomes were found to significantly decrease (p<0.05) in size following 

nebulisation via the air-jet nebuliser, where a decrease in size from 403.2±54.9 to 

277.0±18.3 nm was observed. Furthermore, the size distribution of the non-

sonicated and probe-sonicated liposomes remained similar, as no effect of 

processing within the nebuliser was observed (p>0.05). 
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Table 5.1: Size and size distribution of non-sonicated liposomes before nebulisation, after nebulisation and what is remaining in the nebuliser 

reservoir. Measurements were carried out using laser diffraction or dynamic light scattering (DLS). Data are mean ± SD, n=3; p>0.05 for size and 

SPAN measurements before nebulisation;     p<0.05 for size and SPAN measurements for before nebulisation compared to delivered liposomes and 

residual content; * p<0.05 for size and SPAN of delivered liposomes and residual content for Polygreen compared to Pari and Omron; 
+

 p<0.05 for 

size of delivered liposomes and residual content between Pari and Omron. 

Non-sonicated liposomes 

Size (µm) 

 Before nebulisation Delivered liposomes Residual content 

Pari (air-jet) 3.36±0.28 2.10±0.25   2.56±0.36   

Omron (vibrating-mesh) 3.36±0.28 
2.71±0.21 

+    3.43±0.42 
+    

Polygreen (ultrasonic 3.36±0.28 1149.3±51.7 nm (DLS) *    1464.0±45.3 nm (DLS) *    

    

SPAN or Pdi 

 Before nebulisation Delivered liposomes Residual content 

Pari (air-jet) 1.68±0.27 1.78±0.31  2.78±0.21   

Omron (vibrating-mesh) 1.68±0.27 1.44±0.23 2.31±0.33   

Polygreen (ultrasonic) 1.68±0.27 0.441±0.202 (Pdi) * 0.887±0.110 (Pdi) * 
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Table 5.2: Size Size and size distribution of sonicated liposomes before nebulisation, after nebulisation and what is remaining in the nebuliser 

reservoir. Measurements were carried out using dynamic light scattering (DLS). Data are mean ± SD, n=3; p>0.05 for size and SPAN measurements 

before nebulisation;     p<0.05 for size and SPAN measurements for before nebulisation compared to delivered liposomes and residual content; * 

P<0.05 for size and SPAN of delivered liposomes and residual content for Polygreen compared to Pari and Omron; 
+

 p<0.05 for size of delivered 

liposomes and residual content between Pari and Omron. 

 

Sonicated liposomes 

Size (nm) 

 Before nebulisation Delivered liposomes Residual content 

Pari (air-jet) 403.2±54.9  
                   277.0±18.3   

+  
                    330.8±09.4     

Omron (vibrating-mesh) 403.2±54.9                     361.2±20.2                 343.5±29.6  

Polygreen (ultrasonic) 403.2±54.9     207.0±48.0        *           223.6±31.9       * 

    

Pdi 

 Before nebulisation Delivered liposomes Residual content 

Pari (air-jet) 0.753±0.247      0.600±0.152            0.974±0.026 

Omron (vibrating-mesh) 0.753±0.247      0.709±0.230            0.853±0.147 

Polygreen (ultrasonic) 0.753±0.247      0.442±0.025       * 0.558±0.248    
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The reason for the size reduction of both non-sonicated liposomes and probe-

sonicated vesicles following air-jet nebulisation can be attributed to vesicle 

fragmentation when they are drawn through the inlet of the nebuliser and mixed 

with the high speed jet. Moreover, the impact of the aerosolised droplets onto 

the baffles might have decreased the size of the liposomes (Taylor et al., 

1990b). Saari et al., (1999) have reported a marked reduction in liposome size 

following air-jet nebulisation for both beclomethasone diproprionate DLPC and 

DPPC liposomes, from 3.49 to 0.83 µm and from 5.07 to 0.91 µm, respectively. 

Liposomes remaining in the Pari’s reservoir were also found to markedly 

decrease in size (p<0.05) when compared to vesicles before nebulisation. 

Moreover, the SPAN of the non-sonicated liposomes remaining in the reservoir 

of the nebuliser was significantly higher (p<0.05) than the SPAN of the 

liposomes before nebulisation, where an increase in the SPAN from 1.68±0.27 

to 2.78±0.21 was observed. This might be attributed to the possible increase in 

the concentration of the liposomes inside the nebuliser due to evaporation of 

the solvent during aerosolisation, thus leading to accumulation of liposomes in 

the reservoir and possibly formation of liposome aggregates. 

As outlined in Tables 5.1-5.2, both the non-sonicated liposomes and probe-

sonicated liposomes significantly decreased in size (p<0.05) following 

nebulisation via the Polygreen nebuliser. Leung et al., (1996) reported that 

nebulisation of egg PC liposomes using a Medix ultrasonic nebuliser lead to the 

decrease in vesicle size from 5.71±0.02 μm to 0.97±0.05 µm. During ultrasonic 

nebulisation aerosol droplets are generated via cavitation bubbles and/or 

capillary waves. Any of these mechanisms involved in droplet formation 

combined with the presence of baffles and constant recycling of the fluid is 

expected to disrupt the liposomal structures (Leung et al., 1996).  

Additionally, unlike the Omron and Pari, size and size distribution of the non-

sonicated liposomes were analysed using DLS via the Zetasizer, rather than 

laser diffraction, following nebulisation by the Polygreen device. The reason for 

that was the very low obscuration value of the liposomes under laser diffraction, 

which was not sufficient to measure the size via the laser diffraction Mastersizer 

instrument. In general, ultrasonic nebulisers are unsuitable for the delivery of 
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liposomes (Leung et al., 1996; Bridges and Taylor, 1998; Elhissi and Taylor, 

2005), indicating that the new design ultrasonic devices are consistent with old 

ultrasonic devices in that regard. 

Also shown in Tables 5.1-5.2, non-sonicated liposomes and probe-sonicated 

liposomes remaining in the ultrasonic reservoir significantly decreased (p<0.05) 

in size following nebulisation via the Polygreen nebuliser. The Pdi of the 

liposomes remaining in the nebuliser was also higher (p<0.05) than the 

delivered liposomes, where an increase from 0.441±0.202 to 0.887±0.110 was 

observed. This increase in Pdi can be attributed to accumulation and 

subsequent aggregation in the reservoir during atomisation. It has been 

previously reported that like air-jet nebulisers an increase in the concentration of 

the drug solution occurs after ultrasonic nebulisation (O'Callaghan and Barry, 

1997).  

Furthermore, studies using cryo-TEM demonstrated that nebulisation via the 

three different nebulisers did not affect the morphology of liposomes (both non-

sonicated and sonicated), and the multilamellar structure of the liposomes was 

still maintained (Figures 5.9-5.10). 

 

5.3.4 Structure and activity of IgG following nebulisation 

 

In this section the secondary structure and activity of IgG in solution or liposome 

formulations (non-sonicated and sonicated) were investigated after nebulization 

by the three different nebulizers: the air-jet nebulizer Pari Turboboy, the 

vibrating-mesh nebulizer Omron MicroAir and the ultrasonic nebulizer 

Polygreen.  

Figures 5.11-5.13 illustrate the effect of nebulization on the secondary structure 

and activity of IgG in solution and IgG in liposome preparations (non-sonicated 

and sonicated).  

As demonstrated in Figure 5.11, there were no significant differences in the 

structure of IgG, both in solution or bound to liposomes, before and after 

nebulisation, and regardless of nebuliser type (p>0.05). On the other hand, 
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when the activity of IgG was investigated, both IgG in solution and in liposomes 

demonstrated a significant reduction (p<0.05) in their activity following 

nebulisation (Figures 5.12-5.13). Amongst the nebulisers studied, the Omron 

least reduced the activity of IgG, by 18.69±1.24, 15.90±2.74 and 16.61±2.42 % 

for the solution, non-sonicated liposomes and sonicated liposomes, 

respectively. On the other hand, nebulisation via the Polygreen nebuliser was 

found to lead to the highest loss in protein activity. The magnitude of activity 

loss was by 88.81±1.20, 88.99±0.95 and 50.39±2.20% for the solution, non-

sonicated liposomes and sonicated vesicles, respectively. Furthermore, 

nebulisation through the Pari was found to lie in between the Omron nebuliser 

and the Polygreen ultrasonic devices, with 61.16±4.92, 73.58±1.95 and 

48.85±0.94 % losses in activity for the solution, non-sonicated liposomes and 

sonicated liposomes, respectively.  

The loss of activity using the different nebulisers can be attributed to the shear 

stress and aggregation of the protein molecules during nebulisation. Maillet et 

al., (2008a) investigated the amount of IgG aggregates following nebulisation 

using Aeroneb Pro vibrating-mesh nebuliser, PARI LC+ air-jet nebuliser and 

SYST_AM LS290 ultrasonic nebuliser. The results from their study indicated 

that aggregation was minimal following the use of the vibrating-mesh nebuliser 

and the highest following ultrasonic nebulisation. These results have been 

attributed to the prolonged continuous shearing within the air-jet and ultrasonic 

devices. By contrast, the mesh nebulisers may offer lower shear forces and 

shearing seems to occur only during extrusion through the mesh pores. Various 

studies have demonstrated a higher efficiency of vibrating-mesh nebulisers over 

other types of nebulisers for the delivery of liposomes incorporating hydrophilic 

drugs (Elhissi et al., 2006a; 2007; Kleemann et al., 2007).  
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Figure 5.9: Cryo-TEM images of liposomes (non-sonicated) following nebulisation via (a) Pari air-jet nebuliser, (b) Omron vibrating-mesh nebuliser and 
(c) Polygreen ultrasonic nebuliser. Typical of 4-6 different experiments.   
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Figure 5.10: Cryo-TEM images of liposomes (sonicated) following nebulisation via (a) Pari air-jet nebuliser, (b) Omron vibrating-mesh nebuliser and (c) 
Polygreen ultrasonic nebuliser. Typical of 4-6 different experiments.   
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Figure 5.11: Nebulisation of (A) IgG and IgG bound to liposomes ((B) non-sonicated and 

(C) sonicated), via Pari, Omron and Polygreen nebulisers, and its effect on the secondary 

structure of IgG. Data are mean ± SD, n=3; p> 0.05 for all formulations in the different 

nebulisers.  
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Figure 5.12: Nebulisation of IgG bound to liposomes ((A) non-sonicated and (B) sonicated) and (C) IgG solution, via Pari, Omron and Polygreen 
nebulisers, and its effect on the activity of IgG. Data are mean ± SD, n=3; * p<0.05 for Pari, Omron and Polygreen compared to before nebulisation; 

 p<0.05 for Omron compared to Pari and Polygreen;  p<0.05 for Pari compared to Polygreen. 
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Figure 5.13: Nebulisation of IgG and IgG bound to liposomes (non-sonicated and sonicated), via (A) Pari, (B) Omron and (C) Polygreen nebulisers, 
and its effect on the activity of IgG relative to before nebulisation. Data are mean ± SD, n=3; * p<0.05 for non-sonicated liposomes or sonicated 
liposomes compared to IgG solution. 
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Furthermore, the loss of activity following nebulisation was found to directly 

correlate with the results in Section 5.3.3, which demonstrate the effect of 

nebulisation on liposomes’ structure. It is noteworthy that the nebuliser with the 

least disruptive effect on liposomal structure (i.e. the Omron) demonstrated the 

least reduction in activity, whilst the nebuliser with the highest disruptive effect on 

liposomes (i.e. the Polygreen) demonstrated the highest reduction in activity.  

Also, as demonstrated in Figure 5.13, sonication of liposomes was found to 

markedly enhance the retained activity of IgG following nebulisation, especially for 

the Pari and Polygreen nebulisers (p<0.05). This enhanced retained activity can 

be attributed to the previously mentioned enhancement effect of size reduction on 

the stability of liposomes (Section 5.3.3).  

As shown in Section 5.3.2, the FPF output percentage relative to the total mass 

output was determined using TOF and laser diffraction. In this section the FPF 

output percentage relative to the active IgG delivered was investigated (Figure 

5.14).  

As demonstrated in Figure 5.14, the FPF output percentage relative to the active 

IgG delivered was significantly lower (p<0.05) than the previously reported FPF 

output percentage results relative to the mass output (Section 5.3.2). Moreover, 

the FPF output using TOF technology was significantly higher than laser diffraction 

technology due to the smaller droplet sizes measured using the TOF as discussed 

earlier (see Section 5.3.2).    

Also illustrated in Figure 5.14, both FPF output results using TOF and laser 

diffraction followed the same trend for the different formulations using the different 

nebulisers, and the order in FPF output was as follows: Omron> Pari> Polygreen. 

The results from this study further confirmed previous reports (O'Callaghan et al., 

1989; O'Callaghan and Barry, 1997), highlighting the importance of calculating the 

FPF output percentage relative to the active output, rather than the mass output, 

which has been used in some previous studies (Kradjan and Lakshminarayan, 

1985; Douglas et al., 1986; McCallion et al., 1996b). 
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Figure 5.14: FPF output% relative to the active IgG delivered, using the (A) TOF and (B) laser diffraction technologies for the, IgG solution, non-
sonicated liposomes and sonicated liposomes. Data are mean ± SD, n=3; * p<0.05 for non-sonicated IgG liposomes or sonicated IgG liposomes 
compared to IgG solution.     
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5.4 Conclusions 

 

The results from this study have demonstrated that the three different 

nebulisers varied in their performance. Moreover, marked differences existed in 

the nebulisation time, sputtering duration, output rate and mass output values 

between the different nebulisers. In addition to the nebuliser type, the 

formulation itself was found to affect the performance of the nebulisers.  

Furthermore, the validity of delivering multilamellar liposomes prepared from 

proliposomes via medical nebulisers has been established, although 

fragmentation of liposomes was demonstrated following the use of nebulisers. 

Also, size reduction of liposomes was proven viable as a technique to improve 

the stability of liposomes to nebulization.  

Although the stability of IgG was found to be significantly (p<0.05) reduced 

following nebulisation, its incorporation into the liposomal structure was found to 

enhance its retained activity, especially when incorporated into sonicated 

liposomes.  

Additionally, the results from this study have further demonstrated that amongst 

the different studied nebulisers, the vibrating-mesh nebuliser (Omron) exhibited 

the longest nebulisation time. However, it was the least disruptive to liposomal 

structure and retained the highest activity of IgG when it was used, hence it 

proves to be the most suitable for the nebulisation of liposomes, especially 

when proteins are incorporated in their structure.   
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6.1 Introduction 
  

The nasal cavity has been used as a route of drug administration since ancient 

times, and there has been heightened interest in the exploitation of the nose for 

systemic drug administration in recent years. The high permeability of the nasal 

surfaces is implicit in this approach, along with its non-invasive nature and 

avoidance of gastrointestinal and hepatic metabolism (Banga and Chien, 1988; 

Song et al., 2004; Pires et al., 2009).  

Despite its advantages, the nasal mucosa represents an obstacle for the uptake of 

large molecules, particularly peptides and proteins (Illum, 2006; Pires et al., 2009). 

Nevertheless, these drawbacks can be overcomed by using drug carrier systems 

such as liposomes (Türker et al., 2004). Liposomes have been demonstrated to 

have good bioadhesive characteristics, especially when a mucoadhesive agent is 

incorporated into liposome formulation (Jain et al., 2007). Furthermore, liposomes 

demonstrated the ability to slow the rate of drug clearance from the nose as well 

as protect the drug from enzymatic degradation in nasal secretions (Kato et al., 

1993; Law et al., 2001).  

In addition to the nature of formulation, factors like site of deposition and rate of 

clearance of the drug from the nasal cavity affect the absorbance of the drug, and 

therefore its therapeutic effect (Hardy et al., 1985; Harris et al., 1988). 

Various dosage forms have been utilized to deliver medications to the nasal cavity, 

but liquid preparations are the most widely used. Liquid formulations for intranasal 

delivery can be administered by means of sprays, drops, propellant driven 

metered dose inhalers, squeeze bottles or compressed air nebulisers (Kublik and 

Vidgren, 1998). Due to their convenience, dose consistency and the ability to 

administer both solutions and suspensions, sprays have become the preferred 

devices for delivery of nasal formulations. Most of the preparations in the market 

nowadays are delivered by metered-dose pump sprays and a variety of metered 

volumes, pumps and nozzle types are commercially available (Foo et al., 2007; 

Kushwaha et al., 2011). 

Spray devices and drug formulations affect the characteristics of the spray plume, 

including its unique geometric and droplet properties. Characteristics of the 
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resulting spray plume are believed to have a profound influence on the resulting 

nasal deposition patterns (Foo, 2007; Foo et al., 2007). These spray 

characteristics generated by the device are dependent not only on the spray 

nozzle design, but also on the properties of the formulation (Dayal et al., 2004; 

Guo and Doub, 2006). Adequate choice of the nasal device along with designing a 

suitable formulation is therefore necessary in optimizing the nasal delivery.  

In the USA, the Food and Drug Administration (FDA) CDER has established a set 

of industry guidelines and regulations to market nasal products (CDER, 2002; 

2003). The FDA recommends that several in vitro tests should be used to assess 

nasal delivery. These include parameters which allow the quantity and 

reproducibility of drug to be investigated, and tests to examine the droplet size 

distribution and spray geometry (i.e. the characteristics of the expanding spray 

plume) (Newman et al., 2004).  

While significant efforts have been made to study the influence of spray 

characteristics on nasal deposition, little research has focused on the interactions 

between nasal delivery device and formulation and the effect of that on drug 

deposition in the nasal cavity. Furthermore, literature lacks information elucidating 

the effect of nasal devices on liposomes and liposome-entrapped materials (Foo, 

2007). 

This study investigated the effects of formulation, whether IgG solution or IgG 

liposomes (non-sonicated or sonicated) on dose accuracy and characteristics of 

the resulting spray plume. This study was conducted using a mucosal atomisation 

device (MAD) which was then compared with two different nasal pump sprays. 

The effect of device on the dose accuracy and spray cloud characteristics was 

determined for the different formulations.  

Moreover, the effect of the different nasal devices on the physical integrity of 

liposomes (non-sonicated and sonicated) was examined. Parallel to this, the effect 

of nasal device on the structure and activity of IgG, alone or incorporated into 

liposomes, was determined. 
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6.2 Methodology 

 

6.2.1 Preparation of IgG liposomes 

 

Liposomes were manufactured as discussed earlier in Section 2.2.1 by adapting 

the ethanol-based proliposome method described by Perrett and co-workers 

(1991). Liposomes comprised 10 mg/ml lipid (2:1 SPC to cholesterol), 0.5 mg/ml 

IgG and 0.2% w/v mucoadhesive agent (sodium alginate) to make up a final 

volume of 5 ml using HPLC water. For size reduction of liposomes, probe 

sonication for 4.5 minutes was employed to produce 400 nm vesicles, as 

previously described in Section 4.3.4. Furthermore, IgG solution comprising 0.5 

mg/ml IgG in 5 ml HPLC water was prepared for comparison with the liposome 

formulation. 

 

6.2.2 Determination of the shot weight and dose accuracy of nasal devices 

 

The shot weight and dose accuracy of the different nasal devices were determined 

according to the FDA guidlines (CDER, 2002; 2003). Three nasal devices were 

employed in this study: a MAD (Wolfe Tory Medical Inc., Salt Lake City, UT) and 

two nasal pump sprays (Model VP3/93, Valois) from a Beconase® aq. nasal spray, 

and (Model VP7/100, Valois) from a Nasacort® aq. nasal spray, referred to as 

“nasal spray A” and “nasal spray B”, respectively. The number of actuations 

required to prime the nasal devices, number of full actuations and number of 

actuations in the tail-off phase were determined in this study as discussed in 

Section 2.2.13. Studies to determine the shot weight and actuation duration were 

also conducted, as described in Section 2.2.13.  

 

6.2.3 Determination of nasal spray characteristics 

 

As outlined in Section 6.1, the characteristics of the spray cloud generated from 

the nasal devices can be assessed by a variety of means, including DSD, spray 

pattern and plume geometry.  
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The fluid (5 ml) was placed in the nasal devices and (as described in Section 

2.2.13), the size and SPAN of the generated droplets were analysed using the 

Malvern Spraytec laser diffraction instrument (Malvern Instruments Ltd, UK). The 

spray pattern and plume geometry were performed according to the FDA guidlines 

(CDER, 2002; 2003). The impaction technique was employed to determine the 

spray pattern of the nasal devices whilst high-speed photography was used to 

determine the plume geometry of the nasal devices (see Section 2.2.14). 

 

6.2.4 Characterisation of liposomes following spraying 

 

Determination of the size and size distribution of liposomes were performed as 

previously described in Section 2.2.5. Measurement of the size of non-sonicated 

liposomes before and after spraying was conducted via laser diffraction using the 

Malvern Mastersizer 2000, whilst DLS using the Malvern Zetasizer Nanoseries 

was employed to determine the size and size distribution of the probe sonicated 

liposomes.  

 

6.2.5 Determination of structure and activity of IgG 

 

The secondary structure of IgG was determined as described in Section 2.2.9 

using CD. CD experiments were performed using a J-815 spectropolarimeter 

(Jasco, UK). Collated CD spectra of IgG both in solution or incorporated into 

liposomes were then estimated via the secondary structure algorithm CDSSTR 

using DICHROWEB (Greenfield, 2006). Moreover, an easy titre IgG kit was used 

to measure the immunoreactivity of the protein according to the protocol previously 

described in Section 2.2.10. 

 

6.3 Results and discussion: 
 

6.3.1 Priming and tail off characteristics  

 

As mentioned earlier in Section 6.1, it is important for data on nasal sprays to 

include pump priming parameters (Gibson, 2001). Figure 6.1 illustrates the effect 

http://en.wikipedia.org/wiki/Circular_dichroism
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of formulation on the number of actuations required to prime the nasal devices, the 

number of full actuations achieved via the nasal devices and number of actuations 

required in the tail-off phase. 

As shown in Figure 6.1, no priming was required for the MAD device and no tail-off 

behaviour was noticed. This is due to the design of the MAD, since it is simply a 

manually operated syringe connected to a mucosal atomization device. Therefore, 

the user manually controls the dose through the MAD. This also explains the high 

accuracy in the number of full actuations generated, which is reflected in the small 

standard deviations. Furthermore, due to the manual operation of the device, no 

significant changes (p>0.05) were observed between the different formulations 

and the number of actuations depended solely on the user. 

Contrary to the MAD, both nasal pump sprays A and B required priming, and 

exhibited tail-off behaviour as the formulations ran out. Both nasal sprays required 

2-5 actuations to prime the devices with no significant differences found between 

the two devices for the three different formulations (p>0.05). The numbers of 

priming actuations conformed with the manufacturers’ directions. 

The number of full actuations on the other hand differed significantly between the 

two nasal pumps (p<0.05). Whilst nasal spray A delivered 44±3, 40±4 and 41±4 

full actuations for the IgG solution, non-sonicated liposomes and sonicated 

liposomes, respectively, nasal spray B delivered 31±4, 26±3 and 27±4 full 

actuations for the IgG solution, non-sonicated liposomes and sonicated liposomes, 

respectively. The difference between the nasal pump sprays can be attributed to 

the designs of the nasal sprays, specifically the volume of the metering chamber 

(Marx and Birkhoff, 2011). Studies conducted to measure the shot weight also 

confirmed the same conclusion (Figure 6.2), whereby the lower numbers of 

actuations exhibited by nasal spray A were associated with a larger shot weight, 

and the larger numbers of actuations exhibited by nasal spray B were associated 

with a smaller shot weight. Moreover, as demonstrated in Figure 6.1 and Figure 

6.2, no significant differences were found between the different formulations in 

both nasal pump sprays (p>0.05). The numbers of actuations in the tail-off phase 

were also found to be similar between the nasal pump sprays (p>0.05).   

 



CHAPTER 6 

 

161 
 

 

Figure 6.1: Number of actuations required priming the nasal devices, number of full actuations generated and number of actuations in the tail-off 
phase for the different formulations in nasal devices: (A) MAD (B) nasal spray A (C) nasal spray B. Data are mean ± SD, n=3; p>0.05 for the number 
of actuations in the priming and tail-off phase for nasal sprays A and B; p>0.05 for number of actuations in the MAD; * p<0.05 for number of full 

actuations between Nasal spray A and B; p<0.05 in the total number of actuations for Nasal sprays A and B compared to the MAD. 
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Results from this study indicate that the number of actuations and shot weight are 

primarily affected by the design of device rather than the nature of formulation. 

These findings came in agreement with Harris et al., (1988), who observed no 

differences in the dose accuracy between different formulations containing 0, 0.25 

or 0.5 % methylcellulose.  

 

 

Figure 6.2: The emitted dose from the nasal devices for the different formulations. Data are 
mean ± SD, n=3; * p<0.05 for nasal spray A compared to nasal spray B and the MAD.  

 

In addition to the dose accuracy reflected by the number of full actuations and the 

shot weight, the total time required per actuation was investigated (Figure 6.3).  
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Figure 6.3: The time required per actuation for the different formulations through the nasal 
devices. Data are mean ± SD, n=3; * p<0.05 for MAD compared to nasal sprays A and B; 
p>0.05 between nasal sprays A and B.  

 

As demonstrated in Figure 6.3, the total time per actuation was found not to 

significantly differ between nasal sprays A and B (p>0.05). Conversely, the time 

required per actuation in the MAD device was found to be considerably longer 

than both nasal sprays A and B. The time per actuation through the MAD was 

found to be 426.67±163.33, 520±130 and 440±146.66 ms for IgG solution non-

sonicated liposomes and sonicated liposomes, respectively. On the other hand, 

the time required per actuation was found to be 186.67±37.7, 173.33.33±18.85 

and 200±18.85 ms for IgG solution, non-sonicated liposomes and sonicated 

liposomes, respectively upon using nasal spray A; and 226.67±18.85, 213.33 and 

213.33±18.85 ms upon using nasal spray B.  

In addition, no marked differences were observed in the time required per 

actuation amongst the different formulations in all three nasal devices (p>0.05). 

These differences between the different devices are ascribed to their designs, and 

like the actuation results previously discussed in Section 6.3.1, the nature of the 

formulation was found to have no effect on the time per actuation (p>0.05). 
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As described in Section 2.2.14, each actuation through the nasal device is 

comprised of three phases: formation phase, evolution phase and dissipation 

phase. Examples of images of the different phases are illustrated in Figures 6.4-

6.6 for the three nasal devices.  

As observed from the Images 5.6-5.8, the duration of the formation, evolution and 

dissipation phase through the nasal pump sprays were the same (i.e. 80 ms each 

phase). The MAD on the other hand was characterised by a long formation and 

dissipation phases (i.e. 160 ms each) and shorter evolution phase (i.e. 120 ms). 

The absence of a pump system in MAD in comparison to the nasal pump sprays 

can thus explain this different behaviour between the devices.  

 

6.3.2 Droplet size distribution (DSD)  

 

The DSD and fraction of droplets below 10 µm are amongst the critical parameters 

defining the performance and efficiency of nasal devices (Dayal et al., 2004). 

Moreover, those parameters can be possible predictors of the ability of droplets to 

target the lung (Kippax et al., 2011) or the nasal cavity (Kippax and Fracassi, 

2003). In this section the effects of formulation on the DSD and the fraction of 

droplets below 10µm using the three nasal devices were evaluated (Table 6.1).  

As demonstrated in Table 6.1, the trend in droplet size for both nasal sprays A and 

B was the same: non-sonicated liposomes > sonicated liposomes > IgG solution, 

with significant differences between the IgG solution and non-sonicated liposomes 

for both nasal sprays (p<0.05). This trend in DSD can be attributed to the expected 

increase in viscosity of liposomes (non-sonicated and sonicated) in comparison to 

the IgG solution, where incorporation of lipid and alginate is expected to increase 

the viscosity of the formulations.  



CHAPTER 6 

 

165 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Time course frames (40 ms) of an evolving plume from nasal spray A showing the different phases of cloud spray development. Typical 
of 4-6 different experiments.   
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Figure 6.5: Time course frames (40 ms) of an evolving plume from nasal spray B showing the different phases of cloud spray development. Typical 
of 4-6 different experiments.   
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Figure 6.6: Time course frames (40 ms) of an evolving plume from the MAD showing the different phases of cloud spray development. Typical of 4-
6 different experiments.   
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Kippax et al., (2010) evaluated the effect of increasing the viscosity of aqueous 

solution on the DSD of nasal sprays using different concentrations (0%-1.5%) of 

polyvinylpyrrolidone (PVP). They reported an increase in the droplet size with 

increasing solution viscosity, which is in agreement with our findings in this study. 

These results were also supported by Harris et al., (1988), who reported an 

increase in the DSD of nasal sprays from 51 to 200 μm as the concentration of 

methylcellulose increased from 0 to 0.5 %. Moreover, Foo (2007) compared the 

DSD produced by 37% sucrose solution (viscosity = 4.24 cP) and water 

(viscosity = 0.94 cP) using different nasal devices. The results from that study also 

demonstrated a significantly higher DSD for the 37% sucrose solution in 

comparison to water.  

It was also demonstrated in Table 6.1 that droplets generated by the nasal spray B 

were larger than those of nasal spray A. This can be attributed to differences in the 

designs of the devices specifically the dimensions of the orifice in the nasal 

sprays. This increase in droplet particle size is expected to increase the deposition 

in the anterior region of the nasal cavity (Cheng et al., 2001). 

Contrary to both nasal spray A and nasal spray B, the droplet size generated by 

the MAD was found not to be affected by the nature of formulation (p>0.05). This 

can be attributed to the high standard deviations of the droplet size readings when 

the MAD device was employed, and the possible differences in the velocity or 

stroke strength exerted on the MAD. Guo and Doub (2006) evaluated the effect of 

actuating parameters such as stroke velocity, acceleration and stroke length using 

an electronic automatic actuator on the characteristics of nasal sprays. The results 

from their study indicated a significant effect of the stroke velocity on the droplet 

size of particles, whereby an increase in velocity from 20 mm/s to 60 mm/s 

resulted in a decrease in the mean droplet size of sprays from 45 μm to 30 μm, 

respectively.  
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 Table 6.1: The droplet size, SPAN and particle fraction < 10 µm for the different formulations using different nasal devices. Data are mean ± SD, 
n=3; p>0.05 for the SPAN and Droplet<10 μm (%) for all formulations; * p<0.05 for the droplet size of sonicated liposomes and non-sonicated 
liposomes compared to the IgG solution for nasal sprays A and B.   

   Droplet size (μm)  

 IgG solution Sonicated liposomes Non-sonicated liposomes 
Nasal spray A 54.87±3.51 59.74±1.68 * 68.43±3.01 * 

Nasal spray B 59.42±3.41 64.10±5.11 * 76.83±4.52 * 

MAD 68.99±8.88 65.11±20.24 72.75±20.02 
      SPAN  

 IgG solution Sonicated liposomes Non-sonicated liposomes 
Nasal spray A 3.41±1.01 4.21±0.67 3.33±0.31 
Nasal spray B 4.76±0.31 3.31±1.63 3.01±0.71 

MAD 6.30±1.51 4.26±1.54 3.34±2.08 
      Droplets <10 μm (%)   

 IgG solution Sonicated liposomes Non-sonicated liposomes 
Nasal spray A 3.93±1.47 6.26±1.29 6.71±1.38 
Nasal spray B 4.19±1.44 3.35±2.47 6.87±2.05 

MAD 5.04±2.11 4.33±1.43 8.31±6.52 
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Unlike the droplet size, the SPAN and fraction of droplets below 10 µm were not 

affected by the nature of the formulation (p>0.05). Moreover, no significant 

differences were also observed in the SPAN and the fraction of droplets below 10 

µm between the different nasal devices.  

According to findings of Harris et al., (1988), optimum mean droplet size diameter 

for nasal delivery lies within the range of 59 to 80 μm. Hence, indicating that 

droplets generated via the different nasal devices and formulations in our study 

are considered to be optimal for nasal delivery. 

 

6.3.3 Spray pattern and plume geometry  

 

In addition to the DSD, shot weight and actuating properties of nasal devices, the 

spray pattern and plume geometry of the generated cloud from the different nasal 

devices are important factors that can be used to evaluate the performance of the 

nasal devices (Harrison, 2000). Furthermore, the spray pattern and plume 

geometry can be used to predict the possible deposition site within the nasal cavity 

(Newman et al., 2004; Foo, 2007) 

In this section studies were conducted in order to investigate the effect of 

formulation and nasal device on the spray pattern and plume geometry of the 

generated cloud (Table 6.2). Figures 6.7-6.9 also show example images of the 

plumes and spray patterns of the different formulations sprayed using the different 

nasal devices.  

As demonstrated in Table 6.2 and Figures 6.7-6.9, significant differences (p<0.05) 

in plume geometry measurements existed between the devices. First, with regard 

to the plume angle, it was in the order of: nasal spray B> nasal spray A> MAD for 

all the formulations. Secondly, the plume width at 3 cm was found to be dependent 

on the plume angle, and thus was found to be significantly higher for nasal spray 

B, followed by nasal spray A and the least plume width was demonstrated by the 

MAD device. Finally, contrary to the plume width, the total plume height was found 

to decrease as the plume angle increased, and thus was highest for the MAD 

device and the lowest plume height was exhibited by nasal spray B. These 
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differences in plume angles between the different devices are expected to have 

implications on the site of deposition within the nasal cavity, as it has been 

previously demonstrated that deposition in the anterior region of the nasal cavity 

increases with increasing the plume angle, whilst deposition in the turbinate region 

increases with decreasing the plume angle (Cheng et al., 2001; Foo et al., 2007). 

Thus, it is suggested that the anterior deposition will be highest when the nasal 

spray B is employed, whilst turbinate deposition might be highest when the MAD 

device is used. 

Furthermore, as displayed in Table 6.2 and Figures 6.7-6.9, the spray pattern was 

differed considerably when using different devices. Whilst nasal pumps A and B 

were found to exhibit more oval and larger spray patterns, the MAD exhibited 

significantly smaller and irregularly shaped spray patterns. The average ovality 

ratio were 1.07 and 1.11 for the nasal spray pumps A and B, respectively and 1.73 

for the MAD device.  

In a study conducted by Makidon et al., (2010), the characteristics of sprays 

generated from both a single dose Becton, Dickinson and Company (BD) 

accuspray nasal device and a Pfeiffer nasal pump nasal spray were compared. 

Results from their study demonstrated a significant difference (p<0.05) in ovality 

ratio between the devices, being respectively 3.6±1.9 and 1.2±0.1 for the single 

dose nasal device and the nasal pump device. This may indicate that a more oval 

spray pattern is exhibited when employing nasal pump sprays. These results came 

in high agreement with the results from the present study. 
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Figure 6.7: Images of the plumes and the spray patterns using the MAD for (A) the IgG solution (B) non- sonicated IgG liposomes and (C) sonicated 
IgG liposomes. Typical of 4-6 different experiments.   
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Figure 6.8: Images of the plumes and the spray patterns using nasal spray A for (A) the IgG solution (B) non-sonicated IgG liposomes and (C) 
sonicated IgG liposomes. Typical of 4-6 different experiments.   
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Figure 6.9: Images of the plumes and the spray patterns using nasal spray B for (A) the IgG solution (B) non-sonicated IgG liposomes and (C) 
sonicated IgG liposomes. Typical of 4-6 different experiments.   
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Table 6.2: The (A) plume geometry and (B) spray pattern of the generated spray cloud. Data are mean ± SD, n=3; p>0.05 among all the plume 

geometry parameters for the different formulations; p<0.05 for the cone angle and width at 3 cm parameters among the different devices; *p<0.05 

for the total plume height of the MAD device compared to nasal sprays A and B; p>0.05 in spray pattern parameters for all formulations; * p<0.05 in 

the different spray pattern parameters for nasal sprays A and B compared to the MAD; *p<0.05 in the Dmin and Dmax data for nasal spray A 

compared to nasal spray B and the MAD.  

 (A)  Plume geometry  

 IgG solution Sonicated liposomes Non-sonicated liposomes 

 Cone 
angle 

Width at 3 
cm 

Total plume height 
(cm) 

Cone 
angle 

Width at 3 
cm 

Total plume 
height (cm) 

Cone angle Width at 3 
(cm) 

Total plume 
height (cm) 

MAD 34.00±0.82 1.97±0.05 58.20±6.09* 35.00±0.94 2.03±0.09 62.73±5.26* 33.33±1.25 1.90±0.08 60.97±4.60* 

Nasal spray A 44.33±1.25 2.56±0.09 48.97±3.21 43.00±0.82 2.47±0.12 47.03±3.95 42.66±0.47 2.50±0.08 50.17±2.76 

Nasal spray B 49.66±1.25 3.07±0.05 44.60±4.25 48.33±0.94 3.00±0.08 45.57±3.27 48.66±0.47 2.80±0.16 44.43±3.62 

  

 (B)  Spray pattern 

 IgG solution Sonicated liposomes Non-sonicated liposomes 

  Dmin (cm) Dmax (cm) Ovality  Dmin (cm) Dmax (cm) Ovality  Dmin (cm) Dmax (cm) Ovality  

MAD 3.00±0.29 4.27±0.42 1.42±0.20 2.20±0.29 4.43±0.34 2.01±0.31 2.33±0.21 4.13±0.29 1.77±0.20 

Nasal spray A 4.33±0.12* 4.77±0.12 1.10±0.04* 4.47±0.12* 4.97±0.12 1.11±0.04* 4.43±0.12* 5.00±0.22* 1.13±0.06* 

Nasal spray B 5.73±0.17** 6.20±0.8** 1.08±0.15* 5.63±0.21** 5.93±0.26** 1.05±0.06* 5.43±0.17** 5.93±0.21** 1.09±0.05* 
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In addition, as demonstrated in Figures 6.7-6.9, the nature of the spray pattern 

was different in nasal spray B compared to nasal spray A and the MAD, where 

unlike the latter devices, the spray pattern was found to be hollow in nasal spray B 

in comparison to full spray patterns generated by nasal spray A and the MAD. In a 

study conducted by Inthavong et al., (2011), the effect of the hollow cone and full 

cone spray patterns generated from an internal atomiser on the deposition inside 

the nasal cavity was evaluated. The results from their study indicated that hollow 

cone spray patterns deposited more in the middle regions of the nasal cavity when 

compared to the full cone spray pattern.  

As demonstrated in Table 6.2 and Figures 6.7-6.9, for each device, formulation 

had no significant effects on the spray pattern and plume angle (p>0.05). These 

findings disagree with previous studies that reported a dependence of the spray 

pattern and plume geometry on the nature of formulation, mainly its viscosity 

(Dayal et al., 2004; Foo, 2007). This disagreement might be attributed to the small 

difference in viscosity between our formulations in comparison to those used by 

previous studies. 

 

6.3.4 Liposomes before and after spraying 

 

Despite the fast-growing research on the applicability of liposomes in nasal 

delivery, as yet there have been no published studies demonstrating the effect of 

the nasal devices themselves on the size and size distribution of liposomes.   

To ascertain the effect of dispensing the IgG liposomes (non-sonicated and 

sonicated) using nasal devices, the physical integrity of liposomes, by means of 

measuring their size, size distribution and morphology following spraying was 

examined (Figures 6.10-6.12).  

As illustrated in Figure 6.10, spraying using the different nasal had no marked 

effect (p>0.05) on the size of non-sonicated or sonicated liposomes. The Pdi of the 

sonicated liposomes and SPAN non-sonicated liposomes were also not affected 

by spraying (p>0.05). Additionally, cryo-TEM studies conducted revealed that 

delivery of liposomes (non-sonicated and sonicated) via the different nasal devices 
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did not affect its morphology, since the multilamellar structure of the liposomes 

was maintained following spraying (Figures 6.11-6.12). 

These results demonstrate the great promise that nasal sprays could offer in the 

field of liposome delivery to the respiratory tract, where unlike nebulisers which 

lead to significant fragmentation of liposomes, as demonstrated in chapter 4, nasal 

sprays demonstrated an ability of preserving the physical integrity of liposomes. 

However, this advantage of using nasal sprays over nebulisers is true only if 

deposition in the nose using nasal sprays can replace the need for targeting the 

deep lung via using nebulisers.  

  

6.3.5 Effect of spraying on the structure and activity of IgG 

 

In this Section the structure and activity of IgG in solution and in liposome 

formulations (non-sonicated or sonicated) have been analysed before and after 

spraying using the MAD device, and nasal pump sprays A and B (Figure 6.13). 

As demonstrated in Figures 6.13-6.15, spraying using the three different nasal 

devices was found not to significantly affect the structure of IgG (p>0.05), both in 

solution and in liposome formulations (non-sonicated or sonicated). Moreover, 

contrary to using nebulisers, the use of nasal sprays has been found not to affect 

the activity of IgG in solution or in liposomes (p>0.05) (Figures 6.14-6.15) and the 

activity of IgG was about 100% for all formulations sprayed by the different 

devices.  

It was demonstrated earlier in Section 5.3.3 that fragmentation of liposomes 

incorporating IgG can lead to a reduction in the activity of IgG. The preservation of 

the activity of IgG in this study further confirms that theory, since liposomes were 

previously demonstrated to be unaffected by spraying (Section 6.3.4). 

This is the first study conducted to test the effect of nasal devices (for liquid 

formulations) on the integrity of liposomes or IgG. The positive outcomes from the 

study demonstrated by the preserved integrity of the liposomes and IgG following 

spraying, elucidates the great potential that nasal sprays can possess. 
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Figure 6.10: Size and size distribution of (A) non-sonicated liposomes and (B) sonicated vesicles using different nasal devices. Data are mean ± 
SD, n=3; p>0.05 for all size and SPAN data.  
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Figure 6.11: Cryo-TEM images of multilamellar liposomes (non-sonicated) following spraying via the (A) MAD, (B) nasal spray A and (C) nasal 
spray B. Typical of 4-6 different experiments.   
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Figure 6.12: Cryo-TEM images of multilamellar liposomes (sonicated) following spraying via the (a) MAD, (b) nasal spray A and (c) nasal spray B. 
Typical of 4-6 different experiments.   
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Figure 6.13: Spraying of (A) IgG and IgG bound to liposomes ((B) non-sonicated and (C) 
sonicated), using a MAD and two nasal pump sprays A and B, and its effect on the secondary 
structure of IgG. Data are mean ± SD, n=3; p>0.05 among the different formulations in the three 
nasal devices.   
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Figure 6.14: Spraying of IgG and IgG bound to liposomes (non-sonicated or sonicated), using a MAD and two nasal pump sprays A and B, and its 
effect on the activity of IgG. Data are mean ± SD, n=3; * p<0.05 for sonicated liposomes compared to non-sonicated liposomes and the IgG 
solution.   
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Figure 6.15: Spraying of IgG and IgG bound to liposomes (non-sonicated and sonicated), using a MAD and two nasal pump sprays A and B, and its 
effect on the activity of IgG relative to before nebulisation. Data are mean ± SD, n=3; p>0.05 among the different formulations in all three nasal 
devices.  
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6.4 Conclusions 

 

The results obtained from this study provide a rational basis for device and 

liposomal formulation selection of nasal spray delivery systems. In fact, this is 

the first study that examines the effect of incorporating liposomal formulations in 

nasal devices and examining the effect liposomal formulations on the spray 

characteristics of various devices. Based on DSD, plume geometry and spray 

pattern results, nasal pump sprays were demonstrated to be superior to the 

MAD in delivering spray plumes with uniform DSD, wider plume angles and 

more uniform spray patterns. All of these are postulated to achieve better 

deposition in the nasal cavity, and are expected to deposit more in the anterior 

non-ciliated region of the nose, thus leading to a slower clearance from the 

nose, hence promising an enhanced therapeutic effect.  

The results from this study were also the first to elucidate that all nasal devices 

examined managed to preserve both the physical integrity of liposomes (non-

sonicated and sonicated) and their incorporated IgG moiety. Considering those 

results, the potential benefits both intranasal administration and proliposome 

technology offer great promise for using liposomal formulation incorporating 

proteins in intranasal delivery.  
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The potential of drug delivery via the respiratory tract as an alternative to non-

invasive systemic delivery of therapeutic agents has been attracting a lot of 

attention. Nowadays, both pulmonary delivery and nasal delivery are amongst 

the top four routes in the drug delivery market. The potential growth of those 

sectors is also extensive owing to the promise they demonstrate in the delivery 

of macromolecules such as peptides and proteins. Despite the advantages of 

delivery via the respiratory tract, the duration of activity following administration 

is short when the drug is formulated as a solution. Also, the activity of some 

proteins and peptides might be compromised following deposition in the 

respiratory system. Consequently, controlled drug delivery systems have been 

investigated as alternatives to conventional drug solutions. Amongst the 

controlled-release systems, liposomes are considered very promising owing to 

their biocompatibility and biodegradability. Liposomes are postulated to 

overcome the limitations of respiratory tract delivery by offering sustained 

release and enhancing the local retention time of drugs (Gregoriadis, 1993). In 

addition, liposomes are nontoxic, since they contain lipids similar to those found 

in the pulmonary walls (Finley et al., 1968). Unfortunately, liposomes are 

unstable in aqueous dispersions. Also, conventional methods of liposome 

manufacture, such as the thin film hydration method, are difficult to scale-up 

and they often demonstrate low entrapment efficiency of hydrophilic materials 

(New, 1990b). 

In this and other studies various methods have been employed to manufacture 

stable phospholipid systems that would generate liposomes prior to 

administration; one of these systems is proliposomes (Payne et al., 1986a; 

Payne et al., 1986b; Perrett et al., 1991). Proliposomes are stable phospholipid 

formulations which readily generate liposomes upon the addition of an aqueous 

phase, thereby overcoming the drawbacks of liposomes made by the thin-film 

method (Elhissi et al., 2007). To further enhance the stability of liposomes 

during nebulisation, the incorporation of cholesterol into the liposomal 

formulation (Leung et al., 1996) and size reduction of liposomes have been 

suggested. Furthermore, to prolong the residence time of liposome formulations 

in the respiratory tract, the incorporation of mucoadhesive agents has proven to 

be viable.  
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General Conclusions 

This study was specifically designed to fabricate novel mucoadhesive 

liposomes in the submicron range via the ethanol-based capable of entrapping 

IgG and to investigate the effects of various medical nebulisers and nasal spray 

devices on the integrity of formulated IgG liposomes.   

Studies in this project gave a rational basis for optimal parameters required in 

manufacturing liposomes via the ethanol-based proliposome method. Resultant 

liposomes were easy to prepare and stable upon storage, and they 

demonstrated a potential for large-scale manufacturing. Also, the generated 

liposomes proved to be capable of entrapping considerable proportions of 

various materials, including: the small hydrophilic drug SS (EE up to 59%); the 

43 kDa model protein antigen OVA (EE up to 43%); and the 150 kDa 

immunoglobulin IgG (EE up to 50%).       

The present results also show that IgG liposomes were also prepared via the 

conventional thin film hydration method and the particulate-based proliposome 

method. The latter methods of liposomes manufacture proved valid for the 

entrapment of IgG. However, liposomes generated from ethanol-based 

proliposomes were found to be superior to the other manufacturing techniques, 

since they had higher EE values of IgG.  

Studies to incorporate mucoadhesive agents into liposome formulations were 

attempted in order to prolong the retention of the liposomes in the respiratory 

tract. The results from those studies demonstrated that mucoadhesive agents 

such as chitosan or alginate can be efficiently incorporated into liposomes. The 

nature and concentration of those agents, however, markedly influenced the 

properties of the liposomes. For instance, whilst the incorporation of alginates 

led to enhanced IgG entrapment, the incorporation of chitosan caused the 

entrapment of IgG in liposomes to be negligible so that the EE was almost 0%. 

Moreover, studies were conducted to reduce the size of liposomes to the 

submicron range in an attempt to enhance liposome stability. The results from 

those studies proved that various size reduction techniques were successful; 

however, depending on the nature of the entrapped material, a suitable size 
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reduction technique should be chosen. For instance, whilst extrusion proved 

valid for liposomes entrapping OVA and SS, it could not be used for liposomes 

entrapping IgG, since IgG adsorption on filters may occur. However, probe 

sonication proved valid as a size reduction technique of IgG liposomes.  

Overall, novel mucoadhesive liposomes in the submicron size range entrapping 

considerable amounts of IgG were developed. These liposomes were prepared 

via the ethanol-based proliposome technology; therefore they can overcome the 

stability and scaling-up limitations of liposomes.  

Following the manufacture of IgG liposome formulations (non-sonicated or 

sonicated), the potential of delivery of the formulations via medical nebulisers 

and nasal sprays of various operating principles was studied, and the 

performance of devices and properties of generated aerosol clouds were 

investigated using different formulations.  

The Results from those studies showed a marked influence of formulation on 

the performance of medical nebulisers and the characteristics of clouds 

generated from nasal sprays. For instance, the use of IgG liposomes compared 

to IgG solution was found to prolong nebulisation time of the vibrating-mesh and 

ultrasonic nebulisers, whilst having no marked effects on the characteristics of 

the generated aerosol from the different nebulisers (i.e. aerosol DSD and FPF). 

On the other hand, formulations did not affect the performance of nasal devices. 

Nevertheless, generated cloud was strongly influenced by formulation type. For 

example, IgG liposomes increased the size of droplets generated by both nasal 

spray pump sprays.  

The effect of device on liposomes’ physical stability and IgG integrity was also 

investigated. The results demonstrated that the use of medical nebulisers 

caused liposome fragmentation, without affecting the multilamellar morphology 

of the liposomes. Also, with the use of medical nebulisers, a marked loss in the 

activity of IgG was demonstrated. However, the secondary structure of IgG was 

maintained. Furthermore, marked differences existed amongst the nebulisers 

themselves, and the vibrating-mesh nebuliser was found to have the least effect 

on fragmentation of liposomes and reducing activity of IgG.  
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Overall, the retained activity of IgG was demonstrated to be higher following 

their incorporation into liposomes, especially sonicated liposomes, suggesting 

that liposomes have protected IgG during nebulisation.  

Contrary to medical nebulisers, nasal sprays did not affect the physical stability 

or morphology of liposomes, or the integrity of IgG. Hence the use of nasal 

sprays for liposome delivery proved to have a great potential.   

In conclusion, the results from this study have clearly demonstrated that the 

proliposome technology can be successfully employed to incorporate IgG. The 

findings further demonstrated the feasibility of using proliposomes in respiratory 

tract delivery, particularily using nasal devices. 

 

The Scope For Future Studies 

 

Findings in this study present an important rationale for the commencement of 

experiments, and future work in this area could involve improving liposome 

stability to nebulisation, possibly by optimising liposome formulation or nebuliser 

design (for instance, collaboration with the manufacturers of nebulisers to 

reduce the shear stress that nebulisers generate on liposomes). This can 

perhaps be achieved by reducing the frequency of vibrations. Also, alternatively 

other devices such as soft mist inhalers may be investigated. 

Furthermore, using the ethanol-based proliposome technology, the study of the 

thermal behaviour of IgG-liposomes with and without the mucoadhesive agents, 

chitosan and alginate, may comprise a part of future investigations.  

The promise drawn by nasal sprays in preserving the physical stability of 

liposomes as well as the activity of IgG warrants further investigations. For 

instance, different designs of nasal spray pumps and devices, including the 

novel nasal spray pump EquadelTM (Valois Inc., France) could be investigated.  

Further characterisation results may also be carried out using laser-based spray 

pattern and plume geometry measurement instrumentation. Also, the use of 
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impactors and nasal cast models are important in order to support the present 

findings regarding aerosol and spray characterisation. 

Finally, this project could be extended to involve more in vitro studies using cell 

cultures and in vivo studies using animals. A correlation between the in vivo and 

in vitro will be established in order to enhance the reliability of the in vitro 

studies. 
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